
Advanced Hierarchical Event-Stream Model
Karsten Albers, Frank Bodmann and Frank Slomka

Embedded Systems / Real-Time Systems, Ulm University
{name.surname}@uni-ulm.de

Abstract—Analyzing future distributed real-time systems, au-
tomotive and avionic systems, is requiring compositional hard
real-time analysis techniques. Well known established techniques
as SymTA/S and the real-time calculus are candidates solving
the mentioned problem. However both techniques use quite
simple event models. SymTA/S is based on discrete events the
real-time calculus on continuous functions. Such simple models
has been choosen because of the computational complexity of
the considered mathematical operations required for real-time
analysis. Advances in approximation techniques are allowing the
consideration of more expressive descriptions of events. In this
paper such a new expressive event model and its analysis algo-
rithm are described. It integrates the models of both techniques.
It is also possible in this module to integrate an approximative
real-time analysis into the event model. This allows to propagate
the approximation through the analysis of a distributed system
leading to a much more efficient analysis.

1. MOTIVATION

The module-based design processes make it possible to
handle the complexity in software and hardware design. Sys-
tems are build using a set of closed modules. These modules
can be designed and developed separately. Modules have only
designated interfaces and connections to other modules of their
set. The purpose of modularisation is to split the challenging
job of designing the whole system into multiple smaller jobs,
allowing the reuse of modules in different designs or to include
IP components of third-party vendors.
Every module-based design concept requires a well defined

interface-concept for connecting the modules. Developing real-
time systems requires for this interface-concept to cover also
the real-time aspects of the modules. A concept for the real-
time analysis is required to handle the modules separatly and
allows a propagation of the real-time analysis results through
the system. It is necessary to propagate the results of the real-
time analysis of the different modules in an abstract way. The
global analysis is build by connecting the local analyses of the
single modules. Therefore it is essiential to have an expressive
and efficient interface describing the influence in timing of
one module to the next module. One aspect of this interface
is the timing description of events which are produced by one
module to trigger the next following module. Another aspect
is the computation capacity that remains for lower priority
modules left over by the higher priority ones.
Consider for example a network packet processor as shown

in figure 1. The single packages are processed by chains
of tasks τ which can be located on different processing
elements P. The processing elements P can be processors,
dedicated hardware or the communication network. The events
Θ triggering the different tasks are equal to the packages

4
10

Θ 11

Θ12

P2

τ
4

sp2

τ
5

S5

S4

sp3

τ
7

τ
8

6S

S7

S8

P3
τ

6

Θ 8

Θ 9

Θ 7

sp3

Θ 1

Θ 2

Θ 3

τ

P1

S

S

S

τ

τ

1

2

3

1

2

3

Θ

Θ

Θ 6

5

Θ

Figure 1. Network processor example

flowing through the network. Each processing unit P uses a
fixed-priority scheduling and the task τ on each unit are sorted
by their priority level. Each task τ has, as available capacity,
the capacity S′ left over by the tasks τ with a higher priority
located on the same processing unit.
The purpose of this paper is to provide an efficient and flex-

ible approach for the real-time analysis of such a modularized
system. Therefore is a powerful and sufficient event model for
describing the different time interfaces for the different aspects
is necessary.

2. RELATED WORK

The most advanced approach for the real-time analysis of
such a modulare network is the real-time calculus by Thiele
et al. [4], [13]. It is based on the network calculus approach
defined by Cruz [5] and Parekh and Gallager [9].
The event pattern is modeled by an sub-additive upper

and super-additive lower arrival curve αuf (Δt) and α lf (Δt)
delivering for every Δt the maximum number of events or
the minimum, respectivly. The service curves β ur (Δt) and
β lr (Δt) model the upper and lower bound of the computational
requirements which can be handled by the resource during
Δt. The real-time calculus provides equations to calculate the
outgoing arrival and service curves out of the incoming curves
of a task. To evaluate the modification equations independently
from each other, a good finit description for the curves is
needed. The complexity of the equations depends directly on
the complexity of this description. In [8] and [4] an approxima-
tion with a fixed degree of exactness for the arrival and service
curves was proposed in which each curve is described by three
straight line segments. One segment describes the initial offset
or arrival time, one an initial burst and one the long time rate.

Euromicro Conference on Real-Time Systems

1068-3070/08 $25.00 © 2008 IEEE

DOI 10.1109/ECRTS.2008.19

211

Δt interval
T ,a, l period, offset, limitation
k number of test intervals
Θ event stream

θ = (T,a) event element
Θ̂ hierachical event stream

θ̂ = (T,a, l,G,Θ̂θ̂) hierachical event stream element
s separation point

ϒ(Δt,Θ̂), Ψ(Δt,Θ̂) event bound function, demand bound function
I (Δt,Θ̂), B interval bound function, busy period

Table I
LIST OF SYMBOLS

Events

Time

Figure 2. Example Event Stream

As outlined in [3] this approach is too simplified to be suitable
for complex systems. No suitable description for the function
is known so far. In this paper we will propose a model for
the curves having a selectable approximation error. A trade-
off between this degree of accuracy and the necessary effort
for the analysis becomes possible.
SymTA/S [11],[12] is another approach for the modularized

real-time analysis. The idea was to provide a set of interfaces
which can connect different event models. Therefore the differ-
ent modules can use different event models for analysis. Un-
fortunatly, the event models for which interfaces are provided
are quite simple. In [11] an event model covering all these
models was described. The problem of these models is that
multiple bursts or bursts with different minimum separation
times cannot be handled.
However in [10] a real-time analysis problem was for-

mulated, which can’t be solved by SymTA/S and the real-
time calculus by each technique exclusivly. To solve it, it is
necessary to integrate the models of both techniques into one
powerful new model.
The event stream model proposed by Gresser [7] with its

extension the hierachical event stream model proposed by
Albers et al. [1] can model systems with all kinds of bursts
efficiently. The problem is that it can only model discrete
events and not the continious service function as needed for
the real-time calculus. .

