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Abstract: The performance of feasibility tests is crucial in many applications. When 
using feasibility tests online only a limited amount of analysis time is 
available. Run-time efficiency is also needed for testing the feasibility of many 
different task sets, which is the case in system synthesis tools. We propose a 
fast uni-processor feasibility test using static priorities. The idea is to use 
approximation with a variable error to achieve a high performance exact test. It 
generally outperforms the existing tests which we show using a large number 
of random task sets. 
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1. INTRODUCTION 

The performance of the real-time analysis is important for the automation 
of the design process for embedded systems. Three different kinds of 
feasibility tests exist: Exact tests, sufficient tests and approximations. The 
most used exact test is the worst case response time analysis by Audsley et 
al. (1993). Sjödin and Hansson (1998) propose an efficient implementation 
of this analysis. The exact test proposed by Manabe and Aoyagi (1998) has 
exponential time complexity and is outperformed by the worst case response 
time analysis in most cases. The sufficient test by Liu and Layland (1973) 
and by Bini et al. (2001) are designed for RM scheduling and therefore not 



2 Karsten Albers, Frank Bodmann and Frank Slomka
 

dbf I !,( )
I Di–
Ti

------------- 1+ Ci"

#$ i ! I Di%&'

∑=

suitable for more general models. Approximations allow a trade-off between 
run-time and acceptance rate. A predefined error allows a certain amount of 
inexactness while performing the test which leads to a speed-up for the tests. 
Albers and Slomka (2004) gives such an approach for earliest deadline first 
(EDF) scheduling and extended it to a fast exact schedulability analysis 
(Albers, Slomka 2005). It takes advantage of the approximation approaches 
and allows to dynamically adjust the error during the schedulability analysis. 
Fisher and Baruah (2005a, 2005b) transferred this approximation to systems 
with static priorities. The goal of this paper is to extend the results achieved 
with the exact dynamic test to systems with fixed priorities. 

2. MODEL 

We consider the sporadic task model on uniprocessor systems using pre-
emptive fixed priority scheduling. The results can be extended to more 
advanced task models. Each task #i of a task set !={#1,..., #n} is described by 
an initial release time (or phase) (i, a relative deadline Di (measured from the 
release time), a worst-case execution time Ci (cost) and a minimal distance 
(or period) Ti between two instances of a task. The priority assignment of the 
tasks follows the deadline monotonic approach. The task wih the smallest 
deadline gets the highest priority. An invocation of a task is called a job, and 
the kth invocation of each task #i is denoted #i,k. The release time (i,k of #i,k can 
then be calculated by ( i k, ( i k 1–( ) T i"+= , and the deadline di,k by 
di k, ( i D i k 1–( )+ Ti"+= . In the following the synchronous case is assumed, 
so #i$ ! :' ( i 0= . This leads also to a sufficient test for the asynchronous 
case. One feasibility test for this kind of task sets is proposed in by Baruah 
(2003) using the concept of demand and request bound functions. The idea is 
to define functions calculating the maximum sum of execution times of all 
jobs within an interval of length I. The request bound function considers all 
jobs that can arrive within a time interval of the length I. For the demand 
bound function it is additionally necessary that the deadline of all jobs 
occurs within I. To get the maximum demand bound contribution of a task #i 
it is necessary to calculate the sum of costs of all k consecutive jobs of the 
tasks for which the distance of the deadline of the k-th job of the task #i to 
the release time of the first job of the task #i is smaller than the length of the 
interval I: di k, I) .The maximum cumulated execution requirement of all jobs 
#i,k with #i ' ! having request time and deadline within I is called demand 
bound function:  
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Let !# be the task set that contains only task #. We define 

dbf I #,( ) dbf I !#,( )=  as a shortcut description. Baruah also defines the request 
bound function: The maximum cumulated execution requirement of all jobs 
#i,k with #i ' ! which have their release times within I 

