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Abstract

This paper presents a hew approach to understand
the event stream model. Additionally a new approxima-
tion algorithm for the feasibility test of the sporadic and
the generalized multiframe task system scheduled by
earliest deadline first is presented. The new algorithm
has a polynomial complexity to solve the Co-NP hard
problem of schedulability analysis. The approximation
error of the algorithmis bounded. In contrary to earlier
work, where the error depends on the different dead-
lines of the tasks, the error of our algorithm depends
only on the capacity of the chosen processor. It guaran-
tees the acceptances of a processor with a dlightly
higher capacity than the unknown optimal processor.
While the algorithm is scalable and the run-time
depends on the chosen error, a trade-off between run-
ning time and error is possible.

1. Introduction

The analysis of the time behavior of embedded real-
time systemsis a corner stone for the automation of the
design process of such systems. To guarantee hard dead-
linesin real-time systems, schedul ability tests have been
widely studied in recent years [1], [2], [3], [5], [6], [7],
[8], [9], [12], [13]. A good introduction to the area of
real-time analysisisgivenin [5].

Consider the following simple sporadic task model:
Given isaset of tasks. Each task is described by
e aninitia releasetimea,

« arelative deadline d (measured from the rel ease time),
* aworst-case execution time c and
e aminimal distance (or period) p

between two instances of the task. All tasks are
mapped on the same processor (or other hardware units).
The tasks are scheduled by the earliest deadline first al-
gorithm (EDF). This meansthe task which hasthe short-

est distancein timeto the end of its deadline is executed
first.

If the deadlines are not equal to the periods of the
tasks, the schedulability test is a Co-NP hard problem
[13]. Today no algorithms with polynomial complexity
exist. The best known algorithms are algorithms with a
pseudo-polynomial complexity.

To use such a schedulability analysis by automatic
synthesis tools, it is necessary to reduce the complexity
of the test. This can be done by approximation [10]
which results in accepting a small error on the final re-
sults of the algorithm. A first approach has been the
analysisby Baruah et al. [3]. This paper isthefirst intro-
duction to the processor demand test based on the de-
mand bound function. The main idea of thisalgorithmis
to calculate the compl ete execution time of al taskswith
a start time and a deadline within a given interval I. If
this amount is not higher than the available execution
time of the processor, and if thischeck isdonefor all rel-
evant intervals, the schedul ability test succeeds.

Baruah proved that thistest has only to be performed
up to an maximum interval 1,5, TO get a pseudo-poly-
nomial complexity of the algorithm, Baruah considers
only such task systems which have an processor utiliza-
tion below the given bound. This leads to an upper
bound of 1,5y

Spuri presented in [15] a response time analysis for
EDF with apseudo-polynomial complexity [16]. But the
algorithm needs more effort than the processor demand
test.

The complexity of all these tests are depending not
only on the number of tasks, but also on the ratio of the
different periods of them. Recently, Chakraborty et al.
[6] presented a different approach, which solves this
problem and leads to an algorithm with polynomial
complexity. The algorithm is defined for an advanced
task model, the recurring real-time task model [1],[2]. A
fixed amount of test intervals are distributed evenly over
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the maximum interval |, The cumulated execution time
is checked only for these intervals. To guarantee the cor-
rect behavior of the test also for intervals in between the
test intervals, the cumulated execution time is compared
against the capacity of the next smaller test interval. The
maximum error of this approximation is bounded. It is
equal to the distance between two test intervals. If for all
instances of all tasks, the distance between the end of their
execution and their deadlineislarger than the error, the test
alway's succeeds.

Using such an approximation, a trade-off between the
error and the execution time of the algorithm ispossible. A
large error results in only a few test intervals and so in a
fast execution, a small error results in many test intervals
and a slow execution. If atask system contains tasks with
small deadlines, the distance between the end of their exe-
cutions and their deadline is also short. To assure the ac-
ceptance of the task system, the test include deliberately a
small error. Thisleadsto along execution time of the algo-
rithm. The algorithm will always fail with tasks having the
same deadline as their worst case execution time.