2.1. Event stream model
For the event stream model a system is described by a set of

communicating tasks τ . Each task is assigned to one resource
ρ . τ = (Θ̂,c,d) is given by the worst-case execution time cτ ,
the deadline dτ and an event pattern Θ̂τ triggering the tasks
activations.
The key question is to find a good model for the event

pattern Θ̂. For real-time analysis this model has to describe the
worst-case densities of all possible event patterns. They lead
to the worst-case demand on computation time. Comparing
these worst-case demands with the available computation time

t7

TT−j6

T
5

Θ

Θ

Θ

Figure 3. Example event streams ([6])

allows to predict the schedulability of a system. The event
stream model gives an efficient general notation for the event
bound function.
Definition 1: ([7], [2], [1]) The event bound function

ϒ(Δt,Θ) gives an upper bound on the number of events
occuring within any interval Δt.
Lemma 1: ([7]) The event bound function is a subadditive

function, that means for each interval Δt,ΔJ:

ϒ(Δt+Δt ′,Θ) ≤ ϒ(Δt,Θ)+ϒ(Δt ′,Θ)

Proof: The events in Δt+Δt ′ have to occure either in Δt
or in Δt ′.
Definition 2: An event stream Θ is a set of event elements

θ = (T,a) given by a period T and an offset a.
Θ1 = {(6,0),(6,1),(6,3)} (figure 2) describes three events

requiring at least an interval Δt = 3 to occure, two of them
have a minimum distance of one time unit. Θ̂1 is repeated
with a period of 6. In cases where the worst-case density of
events is unknown for a concrete system an upper bound can
be used for the event stream. The model can describe any event
sequence. Only those event sequences for which the condition
of sub-additivity holds are valid event streams.
Lemma 2: ([7]) The event bound function for an event

sequence Θ and an interval I is given by:

ϒ(Δt,Θ) = ∑
θ∈Θ
Δt≥aθ

⌊

Δt−aθ
Tθ

+1
⌋

Proof: See [2]
It is a monotonic non-decreasing function. A larger interval-
length cannot lead to a smaller number of events.
In figure 3 some examples for event streams can be found.

The first one Θ5 = {(T,0)} has a strictly periodic stimulus
with a period T . The second example Θ6 = {(∞,0), (T,T −
j)} shows a periodic stimulus in which the single events can
jitter within a jitter interval of size j. In the third example
Θ7 = {(T,0), (T,0) , (T,0), (T,t) } three events occur at the
same time and the fourth occurs after a time t. This pattern
is repeated with a period of T . Event streams can describe all
these examples in an easy and intuitive way. The offset value
of the first event element is always zero as this value models
the shortest interval in which one single event can occur.
For the real-time analysis for this model let us

first repeate the demand bound function definition for
the event streams: Ψ(Δt,Γ) = ∑∀τ∈Γϒ(Δt−dτ ,Θτ)cτ
= ∑∀τ∈Γ∑ ∀θ∈Θτ

Δt≥aθ+dτ

⌊

Δt−aθ−dτ
Tθ

+1
⌋

cτ

212

ψ(Δ ,τ)

τ

cτ

I

}Costs

t

ψ (Δ ,τ,κ)t

}κ

c

Figure 4. Approximated event stream element

Let θ be an event element belonging to the event stream Θ
which belongs to the task τ .
The demand bound function allows a schedulability analysis

for single processor systems by testing ∀Δt : Ψ(Δt,Γ) ≤
C (Δt). Often an idealized capacity function C with C (Δt) =
Δt is assumed. For an efficient analysis an approximation is
necessary

2.2. Approximation of event streams
Definition 3: ([2]) Approximated event-bound-function
Let k be a chosen number of steps which should be consid-

ered exactly. Let Δtθ ,k = dτ +aθ + kT . We call

ϒ′(Δt,θ ,τ,k) =

{

ϒ(Δtθ ,k,θ)+ cτ
Tθ

(Δt−Δt) Δt > Δtθ ,k
ϒ(Δt,θ) Δt ≤ Δtθ ,k

the approximated event bound function for task τ .
The function is shown in figure 4. The first k events are

evaluated exactly, the remaining events are approximated using
the specific utilization Uθ =

cτθ
Tθ
. The interesting point of this

function is that the error can be bounded to εθ ,k = 1
k and

therefore does only depend on the chooseable number of steps,
and is independent of the concrete values of the parameters of
the tasks.
The complete approximated demand-bound-function is

Ψ′(Δt,Γ,k)=∑∀τ∈Γ∑∀θ∈Θτ Ψ
′(Δt,θ ,k) and has the same error.

The hierachical event stream model [1] extends the event
stream model and allows a more efficient description of bursts.
In this model an event element describes the arrival not for just
one periodic event but of a complete set of periodic events.
This set of events can be also modeled by an event sequence
having a limitation in the number of events generated by this
event sequence. One limit of this model is that it can only
describe discrete events. For the approximation it would be
appropriate for the model to be capable to describe also the
continuous part of the approximated event bound function.

3. CONTRIBUTION
In this paper we will present an event model covering both,

the discrete event model of SymTA/S and the continuous
functions of the real-time calculus. It makes the elegant and
tighter description of event bursts compared to the SymTA/S
approach possible and allows a tighter modeling of the con-
tinuous function of the real-time calculus by integrating an
approximation with a chooseable degree of exactness into the
model. This does not only lead to more flexible and simpler

analysis algorithms, it also allows to propagate the approxi-
mation together with the event models through the distributed
system leading to an efficient, flexible and powerful analysis
methodology for distributed real-time systems. The new model
can, of course, also model the service functions of the real-
time calculus in the same flexible way and allows therefore
the integration of the discrete event model of SymTA/S with
the continuous service functions.

4. MODEL

We will define the hierachical event sequence first. The
hierarchical event stream is only a specialised hierachical event
sequence fulfilling the condition of sub-additivity and can
therefore be described by the same model.
Definition 4: A hierachical event sequence Θ̂ = {θ̂} con-

sists of a set of hierarchical event elements θ̂ each describing
a pattern of events or of demand which is repeated peri-
odically. The hierarchical event elements are described by:
θ̂ = (T,a, l,G,Θ̂)
where Tθ is the period, aθ is the offset, lθ is a limitation

of the number of events or the amount of demand generated
by this element during one period, Gθ̂ and Θ̂θ̂ are the time
pattern how the events respectively the demand is generated.
The gradient Gθ̂ describing a constantly growing set of events,
gives the number of events occurring within one time unit.
A value Gθ̂ = 1 means that after one time unit one event
has occured, after two time units two events and so on. The
gradient allows modeling approximated event streams as well
as modeling the capacity of resources. Both cases can be
described by a number of events which occurs respectively
can be processed within one time unit. Θ̂θ̂ is again a hierar-
chical event stream (child event stream) which is recursively
embedded in θ̂ .
Condition 1: Either Θ̂θ̂ = /0 or Gθ̂ = 0.

Due to this condition it is not necessary to distribute the limita-
tion between the gradient and the sub-element. This simplifies
the analysis without restricting the modelling capabilities.
The arrival of the first event occurs after a time units and

at a+T , a+ 2T , a+ 3T, ..., a+ iT (i ∈ N) the other events
occurs.
Definition 5: A hierarchical event stream fulfills for every

Δt,Δt ′ the condition ϒ(Δt+Δt ′,Θ̂) ≤ ϒ(Δt,Θ̂)+ϒ(Δt ′,Θ̂)
In the following we will give a few examples to show the
usage and the possibilities of the new model. A simple
periodic event sequence with period 5 can be modeled by :
Θ̂1 = {(5,0,1,0,e)}
Lemma 3: Let Θ be an event stream with Θ= {θ1, ...,θn}.