Same as above we also use rbf I #,( ) rbf I !#,( )=  as a shortcut description. 
For an interval I and a task #i a set of consecutive jobs of the task contributes 
fully to the request bound function of I, if the difference between the release 
time of the first job of the set and the release time of the last job of the set is 
equal or smaller than the length of I. For a feasibility test only intervals that 
start at an idle point of the system are of interest (i. e. a point in time where 
no request is ready for execution). The synchronous release of all tasks #i is 
taken as the start point of all intervals. For systems using EDF scheduling 
the following condition leads to a necessary and sufficient test: 
I$ 0> :dbf I !,( ) I)  Based on this condition Baruah (2003) gives a 

schedulability analysis and Albers and Slomka (2004) an approximation. For 
static priority scheduling, it is not sufficient to test the demand bound 
function. Instead it is necessary to consider for each task the interruption of 
higher priority tasks and therefore each task separately. Let !hp(#) be the task 
set which contains all task with a priority higher than that of task #. A 
feasibility test for such a system is given by Baruah (2003): A task system is 
feasible in regard to task # if and only if for each absolute deadline of a job 
d#,k, k ' N there exist an interval I‘)d#,k (and I‘%d#,k-T#) for which the 
following condition holds: dbf d# k, #,( ) rbf I * !hp #( ),( ) d# k,)+ . 

A job can satisfy its deadline if there exists an interval I, with length 
equal or smaller than the deadline of the task, in which the system has an 
idle point with respect only to the regarded jobs of this task and all jobs of 
higher priority tasks. One of these intervals is the response time of the task in 
question. Baruah proposes to first check the inequation above for I‘)d#,k and 
than calculate the response time if necessary. To keep the test tractable the 
number of tested jobs of #i needs to be limited by an upper test border. 
Baruah has shown such a border for the recurring real-time task model. 

3. APPROXIMATIONS 

As a prerequisite for achieving an exact test with a good performance, it 
is necessary to develop a new approximation for static priority scheduling. In 
contrary to the previously know approximation we need an algorithm in 
which the contributions of the tasks are calculated in an incremental way. To 
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Figure 1. a) Schedule for example, b) Cumulated request for schedule

get such a selectable sufficiency the error which occurs due to the 
approximation needs to be bounded. 

3.1 Static feasibility test 

The idea of the approximation is to define a cumulated request bound 
function: The cumulated request with respect to task # is the request of all 
jobs of all tasks with a higher priority than # which can arrive within an 
interval I and the demand of # for this interval: 

Cumu I #,( ) rbf I !hp #( ),( ) dbf I #,( )+=  
Let us now consider the cumulated request for those intervals for which 

the condition I‘ = dnext(I‘,#) holds. The additional request for interval I is the 
difference between the cumulated request and the interval: 
addReq #( ) Cumu I #,( ) I–= . The part of the jobs that cannot be processed 

within I due to the arrival times of the jobs is called exceeding costs.  

There are two possible situations in which exceeding costs can occur. In 
the first one the arrival of a job occurs so late that the remaining time to the 
end of I is shorter than the execution time necessary for the job. It can than 
never be completed within I. Consider the example task set #1 := (C1 = 4, D1 
= 4, T1 = 8), #2 := (C2 = 3, D2 = 7, T2 = 22), #3 := (C3 = 3, D3 = 17, T3 = 
19), #4 := (C4 = 1, D4 = 26, T4 = 30). The schedule can be found in Fig 1a 
and the cumulated costs function belonging to it in Fig 1b. The job #1,4 
belongs to the first situation. The difference between its release time 
(+1,4=24) and I (d4,1=26) is smaller than its execution time. One part of this 
job (length 2) has to be scheduled outside of I and therefore counts to the 
exceeding costs. The second kind of situation occurs when the task is 
preempted and therefore its execution is delayed so that at least a part of the 
execution has to occur after the end of I. One example for this situation is the 
job #2,2 in Fig 1. Due to its preemption by #1,4 it is not possible to process #2,2 
completely within I, therefore it partly counts to the exceeding costs. Same 
for #3,2 which is delayed and preempted by three other jobs (#1,3, #2,2, #1,4). All 
tasks with a priority higher than the priority of # can contribute to the 
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exceeding costs and it is not relevant to know which task exactly contributes 
how much: Lemma: The deadline of a job #i,k is met if and only if either for I 
= di,k: the cumulated request for I is smaller or equal to I ( cumu(I,#i))I ) or 
the additional request of I is covered by exceeding costs. Proof: Suppose that 
the deadline of a job #i is not met despite that the cumulated request does not 
exceed the sum of I and the exceeding costs. Than costs of at least one job 
do not fit within I and the execceding costs. This is only possible if either 
there exists an idle time in I (with respect to #i and all tasks with a higher 
priority) or a job is processed within I that is not included in cumu. In case of 
the idle time #i,k has also been processed completly before the end of its 
deadline. The second case is that a job of a higher priority task, which has 
not been requested within I is processed within I. I starts at an idle point of 
the system (by definition) and processing a task with a request time outside 
of I would be in contradiction to the definition. The other possibility would 
be to process a job #i,m with m>k. But this can only be done if the considered 
job #i,k is already finished, so the deadline di,k holds.  

