
The research described has been supported by the Deutsche
Forschungsgemeinschaft under grants SL47/1-1 and SL47/2-1

RUN-TIME EFFICIENT FEASIBILITY
ANALYSIS OF UNI-PROCESSOR SYSTEMS
WITH STATIC PRIORITIES

Karsten Albers, Frank Bodmann and Frank Slomka
Department for Embedded Systems/Real-Time Systems, University of Ulm
{name.surname}@informatik.uni-ulm.de

Abstract: The performance of feasibility tests is crucial in many applications. When
using feasibility tests online only a limited amount of analysis time is
available. Run-time efficiency is also needed for testing the feasibility of many
different task sets, which is the case in system synthesis tools. We propose a
fast uni-processor feasibility test using static priorities. The idea is to use
approximation with a variable error to achieve a high performance exact test. It
generally outperforms the existing tests which we show using a large number
of random task sets.

Key words: Real-Time Systems, Fixed-Priority Scheduling, Feasibility Analysis, FPTAS.

1. INTRODUCTION

The performance of the real-time analysis is important for the automation
of the design process for embedded systems. Three different kinds of
feasibility tests exist: Exact tests, sufficient tests and approximations. The
most used exact test is the worst case response time analysis by Audsley et
al. (1993). Sjödin and Hansson (1998) propose an efficient implementation
of this analysis. The exact test proposed by Manabe and Aoyagi (1998) has
exponential time complexity and is outperformed by the worst case response
time analysis in most cases. The sufficient test by Liu and Layland (1973)
and by Bini et al. (2001) are designed for RM scheduling and therefore not

2 Karsten Albers, Frank Bodmann and Frank Slomka

dbf I !,()
I Di–
Ti

------------- 1+ Ci"

#$ i ! I Di%&'

∑=

suitable for more general models. Approximations allow a trade-off between
run-time and acceptance rate. A predefined error allows a certain amount of
inexactness while performing the test which leads to a speed-up for the tests.
Albers and Slomka (2004) gives such an approach for earliest deadline first
(EDF) scheduling and extended it to a fast exact schedulability analysis
(Albers, Slomka 2005). It takes advantage of the approximation approaches
and allows to dynamically adjust the error during the schedulability analysis.
Fisher and Baruah (2005a, 2005b) transferred this approximation to systems
with static priorities. The goal of this paper is to extend the results achieved
with the exact dynamic test to systems with fixed priorities.

2. MODEL

We consider the sporadic task model on uniprocessor systems using pre-
emptive fixed priority scheduling. The results can be extended to more
advanced task models. Each task #i of a task set !={#1,..., #n} is described by
an initial release time (or phase) (i, a relative deadline Di (measured from the
release time), a worst-case execution time Ci (cost) and a minimal distance
(or period) Ti between two instances of a task. The priority assignment of the
tasks follows the deadline monotonic approach. The task wih the smallest
deadline gets the highest priority. An invocation of a task is called a job, and
the kth invocation of each task #i is denoted #i,k. The release time (i,k of #i,k can
then be calculated by (i k, (i k 1–() T i"+= , and the deadline di,k by
di k, (i D i k 1–()+ Ti"+= . In the following the synchronous case is assumed,
so #i$! :' (i 0= . This leads also to a sufficient test for the asynchronous
case. One feasibility test for this kind of task sets is proposed in by Baruah
(2003) using the concept of demand and request bound functions. The idea is
to define functions calculating the maximum sum of execution times of all
jobs within an interval of length I. The request bound function considers all
jobs that can arrive within a time interval of the length I. For the demand
bound function it is additionally necessary that the deadline of all jobs
occurs within I. To get the maximum demand bound contribution of a task #i
it is necessary to calculate the sum of costs of all k consecutive jobs of the
tasks for which the distance of the deadline of the k-th job of the task #i to
the release time of the first job of the task #i is smaller than the length of the
interval I: di k, I) .The maximum cumulated execution requirement of all jobs
#i,k with #i ' ! having request time and deadline within I is called demand
bound function:

Run-time efficient feasibility analysis of uni-processor systems with
static priorities