Θ can be modeled by Θ̂ = {θ̂1, ..., θ̂n} with θ̂i =
(Tθi ,aθi ,1,∞, /0)

Proof: Each of the hierarchical event elements generates
exactly one event at each of its periods following the pattern
of the corresponding event element.
Θ̂1 approximated after 10 events would be modeled by: Θ̂10

1 =
{(∞,0,10,0,{(5,2,1,0,e)}),(∞,47,∞, 1

5 , /0)}

213

40
...

0 10 20 30

Figure 5. Example for overlapping events of different periods

Note that 47= 2+(10−1) ·5 is the point in time in which
the last regular event occurs and therefore the start of the
approximation.
One single event is modeled by Θ̂2 = {(∞,0,1,∞, /0)}. A

gradient of ∞ would lead to an infinite number of events
but due to the limitation only one event is generated. An
event bound function requiring constantly 0.75 time units
processor time within each time unit can be described by
θ̂2 = (∞,0,∞,0.75, /0).
With the recursively embedded event sequence any possible

pattern of events within a burst can be modeled. The pattern
consists of a limited set of events repeated by the period of the
parent hierarchical event element. For example a burst of five
events in which the events have an intra-arrival rate of 2 time
units which is repeated after 50 time units can be modeled by
Θ̂3 = {(50,0,5,0,{(2,0,1,∞, /0)})}.
The child event stream can contain grand-child event

streams. For example if Θ̂3 is used only for 1000 time units
and than a break of 1000 time units is required would be
modeled by Θ̂4 = {(2000,0,100,0,Θ̂3)}.
The length Δtθ̂ of the interval for which the limitation of θ̂

is reached can be calculated using a interval bound function
I (x,Θ̂) =min(Δt|x= ϒ(Δt,Θ̂)) which is the inverse function
to the event bound function (I (l, /0) = 0):

Δtθ̂ = I (l,Θ̂θ̂)+
lθ̂
Gθ̂

Note that this calculation requires the condition of the model
that either Gθ̂ = 0 or Θ̂θ̂ = /0 and that the calculation of the
interval bound function requires the distribution of lθ̂ on the
elements of Θ̂θ̂ .

4.1. Assumptions and Condition
For the analysis it is useful to restrict the model to event se-

quences having no overlapping periods. Consider for example
(figure 5) θ̂5 = {(28,0,15,0,{(3,0,1,∞, /0)})}. The limitation
interval Δtθ̂6 has the length Δtθ̂6 = (15− 1) · 3 = 42. The
first period [0,42] and the second period [28,70] of the event
sequence element overlap.
Condition 2: (Separation Condition) θ̂ fulfills the separa-

tion condition if the interval in which events are generated by
Gθ̂ or Θ̂θ̂ is equal or smaller than its period Tθ̂ :

I (lθ̂ ,Θ̂θ̂)+
lθ̂
Gθ̂

≤ Tθ̂ or Tθ̂ ≤ ϒ(Tθ̂ ,Θ̂θ̂)+
Tθ̂
Gθ̂

The condition 2 does not reduce the space of event patterns
that can be modeled by a hierarchical event sequence.
Lemma 4: A hierarchical event sequence element θ̂ that

does not meet the separation condition can be exchanged with

a set of event sequence elements θ̂1, ..., θ̂k with k=

⌈

I (lθ̂ ,θ̂)
Tθ̂

⌉

and θ̂i = (kTθ̂ ,(i−1)Tθ̂ +aθ̂ , lθ̂ ,Gθ̂ ,Θ̂θ̂).
Proof: The proof is obvious and therefore skipped.

30
Events

I
10 20 30 40 50 60 70

10

20

Figure 6. Hierarchical event sequence Θ̂6

Θ̂5 can be transferred into Θ̂′
5 meet-

ing the separation condition: Θ̂′
5 =

{(56,0,15,0,{(3,0,1,∞, /0)}),(56,28,15,0,{(3,0,1,∞, /0)})}
The separation condition prohibits events of different event

sequence elements to overlap. We also do not allow recursion,
so no event element can be the child of itself (or a subsequent
child element).

4.2. Hierarchical Event Bound Function
The event bound function calculates the maximum number

of events generated by Θ̂ within Δt.
Lemma 5: Hierarchical Event Bound Function ϒ(Δt,Θ):
Let for any Δt,T define mod(Δt,T) = Δt −

⌊

Δt
T

⌋

T and
ϒ(Δt, /0) = 0. Let ϒ(Δt,Θ̂) = ∑ θ̂∈Θ̂

Δt≥aθ̂

ϒ(Δt, θ̂) and

ϒ(Δt, θ̂) =

lθ̂ Tθ̂ = ∞,Gθ̂ = ∞
⌊

Δt−aθ̂
Tθ̂

+1
⌋

lθ̂ Tθ̂ '= ∞,Gθ̂ = ∞

min(lθ̂ ,(Δt−aθ̂)Gθ̂

+ϒ(Δt−aθ̂ ,Θ̂θ̂)) Tθ̂ = ∞,Gθ̂ '= ∞
⌊

Δt−aθ̂
Tθ̂

⌋

lθ̂ +min(lθ̂ ,

mod(Δt−aθ̂ ,Tθ̂)Gθ̂

+ϒ(mod(Δt−aθ̂ ,Tθ̂),Θ̂θ̂)) Tθ̂ '= ∞,Gθ̂ '= ∞

Proof: Due to the separation condition it is always
possible to include the maximum allowed number of events
for completed periods

(⌊

Δt−aθ̂
Tθ̂

⌋

lθ̂
)

. Only the last incomplete
fraction of a period has to be considered separately (min(...)).
This remaining interval is given by subtracting all complete pe-
riods, and the offset a from the interval Δt

(

mod(Δt−aθ̂ ,Tθ̂
)

.
For the child event stream, the number of events is calculated
by using the same function with now the remaining interval
and the new embedded event sequence. In case of the gradient
the number of events is simply Gθ̂ Δt. The limitation bounds
both values due to the separation condition.
Independently of the hierarchical level of an event sequence
element it is considered only once during the calculation for
one interval. This allows bounding the complexity of the
calculation.
Example 1: Θ̂6 = {(20,6,10,0,{(3,0,2,1, /0)}. ϒ(Δt,Θ̂7) is

shown in figure 6. ϒ(33,Θ̂6) is given by

ϒ(33,Θ̂6) =

⌊

27
Tθ̂

⌋

lθ̂ +min(lθ̂ ,mod(27,Tθ̂)Gθ̂ +ϒ(mod(27,Tθ̂),Θ̂θ̂))

214

=

⌊

27
20

⌋

·10+min(10,0+ϒ(7,Θ̂θ̂))

= 10+min(10,ϒ(7,Θ̂θ̂))