In this paper a new approach to solve this problem is
presented. The new a gorithm isindependent from theratio
and the size of the deadlines and periods. It uses a different
kind of error. The algorithm guarantees the acceptance of
atask system running on a processor with aslightly higher
capacity than the unknown optimal processor. Such an op-
timal processor is a processor whose capacity can not be
reduced without making the task system infeasible. This
error is sizeable and leads to a scalable analysis algorithm.
Using thisanalysistechniqueit is possible to make atrade-
off between the run-time of the algorithm and the size of
the error. The correctness of the presented approximation
algorithm is formally proven. Additionaly, the paper
shows a new formal way to derive the event stream ap-
proach given by Gresser in [9] from amore general stimuli
description. This alows a complete new interpretation of
the demand bound function given by Baruah and supports
the interpretation of the new approximation algorithm.

2. Model

2.1. Event Stream Model

The event stream model first introduced by Gresser [9]
describes the worst case timing relationships between
events. Theideaisto defineaminimal distancein time be-
tween one, two, three or more eventsin aformal specifica
tion of the input stimuli. The model defines the maximum
number of eventsin different given time intervals. To for-
mulate the problem in a formal way the following defini-
tions are needed™:

1. Equations originally introduced by Gresser are marked with (*)
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Figure 1: Event Streams [9]
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Definition 1: TimeT: The time T is a monotone ordered
set of numbers, t € R, which define the multiplier of a giv-
en physical time unit. Each number isatime point teT.
Note that each time point t; can be described by theinterval
10, t;) -

Definition 2: Specific Time Interval: A specific time in-
terval isatimeinterval between two specific time points.

Definition 3: Timelnterval I: A time interval is the dis-
tance in time between two time points t; and t;:
I(Ig) = |t =t

Definition 4: Execution Timec: The time interval a pro-
cessor needs to compute a specific piece of software code.

Definition 5: Task t: Atask T described by the worst case
execution time c and the relative deadline d representing a
piece of software code. Therelative deadlineisan interval
| describing the maximum allowed processing time of a
task .

T = (c,d)

In this paper deadlines are relative hard deadlines. A
processor can only compute onetask at time. Inthe follow-
ing scheduling with the earliest deadline first (EDF) algo-
rithm is assumed.

Definition 6: Event e An event is a request for the execu-
tion of a task at a specific point in time t, (request time):
e=(t,7)
te) = t,
(e) =t
Definition 7: Event Sequence E: An event sequenceisan
ordered set of events:

E = {e|(te) = t(e) < i=))}

Definition 8: Event Interval Function n;(E, I) : The
event interval function defines for an specific time interval



| the number of events which occur within this time inter-
val:

ni(E, Ig) = [{e €E|t;<t(e) stj}\

Definition 9: Homogenous Event SequenceE: A ho-
mogenous event sequence is an event sequence consisting
solely of events from the same task:

Ey = {e€Et(e) = (e}

Definition 10: Periodic Event Sequence Ep: A periodic
event sequence is a homogenous event sequence consisting
of an infinite amount of events having a fixed distance (the
period p). The request time of the first event is the initial
request time a of the sequence:

VeEEH‘EIkENS:(k~p+a=t(e))

Ep = |Ey|

.
VkEN,

A periodic event sequence is described by its period p,
itsinitial request time a and the values from the underlay-
ing task, the worst case execution time ¢ and the relative
deadline d of the corresponding task:

Ep = (P, &, dj, ¢)) *)

A periodic event sequences with an infinite period isan

event sequence consisting of one single event.

de€Ey:(k-p+a=te))

Lemma 1: Each event sequence can be represented by a
set of periodic event sequences Ep: E = {Ep}

All periodic parts of E can berepresented by asingle pe-
riodic event sequence Ep. The others are represented by a
periodic event sequence with an infinite period. However,
for more general event sequences the number of Ep can be-
come quite large. For most systems only afinite set of Ep's
is needed. In the considered sporadic task system, each
task can be described with only one Ep and just two Ep'sif
jitter is taken into account. To define atest algorithm only
aupper bound of the density of events must be considered:

Definition 11: Event Function ng: The Event function de-
fines for each time interval | the worst case number of
events which can occur inl [9]:

n(E, 1) = max{ne NS‘EItET:n =n(E (L t+ I))}

The event function is amonaotonic non decreasing func-
tion. It is complex to extract a description of this function
from a given event sequence. For that reason we consider
the inverse function:

Definition 12: Event Stream Function a(n): An event

stream function defines for each number n of events the

minimum interval | in which n events are able to occur:
a(n) = min{l€T|(AtET:n =nE, 1))}

Definition 13: Event Stream Eg: An event stream is a
special case of an event sequence with all events arriving

in their worst case timing relationship describing the event
stream function.

Es = {eEE\EInENS:I(O, t(e)) = a(n)}
ES = {(pi’ ai’ di’ Ci)} (*)

Definition 14: Event Stream Element: The event stream
element is a periodic event sequence which is part of an
event stream.

The worst case timing relationship describes the worst
case density of events. Aninterval a(n) is described by the
request timeinterval of an event e; € E . Thefirst event of
the event stream represents the margina interval contain-
ing at maximum one event (which is always 0 in the bor-
derline case), the second event represents the interval
containing two events and the n-th event represents ainter-
val with n events.

Example: The event sequence E;={0, p;, 2p4, 3py, ...} Of
Fig. 1 is a periodic event sequence. Therefor the event
stream Eg isgiven by Eq = {(py, 0, dy, ¢1)}.
The event sequence E, ={0, po-t, 2p,-t, 3p,-t,...}, therefore
Eo = {(«,0, dy, Cy), (P, t, dy, Cy)}. It isa periodic event
sequence with events allowed to jitter. The minimal dis-
tance between two events in this event streamis p-t. This
happens if one event occurs at the end of the jitter interval
and the next event occurs at the beginning of the next jitter
interval.
The event sequence E3 ={0, 0, 0, t, p, p, p, t+p, 2p, 2p, 2p,
t+ 2p,} Therefor Esg = {(p, 0, dg, C3), (p, 0, d3, 03), (p, 0,
ds, c3), (p. t, d3, C3)}. Notethat in an event sequence sever -
al events can have the same release time.

During the transformation of a event sequence into a
event stream the period of the sequence remains.

A real-time analysis algorithm is feasible if all events
occur in a lower or equal density than described by the
event stream. It is not feasible, if they occur in a higher
density than described in the event stream. Using the term
event stream, the event function n,, can be calcul ated easily
by:

I —a
n(Eg 1) = {—+1J >0 *)
Pi

Remember that each event stream element describes a
periodic event sequence. The maximal number of eventsin
the interval | is then simply the sum of al single event
stream elements:

V=0 n(E )= L'-ZﬁnJ *)
i=1t !

Example: For | <p the number of events of Eg,(I) is 1,
for p<1<2-p theamountis?2 and so on. Consider the sit-
uationintheinterval | = t:

Ne(Egp, P) = L%+1J+L%t+lj =2



Each event stream element generates exact one event.

For each task a separate homogenous event stream has
to be constructed, because non homogenous event streams
are not suitablefor real-time analysis. If al the tasks of the
same type are independent, the homogenous event streams
can simply be merged to one event stream by merging the
sets of event stream elements. This event stream represents
the worst case density for asingle task.

Example. Eg and Eg are both homogenous event
streams. Therefore the merged stream Egyo = {(, 0, d,,
C2), (P2, 0, dy, €p), (P2, t, da, C2)} = {(2, 0, 2000, 900), (4,
0, 2, 2), (4000, t, 2000, 900)}.

2.1.1 Demand Bound Function

To construct a real-time analysis algorithm it is neces-
sary to calcul ate the maximum required workload of a pro-
cessor in agiven timeinterval. This can be provided by the
demand bound function, which wasfirst defined by Baruah
[3] and Gresser [9] - and later also used by Buttazzo [5].