3

Let !# be the task set that contains only task #. We define

dbf I #,() dbf I !#,()= as a shortcut description. Baruah also defines the request
bound function: The maximum cumulated execution requirement of all jobs
#i,k with #i ' ! which have their release times within I

Same as above we also use rbf I #,() rbf I !#,()= as a shortcut description.
For an interval I and a task #i a set of consecutive jobs of the task contributes
fully to the request bound function of I, if the difference between the release
time of the first job of the set and the release time of the last job of the set is
equal or smaller than the length of I. For a feasibility test only intervals that
start at an idle point of the system are of interest (i. e. a point in time where
no request is ready for execution). The synchronous release of all tasks #i is
taken as the start point of all intervals. For systems using EDF scheduling
the following condition leads to a necessary and sufficient test:
I$ 0> :dbf I !,() I) Based on this condition Baruah (2003) gives a

schedulability analysis and Albers and Slomka (2004) an approximation. For
static priority scheduling, it is not sufficient to test the demand bound
function. Instead it is necessary to consider for each task the interruption of
higher priority tasks and therefore each task separately. Let !hp(#) be the task
set which contains all task with a priority higher than that of task #. A
feasibility test for such a system is given by Baruah (2003): A task system is
feasible in regard to task # if and only if for each absolute deadline of a job
d#,k, k ' N there exist an interval I‘)d#,k (and I‘%d#,k-T#) for which the
following condition holds: dbf d# k, #,() rbf I * !hp #(),() d# k,)+ .

A job can satisfy its deadline if there exists an interval I, with length
equal or smaller than the deadline of the task, in which the system has an
idle point with respect only to the regarded jobs of this task and all jobs of
higher priority tasks. One of these intervals is the response time of the task in
question. Baruah proposes to first check the inequation above for I‘)d#,k and
than calculate the response time if necessary. To keep the test tractable the
number of tested jobs of #i needs to be limited by an upper test border.
Baruah has shown such a border for the recurring real-time task model.

3. APPROXIMATIONS

As a prerequisite for achieving an exact test with a good performance, it
is necessary to develop a new approximation for static priority scheduling. In
contrary to the previously know approximation we need an algorithm in
which the contributions of the tasks are calculated in an incremental way. To

rbf I !,() I
Ti
----- Ci"

#$ i !'

∑=

4 Karsten Albers, Frank Bodmann and Frank Slomka

Interval

Costs

Interval
D4,1 =II1I2I3I4

#1,4#1,3

#2,2

#3,2

#1,1

#2,1

#3,1

#4,1

#1,2

Figure 1. a) Schedule for example, b) Cumulated request for schedule

get such a selectable sufficiency the error which occurs due to the
approximation needs to be bounded.

3.1 Static feasibility test

The idea of the approximation is to define a cumulated request bound
function: The cumulated request with respect to task # is the request of all
jobs of all tasks with a higher priority than # which can arrive within an
interval I and the demand of # for this interval:

Cumu I #,() rbf I !hp #(),() dbf I #,()+=
Let us now consider the cumulated request for those intervals for which

the condition I‘ = dnext(I‘,#) holds. The additional request for interval I is the
difference between the cumulated request and the interval:
addReq #() Cumu I #,() I–= . The part of the jobs that cannot be processed

within I due to the arrival times of the jobs is called exceeding costs.

There are two possible situations in which exceeding costs can occur. In
the first one the arrival of a job occurs so late that the remaining time to the
end of I is shorter than the execution time necessary for the job. It can than
never be completed within I. Consider the example task set #1 := (C1 = 4, D1
= 4, T1 = 8), #2 := (C2 = 3, D2 = 7, T2 = 22), #3 := (C3 = 3, D3 = 17, T3 =
19), #4 := (C4 = 1, D4 = 26, T4 = 30). The schedule can be found in Fig 1a
and the cumulated costs function belonging to it in Fig 1b. The job #1,4
belongs to the first situation. The difference between its release time
(+1,4=24) and I (d4,1=26) is smaller than its execution time. One part of this
job (length 2) has to be scheduled outside of I and therefore counts to the
exceeding costs. The second kind of situation occurs when the task is
preempted and therefore its execution is delayed so that at least a part of the
execution has to occur after the end of I. One example for this situation is the
job #2,2 in Fig 1. Due to its preemption by #1,4 it is not possible to process #2,2
completely within I, therefore it partly counts to the exceeding costs. Same
for #3,2 which is delayed and preempted by three other jobs (#1,3, #2,2, #1,4). All
tasks with a priority higher than the priority of # can contribute to the