ϒ(7,Θ̂θ̂)=ϒ(7, θ̂ ′) =

⌊

7
3

⌋

·2+min(2,mod(7,3) ·1+0) = 4+1 = 5

ϒ(33,Θ̂6) = 10+min(10,5) = 15

4.3. Reduction and Normalization
In the following we will reduce event streams to a

normal form. The hierarchical event stream model allows
several different description for the same event pattern.
For example an event stream Θ̂ = {(100,0,22,0,Θ̂a)} with
Θ̂a = {(7,0,3,∞, /0),(5,3,2,∞, /0)} can be rewritten as Θ̂ =
{(100,0,12,0, θ̂a,1), (100,0,8,0, θ̂a,2),(100,23,2,∞, /0)} with
θ̂a,1 = (7,0,3,∞, /0) and θ̂a,2 = (5,3,2,∞, /0).
Lemma 6: An event stream Θ̂a = {(Ta,aa, la,0,Θ̂′

a)} with a
child element Θ̂′

a = {(T ′
1 ,a

′
1, l

′
1,G

′
1,Θ̂1), ...,(T ′

k ,a
′
k, l

′
k,G

′
k,Θ̂k)}

can be transferred into an equivalent event stream Θ̂b with
Θ̂b = {θ̂a,1, θ̂a,2, ..., θ̂a,n, θ̂a,x} having only child event se-
quences with one element where

θ̂b,i = (T,a,ϒ(Δta, θ̂ ′
a,i),0, θ̂ ′

a,i)

Δta = lim
ε→0
ε>0

(I (la,Θ̂′
a)− ε)

θ̂a,x = (∞,I (la,Θ̂′
a), la− ∑

∀θ̂∈Θ̂′
a

ϒ(Δta, θ̂ ′
a,i),∞, /0)

Proof: We have to distribute the limitation la on the
elements of the child event sequence. First we have to find
the interval Δt ′ for which the limitation of the parent element
la is reached by the child event sequence Θ̂′

a. Δt ′ is given by
I (la,Θ̂′

a). We have to calculate the costs required for each
of the child event sequence elements for Δt ′. It is given by
ϒ(Δt ′, θ̂i). The problem is that several elements can have a
gradient of ∞ exactly at the end of Δt ′. In this situation the sum
of ϒ(Δt ′, θ̂) may exceed the allowed limitation la of the parent
element. The total costs is bounded by the global limitation la
rather than the limitations l′i . To take this effect into account
we exclude the costs occurring exactly at the end of Δt ′ for
each hierarchical event element and we handle these costs
seperately modeling them with the hierarchical event element
θ̂a,x. To do so we calculate the limitation not by ϒ(Δt ′, θ̂ ′

i) but
by ϒ(Δt ′ −ε, θ̂ ′

i) where ε is an infinitly small value excluding
only costs occurring at the end of Δt ′ exactly.
This allows a better comparison between different hierarchical
event streams.

4.4. Capacity Function
The proposed hierarchical event stream model can also

model the capacity of processing elements and allows to
describe systems with fluctuating capacity over the time. In the
standard case a processor can handle one time unit execution
time during one time unit real time. For many resources
the capacity is not constant. The reasons for a fluctuating
capacity can be for example operation-system tasks or variable
processor speeds due to energy constraints.

I

3000

2000

Costs

1000

1000 2000a) I
t

Costs

b)
I

I2000

d)
1000

Costs

1000

2000

3000
Costs300

200

100

100 c) 200

Figure 7. Example service bound functions

Assuming the capacity as constant also does not support a
modularization of the analysis. This is especially needed for
hierarchical scheduling approaches. Consider for example a
fixed priority scheduling. In a modular approach each priority
level gets the capacity left over by the previous priority level as
available capacity. The remaining capacity can be calculated
step-wise for each priority level taking only the remaining
capacities of the next higher priority level into account. Such
an approach is only possible with a model that can describe
the left-over capacities exactly.
Definition 6: The service function β (Δt,ρ) gives the mini-

mum amount of processing time that is available for process-
ing tasks in any interval of size Δt for a specific resource ρ for
each interval Δt. It can also be modeled with the hierarchical
event sequence model.
The service function is superadditiv and fulfills the inequation
β (Δt + Δt ′) ≥ β (Δt) + β (Δt ′) for all Δt,Δt ′. The definition
matches the service curves of the real-time calculus. We
propose to use the hierarchical event stream model as an
explicit description for service curves.
In the following we will show, with a few examples, how

to model fluctuating service functions with the hierarchical
event streams. The constant capacity, as shown in 7 a) can be
modeled by: βbasic = {(∞,0,∞,1, /0)}
Blocking the service for a certain time t (figure 7 b) is done

by: βblock = {(∞,t,∞,1, /0)}
A constantly growing service curve in which the service

is blocked periodically every 100 time units for 5 time units
(for example by a task of the operating system): βTblock =
{(100,5,95,1, /0)} (figure 7 c))
The service for a processor that can handle

only 1000 time units with full speed and than
1000 time units with half speed (figure 7 d)):
βvary = {(2000,1000,500, 1

2 , /0),(2000,0,1000,1, /0)}
These are only a few examples for the possibilities of the

new model.

4.5. Operations
In the following we will introduce some operations on

hierarchical event sequences and streams.
Lemma 7: (+ operation) If Θ̂C = Θ̂A + Θ̂B than for each

interval Δt the equation ϒ(Δt,Θ̂C) = ϒ(Δt,Θ̂A)+ϒ(Δt,Θ̂B) is

215

true. It can be calculated by the union Θ̂C = Θ̂A∪ Θ̂B.
It is also necessary to shift values.
Lemma 8: (→ shift-operation) We have

ϒ(Δt,Θ̂′) =

{

ϒ(Δt− t,Θ̂) Δt ≥ t
0 else

if Θ̂′ contains and only contains for each element θ̂ ∈ Θ̂ an
θ̂ ′ ∈ Θ̂′ with θ̂ ′ = (Tθ̂ ,aθ̂ + t, lθ̂ ,Gθ̂ ,Θ̂θ̂).
The shift operation (←) ϒ(Δt,Θ̂′) = ϒ(Δt+ t,Θ̂) is defined

in a similar way with θ̂ ′ = (Tθ̂ ,aθ̂ − t, lθ̂ ,Gθ̂ ,Θ̂θ̂).
This operation (←,→) is associative with the (+) operation

so we have (Θ̂A+ Θ̂B)→ t = (Θ̂A → t)+(Θ̂B → t) and (Θ̂A+
Θ̂B) ← t = (Θ̂A ← t) + (Θ̂B ← t). For (Θ̂ → t) → v we can
write also Θ̂→ (t+ v).
To scale the event stream by a cost value is for example

necessary to integration of the worst-case execution times.
Lemma 9: Let Θ̂′ = cΘ̂. Then for each interval Δt:

ϒ(Δt,Θ̂′) = cϒ(Δt,Θ̂) if the child set of Θ̂′ contains and only
contains for each element θ̂ of the child set of Θ̂ an element
θ̂ ′ ∈ Θ̂′ having θ̂ ′ = (Tθ̂ ,aθ̂ ,clθ̂ ,cGθ̂ ,cΘ̂θ̂).