The idea for an implementation is to start with the additional request and 
try to reduce it step by step by considering the exceeding costs. If they cover 
the additional request the test succeeds otherwise the test fails. 

3.2 Approximation with bounded deadlines 

Using the proposed algorithm an approximation can be achieved. The 
idea is to limit the number of test points for the cumulated request function. 
For each task only a limited number of test points (one for each of the first k 
jobs) are considered exactly. The remaining test points are skipped and an 
approximation is used instead. In the example in Fig 2 the first two jobs of #1 
are considered exactly, the remaing are approximated using the specific 
utilization of the task. An upper bound for the task request bound function 
considering only the first k jobs exactly is called upper approximated task 
request bound function: 

The error of the approximation is bounded as shown in Fig 2. The 
difference between the approximated and the real request bound function of 
task #i is bounded by one times Ci. In the approximated part of the function 
the value of rbfsup is at least k*Ci. So, as rbf is a non-decreasing function the 
relative error , is limited to 1/k. 

rbf sup' I !i k, ,( ) rbf k Ti" ! i,( )
Ci
Ti
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Figure 2.Approximated rbfsup  of #1
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This also limits the overall error to 1/k. k and therefore the degree of 
exactness can be chosen. The complexity of this approach can be calculated 
by considering that this test has to be done for each task separately. For a 
task #i with Di)Ti only the first job of the task has to be considered. The 
number of test points (of the approximated cumulated request bound 
function) is limited to k*n, where n is the number of tasks with a higher 
priority than #i. This leads to an overall complexity O(log n " n2 " 1/,). 

3.3  Approximation with arbitrary deadlines 

The proposed approximation can be extended to the case of arbitrary 
deadlines (Di>Ti). The question is which jobs of #i are necessary to be tested. 
For the periodic general task model, it was sufficient to test only the first job. 
For arbitrary task systems this is not sufficient any more because several 
jobs with the same priority can exist 
concurrently. Baruah has shown a 
border for the recurring real-time task 
system. The idea is to find the point of 
time where it is guaranteed that the 
cumulated request bound function 
does not exceed the intersection any 
more. There exists a point of time t0%0 
such that for all t‘% t0: cumu(t‘,#) ) t‘. Using the approximated cumulated 
request function such a point is guaranteed to exist using a task system with 
an overall utilization lower than 1. Starting at the point where the rbf for the 
last task switch to approximation, the remaining function is monotonically 
increasing with a slope equal to the utilization of the function. Therefore at 
one point this function must fall below the intersection. The overall number 
of test intervals for each task is limited to k. This is the case even if several 
instances of a task are considered. Therefore the overall number of test 
intervals is limited to n"k where n is the number of tasks. Therefore the 
complexity of this test is the same as in the non-general case. 

4. EFFICIENT DYNAMIC TEST 

To improve the performance of the exact test a combination of the exact 
test and an approximation is proposed. The idea is to use the approximation 
for skipping as many test points as possible. 

,
cumusup I !i k, ,( ) cumu I ! i,( )–

cumu I ! i,( )---------------------------------------------------------------------------- 1
k---)=
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Figure 4. a) Approximated rbfsup  of #1 b) Approximated rbfinf  of #1
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The test is done using the 
request bound function. For the 
feasibility test of one task it is 
sufficient to show that, for each 
deadline of the tasks the request 
bound function for one test 
interval smaller than the deadline, 
meets or steps below the 
intersection. The problem is 
therefore to find this interval. An 
overestimating request bound 
function is not applicable to get 
an exact test. See Fig 4a for an 
example. If only the approxi-
mated request bound function is 
regarded the only acceptable test 
interval would be missed. So in contrast to the approximative test, it is not 
possible to use rbfsup, the overestimating approximation function. Therefore 
an underestimating approximation (rbfinf‘) is used: A lower bound for the 
task request bound function considering only the first k jobs exactly. 