Run-time efficient feasibility analysis of uni-processor systems with
static priorities

5

exceeding costs and it is not relevant to know which task exactly contributes
how much: Lemma: The deadline of a job #i,k is met if and only if either for I
= di,k: the cumulated request for I is smaller or equal to I (cumu(I,#i))I) or
the additional request of I is covered by exceeding costs. Proof: Suppose that
the deadline of a job #i is not met despite that the cumulated request does not
exceed the sum of I and the exceeding costs. Than costs of at least one job
do not fit within I and the execceding costs. This is only possible if either
there exists an idle time in I (with respect to #i and all tasks with a higher
priority) or a job is processed within I that is not included in cumu. In case of
the idle time #i,k has also been processed completly before the end of its
deadline. The second case is that a job of a higher priority task, which has
not been requested within I is processed within I. I starts at an idle point of
the system (by definition) and processing a task with a request time outside
of I would be in contradiction to the definition. The other possibility would
be to process a job #i,m with m>k. But this can only be done if the considered
job #i,k is already finished, so the deadline di,k holds.

The idea for an implementation is to start with the additional request and
try to reduce it step by step by considering the exceeding costs. If they cover
the additional request the test succeeds otherwise the test fails.

3.2 Approximation with bounded deadlines

Using the proposed algorithm an approximation can be achieved. The
idea is to limit the number of test points for the cumulated request function.
For each task only a limited number of test points (one for each of the first k
jobs) are considered exactly. The remaining test points are skipped and an
approximation is used instead. In the example in Fig 2 the first two jobs of #1
are considered exactly, the remaing are approximated using the specific
utilization of the task. An upper bound for the task request bound function
considering only the first k jobs exactly is called upper approximated task
request bound function:

The error of the approximation is bounded as shown in Fig 2. The
difference between the approximated and the real request bound function of
task #i is bounded by one times Ci. In the approximated part of the function
the value of rbfsup is at least k*Ci. So, as rbf is a non-decreasing function the
relative error , is limited to 1/k.

rbf sup' I !i k, ,() rbf k Ti" ! i,()
Ci
Ti
----- I di k,–()"+ I k Ti">

rbf I ! i,() I k Ti")

=

rbf sup I ! k, ,() rbf sup' I !i k, ,()
i$!'
∑=

6 Karsten Albers, Frank Bodmann and Frank Slomka

Figure 2.Approximated rbfsup of #1
Interval

Costs rbf(#1)
rbfsup (#1)

} 2*C1

} C1

This also limits the overall error to 1/k. k and therefore the degree of
exactness can be chosen. The complexity of this approach can be calculated
by considering that this test has to be done for each task separately. For a
task #i with Di)Ti only the first job of the task has to be considered. The
number of test points (of the approximated cumulated request bound
function) is limited to k*n, where n is the number of tasks with a higher
priority than #i. This leads to an overall complexity O(log n " n2 " 1/,).

3.3 Approximation with arbitrary deadlines

The proposed approximation can be extended to the case of arbitrary
deadlines (Di>Ti). The question is which jobs of #i are necessary to be tested.
For the periodic general task model, it was sufficient to test only the first job.
For arbitrary task systems this is not sufficient any more because several
jobs with the same priority can exist
concurrently. Baruah has shown a
border for the recurring real-time task
system. The idea is to find the point of
time where it is guaranteed that the
cumulated request bound function
does not exceed the intersection any
more. There exists a point of time t0%0
such that for all t‘% t0: cumu(t‘,#)) t‘. Using the approximated cumulated
request function such a point is guaranteed to exist using a task system with
an overall utilization lower than 1. Starting at the point where the rbf for the
last task switch to approximation, the remaining function is monotonically
increasing with a slope equal to the utilization of the function. Therefore at
one point this function must fall below the intersection. The overall number
of test intervals for each task is limited to k. This is the case even if several
instances of a task are considered. Therefore the overall number of test
intervals is limited to n"k where n is the number of tasks. Therefore the
complexity of this test is the same as in the non-general case.