Proof: We do the proof for the add-operation:

ϒ(Δt,Θ̂C) = ϒ(Δt,Θ̂A)+ϒ(Δt,Θ̂B)

= ∑
θ̂∈Θ̂A

ϒ(Δt, θ̂)+ ∑
∀θ̂∈Θ̂B

ϒ(Δt, θ̂)

= ∑
∀θ̂∈Θ̂A∪Θ̂B

ϒ(Δt, θ̂) = ϒ(Δt,Θ̂A∪ Θ̂B)

The other proofs can be done in a similar way.

4.6. Utilization
Lemma 10: The utilization UΓ of a task set in which the

event generation patterns are described by hierarchical event
streams is given by ((∀τ ∈ Γ)Λ (∀θ̂ ∈ Θ̂τ)|(lθ̂ '=∞∨Tθ̂ =∞)):

UΓ = ∑∀τ∈Γ∑∀θ̂∈Θ̂τ
Tτ '=∞

nθ̂
Tθ̂

+∑∀τ∈Γ∑∀θ̂∈Θ̂τ
lθ̂=∞
Tθ̂=∞

(

UΘ̂θ̂ +Gθ̂

)

Note that event-elements with an infinite period and a finite
limitation do not contribute to the utilization.

5. SCHEDULABILITY TESTS

For the schedulability tests of uni-processor system using
the hierarchical event stream model analysis, we can integrate
the approximation and the available capacity into the analysis.

5.1. Schedulability tests for dynamic priority systems
A system scheduled with EDF is feasible if for all in-

tervals Δt the demand bound function does not exceed the
service function Ψ(Δt) ≤ C (Δt,ρ). Both, the demand bound
and the service function can be described by and calculated
out of hierarchical event streams. This leads to the test
∑∀τ∈Γ∑∀θ̂∈Θ̂τ

ϒ(Δt−dτ , θ̂)cτ ≤C (Δt,ρ). The analysis can be
done using the approximation as proposed in [2]. For the exact
analysis an upper bound for Δt, a maximum test interval is
required to limit the run-time of the test. For the hierarchical
event stream model one maximum test interval available is the
busy period.

5.2. Response-time calculation for static priority scheduling
In the following we will show how a worst-case response

time analysis for scheduling with static priorities can be
performed with the new model. The request bound function Φ
calculates the amount of computation time of a higher priority
task that can interfere and therefore delays a lower-priority task
within an interval Δt. In contrary to the event bound function
the request bound function does only contain the events of the
start, not the events of the end point of the interval:

Φ(Δt,τ) = lim
Δ→Δt

0≤Δ<Δt

(ϒ(Δ,Θτ)cτ)

For the hierarchical model it is only necessary to handle the
cases Δt = 0 differently than in the calculation of the event
bound function: Φ(Δt,Γ) = ∑∀τ∈Γ cτ ∑∀θ̂∈Θ̂τ

Φ(Δt, θ̂ ,τ) with

Φ(Δt, θ̂ ,τ) =

⌈

Δt−aθ̂
Tθ̂

⌉

lθ̂ Tθ̂ = ∞

0 Δt−aθ̂ ≤ 0
⌊

Δt−aθ̂
Tθ̂

⌋

lθ̂ +min(lθ̂ ,Gθ̂ (Δt−aθ̂+

Φ(mod(Δt−aθ̂ ,Tθ̂),Θ̂θ̂)) else

With this function it is possible to calculate the worst-case
response times for the tasks:
Lemma 11: Let τ be scheduled with fixed priorities and

Γhp(τ) containing all task with a higher priority than τ . The
response time r(τi,1) for the first event of τi is given by:
r(τi,1) =min(Δt|C (Δt) ≥ cτ +Φ(Δt,Γhp(τ)))
The value for Δt can be calculated by a fix-point iteration
starting with Δt = cτ . To calculate the maximum response time
it is necessary to do the calculation for all events within the
busy period.
The busy period of a task set is the maximum interval

in which the resource is completely busy, so in which does
not exists idle time for the resource: B(Γ) =min(Δt|C (Δt)≥
Φ(Δt,Γ))
Lemma 12: The worst-case response time of τ can be found

in the busy period of any task set containing τ and Γhp(τ). It
is the maximum response time of all r(J,τ) where:

r(J,τ) = min
∀0≤Δt<∞

(Δt|C (J+Δt)≥ ϒ(J)cτ +Φ(J+Δt,Γhp(τ)))

r(τ) = max∀0≤J≤B(Γ)(r(J,τ)

J is less or equal than the busy period (J ≤ B(Γ)). This
minimum response time has to be lower than the deadline
of the task.

6. APPROXIMATION
To limit the number of test intervals and therefore the

computational complexity we integrate the approximation ap-
proach of [2]. We can now integrate the approximation directly
into the model. We allow the approximation of an event
element to start after the necessary number of test intervals
are reached globally for this element, independently in which
period of the parent event element this happens. In case that
the event element θ̂ is a child element of another (parent)
event element θ̂ ′ we have to distinguish for θ̂ ′ between those
periods in which θ̂ is evaluated exactly and those in which θ̂

216

is approximated. To do this it is necessary to split θ̂ ′ at the
last exactly considered interval of θ̂ .

6.1. Case simple sequence with gradient
Let us consider first a simple hierarchical event element:

θ̂ = {(T,a, l,G, /0)}
θ̂ k is the approximative counter-part for θ̂

starting with the approximation after k exactly
considered test intervals. θ̂ k is modeled by:
θ̂ k = {(∞,0, lA,0, θ̂),(∞,aA, l,G, /0),(∞,aB,∞,

l
T , /0)} with

lA = kl, aA = a+ kT , aB = aA + l
G . For the special case with

G= ∞ we have aA = aB.
Example 2: Let us, for example consider

Θ̂ = {(10,0,3, 1
2 , /0)}. The approximation Θ̂5 for Θ̂ after

k = 5 exactly considered test intervals is given by Θ̂5 =
{(∞,0,15,0,{(10,0,3, 1

2 , /0)}),(∞,50,3, 1
2 , /0),(∞,56,∞, 3

10 , /0)}
where lA = 5 · 3 = 15, aA = 0 + 5 · 10 = 50,
aB = 50 + 3

1
2

= 56. We can simplify this example to:

Θ̂5 = {(∞,0,18,0,{(10,0,3, 1
2 , /0)}),(∞,56,∞, 3

10 , /0)}
Consider another example Θ̂ = {(10,2,3,∞, /0)}.