Definition 15:Demand Bound Function Dy(1) [2]: The
demand bound function D,(1) denotes the maximum cumu-
| ative execution requirement given by eventsthat have both
their request time and their deadline within any time inter-
val of length I :

Dy(l) = Z nEs 1-d) ¢, ()

I=d;
or
I—d—a
Db(l) = Z{ p' a|+1J.Ci *)
I=d;

In rea-time anaysis only events are relevant which
have both, their request timet(€) and their deadlinet(e)+d,
within the interval I. These are al events occurring in the
interval 1-d,. The demand bound function matches the
event function and is also a monotonic non decreasing
function. Asaresult it isalso possible to define an demand
stream matching the event stream:

Definition 16: Demand Stream Element D,;: The de-
mand stream element is a description of a periodic se-
guence of demands. It consist of a initial finishing time f,
the period p and the additional execution demand c.

| —d
Dbi(l) = {

i_ai+1J-c I>d
i =0

Definition 17: Demand Stream: A demand stream is a
set of demand stream elements describing the cumulative
wor st case execution amount of a system.

Totransfer an event stream to its corresponding demand
stream, each event stream element isreplaced by ademand
stream element with an initial finishing time f; = a; +d;

and the same costs ¢; and deadline d; of the event stream el-
ement. It is not necessary that a demand stream has a cor-
responding event stream. A demand stream can a so model
the difference between two alternative event streams with
different costsand timing. This concept givesanew formal
representation for the demand bound function and isare-
sult of the definitions given earlier in this paper.

2.2. Feasibility Test

A feasibility test or real-time analysis can be construct-
ed by using the demand bound function.

Lemma 2: Processor Demand Criteria: A systemis fea-
sible if the demand bound function is always lower or
equal thanl [2]: VI>0 Dy(1) =1

The most important problem using the processor de-
mand test isto find the length of the interval I. A schedula-
bility test has to consider al relevant events in order to
ensure that all tasks will finish before their deadlines. Be-
cause Dy(1) isanon continuous function each event defines
arelevant test point for the analysis algorithm defined in
Section 4.1.. The run-time complexity of the analysis algo-
rithm depends on the length of theinterval I.

Definition 18: Feasibility Interval: Antimeinterval 1.,
is called feasibility interval if
(31> 0)[(Dy() > 1) = AN":0= 1" = I, [ (DL(1) > 1)

If the processor demand test failsfor thetimeinterval I,
it existsan timeinterval I' < | for which the processor
demand test also fails.

To proof the feasibility of agiven task system it is nec-
essary to test only intervals I <1, . Baruah et a. gives
such afeasibility interval which was provenin [3]:

Lemma3: Let U = Y ¢;/p; bethe maximum used capac-
ity. Than |54 is a feasibility interval.

max

_ VU
Inax = 1_U'maxlsisn(pi_di)

If U is bounded, the processor demand criteria can be
tested in pseudo-polynomial time. In[16] afew better fea-
sibility intervalsaregiven. For all theseintervalsaproblem
arises when D, (1) contains several event streams with a
large diversification of periods.

Example: Consider Eg and Eg, of Figure 1. U = 2/4 +
900/4000= 77,5%. The test interval depends only on p,. It
is I, = (0,775)/(0, 225) - (4000 —2000) = 6889. So for
e,, 2 test points (at time point 2000 and 6000) are neces-
sary, whereas for e3 more than 1700 test points are neces-
sary. It is obvious that the complexity of the processor
demand test also depends on the different periods of the
task set.



Figure 2: Approximation of the Demand Bound Function by Superposition

3. Approximation by Superposition

To avoid this problem an approximation which isinde-
pendent from the given periods of the eventsisneeded. The
next chapter gives such an approximation.

3.1. Approximated Demand Bound Function

The main ideais to limit the number of test points for
each demand stream element separately by constructing a
approximated demand stream element function D', (1) and
to superpose all approximationsto aapproximated demand
bound function D',(1) . So for each demand stream element
aseparate test interval is defined.