4. EFFICIENT DYNAMIC TEST

To improve the performance of the exact test a combination of the exact
test and an approximation is proposed. The idea is to use the approximation
for skipping as many test points as possible.

,
cumusup I !i k, ,() cumu I ! i,()–

cumu I ! i,()-- 1
k---)=

Run-time efficient feasibility analysis of uni-processor systems with
static priorities

7

Figure 4. a) Approximated rbfsup of #1 b) Approximated rbfinf of #1

Interval

Costs

rbfsup (#1)

Interval

Costs
rbf

rbfinf

The test is done using the
request bound function. For the
feasibility test of one task it is
sufficient to show that, for each
deadline of the tasks the request
bound function for one test
interval smaller than the deadline,
meets or steps below the
intersection. The problem is
therefore to find this interval. An
overestimating request bound
function is not applicable to get
an exact test. See Fig 4a for an
example. If only the approxi-
mated request bound function is
regarded the only acceptable test
interval would be missed. So in contrast to the approximative test, it is not
possible to use rbfsup, the overestimating approximation function. Therefore
an underestimating approximation (rbfinf‘) is used: A lower bound for the
task request bound function considering only the first k jobs exactly.

Consider Fig 4b. The approximation rbfinf is comparable to the
approximation rbfsup. In contrary to rbfsup it underestimates the request bound
function. In case the test seems to succeed using this approximation it is
therefore necessary to reduce the approximation step by step until the exact
case is reached. Than the feasibility test with regard to interval I succeeds. It
is only necessary to calculate the exceeding costs until they meet the
additional request. If this is the case, the deadline Dn is met. The algorithms
are shown in Fig 3 and Fig 6. The idea of approximation as early as possible
can be used for a further improvement of the test. It is necessary to calculate

rbf i nf I !i k, ,() rbf k Ti" ! i,()
Ci
Ti
----- I di k,–() Ci–"+ I k Ti">

rbf I ! i,() I k Ti")

=

8 Karsten Albers, Frank Bodmann and Frank Slomka

the cumulated costs at least once for each priority level. Evaluating in
priority order, an approximative request bound function can be build step-
by-step and used as a preliminary check. This allows to quickly check the
feasibility for task with low priorities. The idea is to use the upper
approximated request bound function for each task with no exact test
interval. For any interval I this function can be derived:
rbf sup I # 0, ,() C# I C# T #"+=

Only one part depends on the length of the interval. It is possible to
calculate the sum of the execution times and the sum of the specific utiliza-
tions. This calculation can
be done step-by-step
during the process of
testing the different levels
of priorities. Evaluating
the level in their priority
order it is only necessary
at each level to add the
values for only one task.
If the approximated cost exceeds the deadline, the approximated request
bound functions are replaced with the exact values for each task step-by-step
until either the costs don’t exceed the interval any more or all
approximations are revised.

5. EXPERIMENTS

We have tested the proposed algorithms using a large number of
randomly generated task graphs. We measured the run-time by counting the
iterations needed by the algorithm to find a decision. For the new test we
counted every iteration of the main loop, every reverse of an approximation
and every iteration needed to get the initial values. The effort is compared to
the effort of previous algorithms using the same task sets. For comparison
we used an efficient implementation of the worst-case response time analysis
introduced by Sjödin and Hansson and of the algorithm for the analysis of
recurring real-time task sets proposed by Baruah. We did not consider
arbitrary tasks or more advanced task models here. Fig 7a shows an
experiment, which uses 50,000 randomly, generated task sets with a
utilization between 50% and 99%.