The approximation Θ̂10 is given by: Θ̂10 = {(∞,

0,30,0,{(10,2,3,∞, /0)},(∞,103,3,∞, /0),(∞,103,∞, 3
10 , /0)}

or: Θ̂10 = {(∞,0,33,0,{(10,2,3,∞, /0)},(∞,103,∞, 3
10 , /0)}

6.2. Approximation of one-level child element
Let us consider a hierarchical event sequence with one child

element: θ̂ = (T,a, l,0, θ̂ ′), θ̂ ′ = (T ′,a′, l′,G′, /0)
Θ̂k is given in this case by:
Θ̂k = {(∞,0, lA,0, θ̂ ◦),(∞,aA,kl − lA,0,{(T,a′, l′,G′, /0),

(T,a′ + l′
G′ , l− l′, l

′

T ′ , /0)}),(∞,aB,x,∞, /0),(∞,aB,∞, l
T , /0)}

The first element of Θ̂k models the part in which the child-
element θ̂ ′ is considered exactly. In case that the first possible
approximation interval for θ̂ ′ occures within the first period of
θ̂ , we have to start the approximation within this first period
of θ̂ . Otherwise it would not be possible to find a reasonable
bound for the number of considered test intervals for θ̂ ′. So
θ̂ ◦ depends on whether l ≤ kl′ or l > kl′. We have

θ̂ ◦ =

{

θ̂ l ≤ kl′

{(T,0, l,0, θ̂ ′k)} l > kl′

θ̂ ′k = {(∞,0,klθ̂ ,0, θ̂),(∞,kTθ̂ , lθ̂ ,Gθ̂ , /0),(∞,kTθ̂ +
lθ̂
Gθ̂

,∞,
lθ̂
Tθ̂

, /0)}

The calculation of lA, lB, aA, aB and aC are done as follows:

lA =

{

⌈

kl′
l

⌉

l l ≤ kl′

l l > kl′

aA =

{

⌈

kl′
l

⌉

T +a l ≤ kl′

T +a l > kl′

aB = kT +a+a′

The approximation of θ̂ ′ can be done by an element θ̂ ′k

with a gradient Gθ̂ ′k = l′
T ′ .

When starting finally the approximation of θ̂ a cost-offset x
is required to ensure that the approximated function ϒ(Δt, θ̂ k)
is always equal or higher than the exact function ϒ(Δt, θ̂).

gradient

I

Costs

T

y

c

limitation
x

y

o

T−y
l l

period

Figure 8. Case θ̂ ′ approximated, θ̂ not approximated

Figure 8 outlines this situation. This cost-offset is necessary as
a new period of the parent element splits the approximation of
the child element. The calculation of x can be done as follows:

l− x= y
l
T

x= l
(

1−
y
T

)

y gives the interval between the start of the child element
θ̂ ′ and the point in time in which the limitation of θ̂ is
reached. The reaching of the limitation is calculated using the
approximative description of the child elements of θ̂ with the
seperate consideration of every first event of θ̂ . For a simple
child element θ̂ = {(T,a, l,0, θ̂ ′)} with θ̂ ′ = {(T ′,a′, l′,∞, /0)}
this value y is given by

(y−a′) · (
l′

T ′
) = l− l′

y=
l− l′
l′
T ′

+a′ = T ′ l
l′
−T ′ +a′

Hence for x: x= l− T ′l2
T l′ + T ′l

T − a′l
T

Example 3: Let us consider the example hierarchical event
sequence: Θ̂={(80,2,16,0,Θ̂′)}, Θ̂′={(10,2,3,∞, /0)}

For the approximation Θ̂10 we get the values:

lA =

⌈

kl′

l

⌉

l =
⌈

10 ·3
16

⌉

16= 32

aA =

⌈

kl′

l

⌉

T +a=

⌈

10 ·3
16

⌉

80+2= 162

aB = kT +a= 10 ·80+2= 802

y= T ′ l
l′
−T ′ +a′ = 10

16
3

−10+2= 45.3333

x= l
(

1−
y
T

)

= 16
(

1−
45.333
80

)

= 6.9333

Θ̂10 = {(∞,0,32,0,{(80,2,16,0,{(10,2,3,∞, /0)})}),

(∞,162,128,0,{(∞,2,3,∞, /0),(∞,2,∞,
3
80

, /0),

(80,2,13,
3
10

, /0)},(∞,802,6.9333,∞, /0),(∞,802,∞,
16
80

, /0)}

217

6.3. Approximation of n-level child element
Let us consider the following hierarchical event element

with two levels of child elements θ̂ = {(T,a, l,0, θ̂ ′)}, θ̂ ′ =
{(T ′,a′, l′,0, θ̂ ′′)}, θ̂ ′′ = {(T ′′,a′′, l′′,G′′, /0)} .
We consider the approximation θ̂ k. θ̂ k is given by

θ̂ k = {(∞,0, lA,0, θ̂ ◦
1),(∞,aA, lB,0, θ̂◦

2),

(∞,aB, lC,0,{(T,a′,x′,∞, /0),(T,a′, l− x′,
l′

T ′
, /0)}),

(∞,aC,x,∞,0),(∞,aC ,∞,
l
T

, /0)}

θ̂ ◦
1 depends on whether l ≤ kl′′ or l > kl′′. We have

θ̂◦1 =

{

θ̂ l ≤ kl′′

{(T,0, l,0, θ̂ ′k)} l > kl′′

θ̂ ′k = {(∞,0,klθ̂ ,0, θ̂),(∞,kTθ̂ , lθ̂ ,Gθ̂ , /0),(∞,kTθ̂ +
lθ̂
Gθ̂

,∞,
lθ̂
Tθ̂

, /0)}

θ̂ ◦
2 depends on whether l ≤ kl′ or l > kl′. We have

θ̂ ◦
2 =

{

/0 l ≤ kl′

{(T ′,a′′, l′′,G′′,0),(T ′,a′′ + l′′
G′′ , l′ − l′′, l

′′

T ′′ , /0)} l > kl′

The calculation of lA, aA and lB:

lA =

{

⌈

kl′′
l

⌉

l l ≤ kl′′

l l > kl′′

lB =

{

⌈

kl′
l

⌉

l− lA l ≤ kl′

0 l > kl′

lC = kl− (lA+ lB)

aA =

{

⌈

kl′′
l

⌉

T +a′+a l ≤ kl′′

T +a′+a l > kl′′

aB =

{

⌈

kl′
l

⌉

T l ≤ kl′

T l > kl′

aC = kT +a

The calculation of x′ is the same as the calculation for x in
the previous section. We have

y′ = T ′′ l′

l′′
−T ′′ +a′′

x′ = l′
(

T ′ − y′

T ′

)

The calculation of x and y is similar but using the approx-
imation of θ̂ ′′. We have

(y−a) · (
l′

T ′
) = l− x′

y=
lT ′

l′
−
x′T ′

l′
+a′

x= l
(

T − y
T

)

Note that when setting x′′ = l′′ the calculation of x′ and y′
on the one side and x and y on the other side are the same.