Definition 19: Maximum Test interval I (e;) : The max-
imum test interval I (e;) of the demand stream element g
isthe interval which includes k+ 1 test points for .

L&) = k-p; +f
Remember that a demand stream element is described
by itsinitial finishing time f; and its period p;.
Definition 20: Approximated Demand Stream Element
Function D' (1) :

Dy, (In(€)) + % -l 1> 1)
D, (1) I<1,(e)

As Fig. 2 shows, the approximated demand stream ele-
ment function is always equal or greater than the demand
stream element function. Of course, it isalso depending on
Es Since ¢;/p; <1 itisonly necessary to check all the test
pointsup to 1 (e;) -

Definition 21: Approximated Demand Bound Function
D’y(1) : The approximated demand bound function is a su-
perposition of all approximated demand stream element
functions (Fig. 2):

D'y (1) =

D'y(l) = ZD’bj(l)
|

Since the amount of each approximated element is at
least equal to the amount of the exact element, aso the

summed amount of the approximated elements is at least
equal to the amount of the demand bound function.

The relevant test pointsof D', (1) areall the test points
of the elements D', (1) . For intervals larger than 1 (e;) the
approximated costs for g has to be taken into account at
each remaining test interval of the demand stream ele-
ments.

Example: Consider again Eg; and Eg, of Figure 1: Let
k =100. The maximum number of test points
I,(e5) = 398. Thenext test point isthefirst test point of e,,
I, = 0-a,+d, = 2000. The remaining test points of e;
are skipped. The correct value for the demand of |, would
be D,(1,) = c,+500-c; andthecorrect valueof D*y(l,) is
D',(I,)= ¢, +500,5-¢c; .

The error of the approximation is given by the differ-
ence between D (1) and D', (1) . Theerror of the exampleis
lower than 0.1%. That means feasibility is guaranteed on a
processor with 0.1% more capacity than the optimal pro-
Cessor.

Lemma 4::Let P beaprocessor with a capacity C(I) and P
a processor with the capacity C'(1) = C(I) +1/k - C(I). If
the feasibility test for P using D,(1) succeeds (that means
VI:C(l) = D(1) ), thefeasibility test for P* using the approx-
imated demand bound function D', (1) also succeeds.

That means.

D'(1) = Dy(1) c'(n-cq
Dy(1) ¢

Therefore the error can be bounded by thetest limit k. A
test limit of 100 intervals leads to an maximum error of
1%, a limit of 1000 to an error of 0.1%. The reason is
shown in Fig. 3. When the test limit is reached and the ap-
proximation begins, the demand already contains k - c;
costsfrom Dy; . The maximum error resulting from the ap-
proximation of g islimited to 1 - c;. In the worst case the
ratio between the error and the complete costsislower than
ci/k-¢; = 1/k. The next chapter gives aformal proof for
this intuitive conclusions.

1_
<= =
k



3.2. Proof of Correctness

First, it must be proven that the approximated demand
bound function (definition 21) isalways greater as or equal
to the exact demand bound function. Thisistrue, if the ap-
proximated demand stream element function as defined in
definition 20 is always equal or greater than the real de-
mand stream element function. Figure 2 illustrates the cor-
relation of the two functions. In the following the formal
proof of the correlation is given.

Lemmab:Let | be an interval with | > 0. Then
Dy, (1) = D', (1) -
For al intervals 1 <1 (e;) the proof is trivial, so it is
only necessary to concentrate on the case I = I, (e;) .
Note the definition of the demand stream element (def-
inition 16):
Dy (1) = T—fi+lJ-cis(l—fi+l) ¢

_ (Im(ei)—fi+|—lm(ei)+1> .
Pi I
= <_'m(e$?_fi+1> -ci+§~(l—lm(ei))

= Dy (&) + - (1-1y(e)) = D'y 1)

1
It must also be shown in afurther step that thisresult ap-
pliesto the demand bound function:

Lemma6::If D, (Eg, 1) <D’ (Eg, 1) for all intervals 1>0,
thanalso D,(I) <D, (1).