Consider Fig 4b. The approximation rbfinf is comparable to the 
approximation rbfsup. In contrary to rbfsup it underestimates the request bound 
function. In case the test seems to succeed using this approximation it is 
therefore necessary to reduce the approximation step by step until the exact 
case is reached. Than the feasibility test with regard to interval I succeeds. It 
is only necessary to calculate the exceeding costs until they meet the 
additional request. If this is the case, the deadline Dn is met. The algorithms 
are shown in Fig 3 and Fig 6. The idea of approximation as early as possible 
can be used for a further improvement of the test. It is necessary to calculate 

rbf i nf I !i k, ,( ) rbf k Ti" ! i,( )
Ci
Ti
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the cumulated costs at least once for each priority level. Evaluating in 
priority order, an approximative request bound function can be build step-
by-step and used as a preliminary check. This allows to quickly check the 
feasibility for task with low priorities. The idea is to use the upper 
approximated request bound function for each task with no exact test 
interval. For any interval I this function can be derived: 
rbf sup I # 0, ,( ) C# I C# T #"+=  

Only one part depends on the length of the interval. It is possible to 
calculate the sum of the execution times and the sum of the specific utiliza-
tions. This calculation can 
be done step-by-step 
during the process of 
testing the different levels 
of priorities. Evaluating 
the level in their priority 
order it is only necessary 
at each level to add the 
values for only one task. 
If the approximated cost exceeds the deadline, the approximated request 
bound functions are replaced with the exact values for each task step-by-step 
until either the costs don’t exceed the interval any more or all 
approximations are revised. 

5.  EXPERIMENTS 

We have tested the proposed algorithms using a large number of 
randomly generated task graphs. We measured the run-time by counting the 
iterations needed by the algorithm to find a decision. For the new test we 
counted every iteration of the main loop, every reverse of an approximation 
and every iteration needed to get the initial values. The effort is compared to 
the effort of previous algorithms using the same task sets. For comparison 
we used an efficient implementation of the worst-case response time analysis 
introduced by Sjödin and Hansson and of the algorithm for the analysis of 
recurring real-time task sets proposed by Baruah. We did not consider 
arbitrary tasks or more advanced task models here. Fig 7a shows an 
experiment, which uses 50,000 randomly, generated task sets with a 
utilization between 50% and 99%. 
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The new algorithm shows an improved performance. It outperforms the 
algorithm by Baruah and only needs between 200 and 1,042 iterations in the 
average for task sets with different utilizations instead of 4,950 to 8,574. The 
effort for the worst-case response time analysis even with a very efficient 
implementation needs between 14,000 and 28,000 iterations and therefore 
much more than the other algorithms. In cases that the response time is 
notneeded the new test delivers the result with less effort. To investigate how 
much of the improvement results only out of the new calculation of the 
initial value, Fig 7b shows an experiment (using 10,000 task sets) in which 
the new test does not use the improved approximative calculation of the 
initial values (Section 4). Despite that both algorithms need a comparable 
effort for task sets with low utilization, the algorithm by Baruah needs up to 
8,500 iterations whereas the new algorithm only needs up to 5,500 iterations. 
5,000 iterations are needed alone for calculating initial values. To compare 
only the impact by the main algorithm an improved version of the test by 
Baruah was build for the following experiments. It uses also the improved 
calculation for the initial values. Fig 7a shows an experiment using different 
ratios between the smallest and the largest tasks in the task set. It is obvious 
that the effort for the worst-case response time analysis depends on the ratio 
between the largest and the smallest tasks in the task set. But the effort of the 
new test and the test by Baruah does not depend on the ratio. Indeed it 
declines a bit with a rising ratio due to a slightly higher acceptance rate of 
task sets with a high ratio. In Fig 7b the dependency between the effort and 
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the number of tasks in a task set is shown. To investigate the improvement 
due to the dynamic approximation both algorithms use the improved 
cumulated cost calculation. The results show that both algorithms depend on 
the number of tasks in a comparable way. Despite this the new algorithm 
seems to need less effort than the algorithm by Baruah in its improved 
implementation. 

6. CONCLUSION 

In this paper we proposed a new fast sufficient and necessary test for the 
feasibility analysis of preemptive static priority scheduling. Therefore a new 
approximation for static priority scheduling was also developed. The 
purpose of the approximation is to limit the run-time of the test. The new 
exact test, which also uses the idea of approximation, leads to a lower run-
time for feasibility tests, which also seems to be independent of the ratio 
between the largest and the smallest task. 
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