Run-time efficient feasibility analysis of uni-processor systems with
static priorities

9

The new algorithm shows an improved performance. It outperforms the
algorithm by Baruah and only needs between 200 and 1,042 iterations in the
average for task sets with different utilizations instead of 4,950 to 8,574. The
effort for the worst-case response time analysis even with a very efficient
implementation needs between 14,000 and 28,000 iterations and therefore
much more than the other algorithms. In cases that the response time is
notneeded the new test delivers the result with less effort. To investigate how
much of the improvement results only out of the new calculation of the
initial value, Fig 7b shows an experiment (using 10,000 task sets) in which
the new test does not use the improved approximative calculation of the
initial values (Section 4). Despite that both algorithms need a comparable
effort for task sets with low utilization, the algorithm by Baruah needs up to
8,500 iterations whereas the new algorithm only needs up to 5,500 iterations.
5,000 iterations are needed alone for calculating initial values. To compare
only the impact by the main algorithm an improved version of the test by
Baruah was build for the following experiments. It uses also the improved
calculation for the initial values. Fig 7a shows an experiment using different
ratios between the smallest and the largest tasks in the task set. It is obvious
that the effort for the worst-case response time analysis depends on the ratio
between the largest and the smallest tasks in the task set. But the effort of the
new test and the test by Baruah does not depend on the ratio. Indeed it
declines a bit with a rising ratio due to a slightly higher acceptance rate of
task sets with a high ratio. In Fig 7b the dependency between the effort and

10 Karsten Albers, Frank Bodmann and Frank Slomka

the number of tasks in a task set is shown. To investigate the improvement
due to the dynamic approximation both algorithms use the improved
cumulated cost calculation. The results show that both algorithms depend on
the number of tasks in a comparable way. Despite this the new algorithm
seems to need less effort than the algorithm by Baruah in its improved
implementation.

6. CONCLUSION

In this paper we proposed a new fast sufficient and necessary test for the
feasibility analysis of preemptive static priority scheduling. Therefore a new
approximation for static priority scheduling was also developed. The
purpose of the approximation is to limit the run-time of the test. The new
exact test, which also uses the idea of approximation, leads to a lower run-
time for feasibility tests, which also seems to be independent of the ratio
between the largest and the smallest task.

References

K. Albers, F. Slomka. An Event Stream Driven Approximation for the Analysis of Real-Time
Systems. Proceedings of the 16th Euromicro Conference on Real-Time Systems,
Catania, 2004

K. Albers, F. Slomka. Efficient Feasibility Analysis for Real-Time Systems with EDF Schedul-
ing, Proceedings of the Design Automation and Test in Europe Conference 2005
(DATE‘05), Munich, 2005

N.C. Audsley, A. Burns, M.F. Richardson, A.J. Wellings. Hard real-time scheduling: The
deadline monotonic approach. Proceedings of the 8th Workshop on Real-Time
Operating Systems and Software, 1993

S. Baruah Dynamic- and Static-priority Scheduling of Recurring Real-Time Tasks. Real-Time
Systems. 24, 2003.

E. Bini, G. Buttazzo, G. Buttazzo. The Hyperbolic Bound for Rate Monotonic Schedulability.
Proceedings of the Euromicro Conference on Real-Time Systems, 2001.

N. Fisher, S. Baruah. A polynomial-time approximation scheme for feasibility analysis in
static-priority systems with arbitrary relative deadlines, Proceedings of the 17th
Euromicro Conference on Real-Time Systems, Palma de Mallorca, 2005

N. Fisher, S. Baruah. A Polynomial-Time Approximation Scheme for Feasibility Analysis in
Static-Priority Systems with Bounded Relative Deadlines, Proceedings of the 13th
International Conference on Real-Time Systems, Paris, 2005

C. Liu, J. Layland. Scheduling Algorithms for Multiprogramming in Hard Real-Time
Environments, Journal of the ACM, 20(1), 1973.

J.P. Lehoczky, L. Sha, J.K. Stronsnider, H. Tokuda. Fixed Priority Scheduling Theory for
Hard Real-Time Systems. Foundation of Real-Time Computing: Scheduling and
Resource Management, 1991

Y. Manabe, S. Aoyagi. A Feasibility Decision Algorithm for Rate Monotonic and Deadline
Monotonic Scheduling, Real-Time Systems, 14, 1998

M. Sjödin, H. Hansson. Improved Response-Time Analysis Calculations, Proceedings of the
RTSS, Madrid, Spain, 1998