For each single element, the approximated element
function is greater or equal to the real element function.
Therefore the sum of al element functions, the approxi-
mated demand bound function (definition 21), is always
greater or equal to the exact demand bound function (defi-

nition 15):
2 D'(1)= YDy (1)
D'y(1) = Dy(1)

It needs to be proven that it is sufficient to check the re-
maining testing interval if the approximated demand
bound function D' (1) is used.

Lemma7::Let 1,1, betwo consecutive test intervals for
D'y(). If we assume it exists a Al for which
I<l+Al<l,, and D (1+Al)>1+Al applies then the
approximated demand bound function D', (1) > I .

If the test for the exact demand bound function Dy, fails
at interval Al, the test of the approximated demand bound
function D*y, fails for the last test interval before Al. This
last test interval is 1. Therefore, if thetest fails, it also fails
at one of the remaining test intervals.

To proof lemma consider the following inequations

Dy(1 +Al) > | + Al
D'y (1+Al) > 1 +Al

For all demand stream elements i who have reached their
test limit, definition 20 leads to the following equation:

D' (I+Al) = D'y (I) +¢;/p; - Al

For all other elements of the event stream, | + Al hasto be
between two consecutive test points. This gives
Dp(1 +Al) = Dbj(l) . Therefore it can be followed:

D’b(l)+E§-AI>I+AI
1

The utilization Eci/pi has always to be lower than 100%:

D'y(1) + Al > 1 + Al
D',(1) > 1

That is the condition of lemma 7. If the test fails at all, it
also fails at one of the remaining test intervals. According-
ly it isonly necessary to test these remaining test intervals.

To determine the size of the error an additional lemma
is needed:

Lemma 8: The maximum error between a single approxi-
mated demand stream element and the real demand stream
elementislimitedtoc: D', (I)-D, (1) =¢;

D, (1) and D', (1) intersect at each test interval of
D’b_(l)' , therefore both functions have the same value at the
end of the test interval. The cost difference between two
consecutivetest intervalsof Dy (1) isc;. Thereforethe max-
imum difference between both functionsis also c;.

Note first:

Dy (Es, 1) = Tp;f' + 1J - G

- Dbi(lm(ei»ﬂ"'pﬂfci

Figure 3: The Error of the Approximation



and then remember the definition of 1 (e;) . Both functions
intersects at thisinterval. With this knowledge it is easy to

proof:
D', () =Dy () = Diy(ly(e) + =1+ (1 =11 (&) ~Dy()

- %‘i-(l—lm(em{—'_'”?(ei)J'ci

SE'(l—lm(ei))—F—Lﬂ—l]ci

C; =1,
Sai‘("'m(ei))—( b, —1>'Ci
Therefore the maximum error of D', (1) islimited to c;.

Using this result the error of the approximated demand
bound function D', (I) can be bounded. One upper bound is
the sum of the errors of the single element functions
D’bi(l) . If theinterval is shorter than the maximum test in-
terval I(e;) , theerror for this element is 0. The maximum
error of the demand bound function is bounded by:

D', (1) =Dy (l) = c;
i i ei‘lzrn(ei)

The minimum cost of the demand bound function is
limited by:.
Dy(l) = Dbi(lm(ei))

eill1>Tn(e)

— \‘k.p|+fl_fl+1J-C
i
e,\lzm(e,) Pi

= 2 (k+1)-¢;= 2 k-c
ei‘l> (&) ei‘l> m(&)

With these two bounds, the proof of lemma4 is easy:

D'y ~Dp() _ ;m(ef'
Do) k-c
I>To(e)
Therefore, the overall approximation error is bounded
by Vk.

1
k

4. Approximated Feasibility Test

4.1. Test Algorithm

For an efficient testing algorithm, it is not necessary to
calculate D(1) for every test interval separately. Fig. 4
shows the complete approximation feasibility test algo-
rithm.