Therefore the proposed description for Θ̂k can be generalized
to handle event sequences with n-level child event sequences.
The calculation is visualized in figure 8.
Example 4: Let us consider the example hierarchi-

cal event sequence: Θ̂ = {(1000,10,100,0,Θ̂′)}, Θ̂′ =
{(80,2,16,0,Θ̂′′)}, Θ̂′′ = {(10,2,3,∞, /0)}.
For an approximation Θ̂10 in which k= 10 test intervals are

considered exactly we get the values:

y′ =
16−3
(3

10
) +2 = 45.3333

x′=16 ·
(

80−45.3333
80

)

= 6.9333

y=
100−6.9333

(

16
80

) +2 = 467.333

x= 100 ·
(

1000−67.3335
1000

)

= 53.2667

Θ̂10 = {(∞,0,100,0,Θ̂10
2,1),(∞,1012,100,0,{(∞,2,3,∞, /0),

(∞,2,∞,
3
80

, /0),(80,2,13,
3

10
, /0)}),(∞,2010,800,0,

{(∞,2,6.9333,∞, /0),(∞,2,∞,
6.9333
1000

, /0),(1000,2,93.0667,

16
80

, /0)}),(∞,10010,53.2667,∞, /0),(∞,10010,∞,
100

1000
, /0)}

Θ̂10
2,1 = {(∞,0,32,0,{(80,2,16,0,{(10,2,3,∞, /0)})}),

(∞,162,3,∞, /0),(∞,162,∞,
3
80

, /0),(80,162,13,
3

10
, /0)}

6.4. Approximation of element with several child elements
A hierarchical event sequence with several child elements

can be transferred into a normalized hierarchical event se-
quence in which each event sequence element has only one
child element. Each element matches one of the previous
pattern and can therefore be approximated. The overall ap-
proximation of the event sequence is than only a merge of the
single elements.

6.5. Required number of test intervals
In those cases in which the approximation of the child

element starts within the completion of the first period of the
parent element we cannot postpone it until the first period of
the parent. It would not be possible to bound the number of
test intervals for the child hierarchical event element.
Example 5: Consider the following example: θ̂10 =

{10000,0,4000,0,{θ̂11}}, θ̂11 = {10,0,5,∞, /0}
Postponing the approximation of the child up to the end of
the first period of the parent would cost 3000 additional test
intervals. We can still find a simple bound on the required
number of test intervals. For those cases in which the ap-
proximation does not start within the first period, the number
of test intervals for one period of the parent event element
has to be less than the approximation bound k. Otherwise the
approximation would be allowed somewhere within the first
period. Therefore the maximum number of test intervals we
have to additionally consider due to the postponing is bounded
also by k, so a total bound of 2k.

218

6.6. Splitting points
The splitting points are the points in which the parent ele-

ment is splitted to destinguish between the non-approximated
and the approximated part of one of its child elements. In gen-
eral, the parent element is splitted at the first of its completed
period which is greater than the first possible approximation
interval of the child element. Each element can require as
many splitting points as its total child-set has members. The
total child-set contains its children, the children of its children
and so on. The parent chain contains the parent element of an
element, the parent of the parent element and so on.
For reason of simplification we consider only normalized

hierarchical event sequences, in which each θ̂ can only have
one direct child element at most.
Let θ̂1 be the lowest-level child element and θ̂n be the

highest level parent element. The splitting point for an element
θ̂i is determined by the upper-most member θ̂ j of a parent
chain for which the first possible approximation interval for
k exactly considered test intervals tθ̂i,k of θ̂i is larger than the
end of the first completed period of θ̂ j. This first complete
period is given by aθ̂ j +Tθ̂ j , so tθ̂i > aθ̂ j +Tθ̂ j . The splitting
point is the first start of a new period of θ̂t after tθ̂ , so
ski, j = min(Δt|Δt = ati + kTti ∧Δt ≥ tθ̂ j ,k)
It is necessary to split each element of the parent-child chain

between θ̂t and θ̂c at this point. All members of the parent
chain of θ̂ti , which are of cause also member of the parent
chain of θ̂i, are splitted at their first period instead, so ∀ j >
t | si, j = aθ̂ j +Tθ̂ j
In general we get a matrix of possible splitting points:
Lemma 13: (Splitting points) Let θ̂1, .., θ̂n be a set of

hierarchical event elements with θ̂1 = (T1,a1, l1,G1, /0) and
θ̂i = {Ti,ai, li,0, θ̂i−1) for 0 < i ≤ n. Let ski, j be the splitting
points for element j on the event element Θ̂i with the minimum
number of k test-intervals considered exactly for θ̂ j . Let t j,k
denote the first possible approximated test interval of θ̂ j after
k exact test intervals. ski, j can be calculated:

sk
′

i, j =min(x|x= ai+ yTi,y ∈ N,x ≥ t j,k)

ski, j =

{

sk′i, j ski, j < ai+1 +Ti+1

ski+1, j else

ski,0 = ai
skn, j = sk

′

n, j

Proof: The first completed period of the hierarchical event
element θ̂i after the first possible approximation start for the
hierarchical event element θ̂ kj gives the potential splitting point
sk′i, j. The resulting splitting point si, j is only in those cases
identical to the potential splitting point sk′i, j in which either
θ̂i is the top-level parent element (i = n) or sk′ i, j is smaller
than the end of the first period of the parent element θ̂i+1.
In all other cases, the completion point ski, j is identical to the
corresponding completion point of the parent element of θ̂i ,
si+1, j, which can again be identical to the splitting points of
the (i+1)-th parent element and so on.

We can calculate the approximated hierarchical event streams
using these splitting points.
Lemma 14: Let us consider a chain of hierarchical event

streams Θ̂1, ...,Θ̂n with Θ̂ j
j<n

= {(Tθ̂ j ,aθ̂ j , lθ̂ j ,0,Θ̂ j+1)} and

Θ̂n = {(Tθ̂ j ,aθ̂ j , lθ̂ j ,Gθ̂n
, /0)}. The approximated event elements

are given by the following equations (s0, j = 0):