Firstitinitializesthetest list with thefirst instance of all
demand stream elements, using their finishing times f; as
initial time point. Then it processes this list in ascending
order of the test intervals. For each event it adds the corre-
sponding costs c; to the cumulated costs. It tests if the cu-

ALGORITHM ApproxFeasability Test
INPUT: ListOfEvents {e;}, testLimit

U = Eci/pi
I

IF U>100% => not feasible
Inax = U/(1-U)-max, _; _n(p;—d;)
/I Test interval from [3]
Ve; € D, :testlistadd(f; ,e;);
WHILE (l,o =l v Liste={ })
i = testlist.getNextDemand();
It = testlistintervallForDemand(i)
D'y =D'p+ ¢+ (g —loig) Uready
IF (D", > Cy(l) ) =>not feasible
IF ( lact < (k=1) - p; +T; )
testlist.add(l,.; + p; . €;)

ELSE U gqqy = U +¢i/P;

ready
Iold = Iact
END WHILE

=> feasible
Figure 4: Superposition Test Algorithm
mulated costs are higher than the computing time for the
actual test interval, then the test failed. If the maximum
number of test intervals of this element is not reached, the
next instance of this element is added to the test list. It has
adistance p; to the actual test interval. Therefore at each
time, the test list contains at maximum one test point of
each demand stream element. If the maximum number of
test pointsfor an element is reached, its utilization c;/p; is
addedto U, - INnthiscasethe next test point is not added
to the test list. The approximated costs approx; are also
added for each test interval. The calculation of these costs
isgiven by
approx; = (It —lgig) - Uready

4.2. Complexity of the Algorithm

The complexity of the origina problem is unknown.
Only pseudo-polynomial solutions are know so far[3].

Let n be the number of demand bound elements and k
the maximum number of testing points for each element.

ALGORITHM Chakraborty
INPUT: ListofTasks {ej}, testLimit
Inax = U/(1-U)-max, _;_n(pj—dy)

Il Test intFrvaI from [3]
_ max

" testLimit

FOR(t<=1to |l,/K|+1)

max

IF ( Dy(T, fpay + - K) >+ (1=1) - K ) THEN
=> not feasible
END FOR
=> feasible

Figure 5: Algorithm Chakraborty



For the sporadic task system the number of demand bound
elements is equal to the number of tasks. The valuek is a
selectable variable which affects both, the complexity and
the error of the algorithm. Therefore a trade-off between
the run-time of the algorithm and the error is possible. The
error ¢ ise = 1/k. Each test point has to be inserted in a
sorted list (O(logn)) . So the complexity of the approximat-
ed feasibility test is O(n-logn-1/¢) . The given analysis
error ¢ gives arequirement to the processor used in the fi-
nal implementation of the system. To guarantee all dead-
lines of the considered system this processor is at most ¢
percent faster than the unknown optimal processor.

The algorithm of Baruah et al. [3] has pseudo-polyno-
mial complexity depending on the number of tasks, the
overall utilization and the granularity of the periods. The
complexity of the algorithm given by Chakraborty et al. [6]
has the same complexity as the algorithm presented in this
paper, but uses, as outlined in the introduction, a different
kind of error.

5. Resaults

The test algorithm is compared with the precious ap-
proach of Chakraborty et al. [6]. Fig. 5 contains a simpli-
fied version of Chakraborty*s agorithm. Two experiments
are described in this section to validate the theoretical re-
sultsand to give animpression how the new approximation
algorithm works. To make the two algorithms comparable
Chakraborty* s algorithm was re-implemented in the same
framework as the new superposition approach. Therefore,
both algorithms are implemented in Java running on a 1
GHz PowerPC on MacOS X.

Two case studies are considered: The first example
comes from [4] and models the Olympus Attidude and Or -
bital Control System for Satellites. This example contains
10 periodic and 4 sporadic tasks and is given in Tab. 1.

Task Period/Min. | Starttime WCET deadline
Distance

T 50 0 0.28 9.0

k) 10 0 1.76 10.0
T3 200 50 213 14.0
T4 200 150 143 17.0
5 200 0 143 17.0
5 100 0 1.43 24.0
T7 100 50 8.21 50.0
T3 200 50 52.84 200.0
Tg 1000 200 5.16 400.0
T10 1000 200 6.91 900.0
™ 0.96 0 0.18 0.63
T12 62.5 0 3.19 30.0
T13 100.0 0 4.08 100.0
T4 187.0 0 25 187.0

Table 1: Task System of the Olympus
Attidude and Orbital Control System

Error Time (in ms 100 runs) Example
New Chakraborty
50% 190 failed SAT
5% 730 failed SAT
1% 1713 failed SAT
0.5% 2744 failed SAT
0.05% 11423 22755 SAT
0.02% 22273 58081 SAT
0.01% 22244 116825 SAT
10% failed failed PALM
5% 629 failed PALM
0.5% 3961 failed PALM
0.2% 5046 7885 PALM
0.1% 4588 16035 PALM
0.05% 4999 30039 PALM
0.02% 5207 82156 PALM
0.01% 4974 181786 PALM

Table 2: Experimental Results

The second example was originally given by Maand Shin
[14] and can also be found in [11]. The model describes a
Palmpilot application containing 13 different tasks. All
these tasks have deadlines equal to their periods. To define
aharder problem for the experiment we have set the dead-
linefor task t7 to 100 msinstead of 150 msin the originally
model.

Let us consider the experiment using the task set of the
Olympus Satellite System. It is shown by the first seven
linesin Tab. 2 indicated by the phrase SAT: If we assume
a approximation error of 0.05% the new approximation
finishes the schedulahility test after 114 ms (100 runs in
11423 ms) while the algorithm of Chakraborty needs 228
ms. Despite the fact that, for the task set afeasible schedule
exists, Chakraborty's agorithm fails in cases where he
uses a chosen error of 50%, 5%, 1% and 0.5%. In all these
cases the new superposition algorithm achieves results.
Therefore it is possible by the superposition algorithm to
perform a schedulability analysisin 17 ms with an expect-
ed error of 1%.

The effort for the new algorithm - apart from the over-
head for the approximation- is always lower than or equal
to the effort for the exact algorithm, even with avery low
error. The effort for Chakraborty*s algorithm grows with
sinking error. Therefore, the density of test intervals can be
higher than necessary for the exact algorithm.

For the pampilot example, the results goes in a equal
direction. The new algorithm accepts the task set with an
error of 5%, whereas the previous approach needs astricter
error (the experiments have shown that an error of 0.2%is
sufficient). If both algorithms run with an given error of
0.01%, which is near the optimal processor, the superposi-
tion approximation needs 49 ms compared to 1817 ms
needed by Chakraborty's algorithm.

Figure 6 visualizes the reason for this behavior. It con-
tains a part of atest run of both algorithm, compared with
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Figure 6: @) Palmpilot Experiment comparing the algorithm by a) Chakraborty with the b) Superposition approach

the exact solution. In &) a run of Chakraborty‘s agorithm
with an error of 0.1% is shown. Also the error is to small
to skip any test points in this part of the run, the approxi-
mation needs the costs always earlier than the exact solu-
tion. Therefore it needs a processor with more capacity. In
b) the same part of the run of the superposition algorithm
using an error of 5% is shown. The error allows skipping
some test points. Despite this, on the critical test points the
approximation is closer to the exact solution than the ap-
proximation of Chakraborty.

6. Conclusion

In this paper we have presented and proved afully poly-
nomial time approximation scheme (FPTAS) for the spo-
radic task system. This analysis of sporadic tasks has an
complexity O(n - logn - k) wherek isan arbitrary amount of
testintervals. The error k is bounded in terms of the capac-
ity of the optimal processor and atrade-off between the er-
ror and the analysistime is possible.

In contrast to the previous work it is possible to analyze
systems which have alarge diversification of the periods.
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