Θ̂k
j = {θ̂ ′

i, j|i+ j ≤ n∧ si, j '= si, j−1}∪ Θ̂ j, j+1

Θ̂k
i,i = {(∞,si, j−1,xθ̂i ,∞, /0),(∞,si, j−1,∞,

lθ̂i
Tθ̂i

, /0)}

Θ̂k
i,i+1 = {(∞,si,i,xθ̂i ,∞, /0),(∞,si,i,∞,

lθ̂ j
Tθ̂ j

, /0)}

θ̂i, j =

(∞,si, j−1,
si, j−si, j−1

Tθ̂i
lθ̂i ,0, si, j '= si+1, j

{(Tθ̂i ,0, lθ̂i ,Gθ̂i
,Θ̂i−1, j

(Tθ̂i ,aθ̂i , lθ̂i ,Gθ̂i
,Θ̂i−1, j si, j = si+1, j

Θ̂′
i, j =

{

{θ̂ ′
i, j} si+1, j '= si+1, j+1

{θ̂ ′
i, j}∪ Θ̂

′
i, j+1 si+1, j = si+1, j+1

xθ̂i = lθ̂i

(

1−
yi, j
Tθ̂i

)

yθ̂i =
lθ̂i − xθ̂i−1

lθ̂i−1
Tθ̂i−1

+aθ̂i−1

xθ̂1 = lθ̂1
Proof: Only for those splitting points ski, j being different

from their predecessor splitting point ski, j−1 a hierarchical event
element can be constructed. The other splitting points would
lead to elements generating no events. For the construction of
the element we have to distinguish, whether the splitting point
is identical to the corresponding splitting point of the parent
element or whether it is a new value on its own. In the first case
(ski, j = ski+1, j), the limitation is simply inherited from the parent
element, in the second case (ski, j '= ski+1, j), the limitation has
to be calculated by distributing the previous limitation on the
new parts. Note that

ski, j−s
k
i, j−1

Tθ̂i
∈ N by definition and therefore

the limitation of the new parts are multiple of the limitation
of the single elements.
The lemma summarizes (and simplifies) the results of the
previous sections. Each element of the top-parent event se-
quence and therefore each chain of elements can be considered
seperately.

7. EXAMPLE
Example 6: Fig. 9 shows the advanced approximation

for the event bound function of the event stream Θ̂7 =
{(20,0,10,0,(2,0,2,∞, /0))} and compares it with the descrip-
tion by SymTA/S and by the real-time calculus. For SymTA/S
we have used an execution time of 2, a period of 4, a jitter
of 10 and a minimum distance between two events of 2
time units. The lines of SymTA/S and the real-time calculus
are nearly identical with the exception that SymTA/S models

219

Costs

Sympta/S
real−time calculus

original event bound function, exact case of new model
approximate event bound funon, new model

Intervall−length

Figure 9. Approximated hierarchical event bound function

discrete events. The line for the new model in is exact form is
always equal or below both other lines and in its approximated
form it is below and the beginning and than equal to the
real-time calculus curve. The degree of approximation is
freely selectable. Note, that the event discrete modeling of the
SymTA/S approach requires additional effort for the analyis.
The event stream consists of bursts with five events. The

advanced approximated event stream with an approximation
after three events is has the following separation points: s1,0 =
0, s1,1 = 20, s2,0 = 0, s2,1 = 4, s2,2 = 60.
For x and y we have the values:y= l−l′

l′
T ′

+a′ = 10−2
2
2

+0= 8,

x= l
(

1− y
T
)

= 10
(

1− 8
20

)

= 6
It is given by the following description:Θ̂3

7 =

{(∞,0,10,0,{(20,0,6,0,(2,0,2,∞, /0)),(∞,10,4,1, /0)}),(∞,20,12,0,

{(20,0,2,∞, /0),(20,0,8,
2
20 , /0)}), (∞,60,6,∞, /0),(∞,60,∞,

1
2 , /0)}

Such a description limits the maximum number of test in-
tervals for each hierarchical event element separately. In the
example five test intervals for the child element and four test
intervals for the parent element are required.

8. CONCLUSION
In this work we presented a new advanced event model espe-

cially suitable for the modeling of distributed systems. Such a
system consists of several tasks bound on different processing
elements and triggering each other. To divide the problem of
real-time analysis of the whole system to a problem of real-
time analysis of the single tasks, a model efficiently describing
the densities of the events triggering the tasks (incoming
events) and those events generated by the tasks to trigger
other tasks (outgoing events) was required. Additionally, a
model for the capacity of the processing elements available
for the tasks was necessary. This is especially complicated in
the case with a higher priority task already having used up
a part of the capacity. In this paper we proposed a unified
model for all of this. Additionally this model is capable to
introduce approximations into the description of the event
densities which guarantees a fast evaluation as well as an upper
bound on the approximation error.
The new model integrates the efficient modeling of peri-

odic and aperiodic events, burst of events in various kinds,
approximated event streams and the original and the remaining
capacites of processors in one single model. It can be seen
as an explicit description for the arrival, service and capacity

curves of the real-time calculus having the necessary modeling
capabilies for them. We have presented the real-time analysis
for this model for both, systems with dynamic or static
priorities.
In future we will show the concrete integration of this model

in the real-time calculus.
Remark 1: This work was funded by the Deutsche

Forschungsgemeinschaft (DFG) under grand SL 47/3-1.

REFERENCES
[1] K. Albers, F. Bodmann, and F. Slomka. Hierachical event streams

and event dependency graphs. In Proceedings of the 18th Euromicro
Conference on Real-Time Systems (ECRTS’06), pages 97–106, 2006.

[2] K. Albers and F. Slomka. An event stream driven approximation for
the analysis of real-time systems. In IEEE Proceedings of the 16th
Euromicro Conference on Real-Time Systems, pages 187–195, Catania,
2004.

[3] K. Albers and F. Slomka. Efficient feasibility analysis for real-time
systems with edf-scheduling. In Proceedings of the Design Automation
and Test Conference in Europa (DATE’05), pages 492–497, 2005.

[4] S. Chakraborty, S. Künzli, and L. Thiele. Performance evaluation of
network processor architectures: Combining simulation with analytical
estimations. Computer Networks, 41(5):641–665, 2003.

[5] R.L. Cruz. A calculus for network delay. In IEEE Transactions on
Information Theory, volume 37, pages 114–141, 1991.

[6] K. Gresser. Echtzeitnachweis ereignisgesteuerter Realzeitsysteme. Dis-
sertation, Düsseldorf, 1993.

[7] K. Gresser. An event model for deadline verification of hard real-time
systems. In Proceedings of the 5th Euromicro Workshop on Real-Time
Systems, 1993.

[8] S. Künzli. Efficient Design Space Exploration for Embedded Systems.
PhD thesis, ETH Zürich No. 16589, 2006.

[9] A.K. Parekh and R.G.Gallager. A generalized processor sharing ap-
proach to flow control in integrated service networks. In IEEE/ACM
Transactions on Networking, volume 1, pages 344–357, 1993.

[10] S. Perathoner, E. Wandler, L. Thiele, A. Hamann, S. Schliecker, R. He-
nia, R. Racu, R. Ernst, and M. González Harbour. Influence of different
system abstractions on the performance analysis of distributed real-time
systems. In EMSOFT 2007, pages 193–202. IEEE Computer Society
Press, 2007.

[11] K. Richter. Compositional Scheduling Analysis Using Standart Event
Models. Dissertation, TU Braunschweig, 2005.

[12] K. Richter and R. Ernst. Event model interfaces for heterogeneous
system analysis. In Proceedings of the Design Automation and Test
Conference in Europe (DATE’02), 2002.

[13] L. Thiele, S. Chakraborty, M. Gries, and S. Künzli. Design space
exploration for the network processor architectures. In 1st Workshop
on Network Processors at the 8th International Symposium for High
Performance Computer Architectures, 2002.

220

