
Analyzing the Timing Characteristics of Task Activations∗

Frank Bodmann, Karsten Albers, Frank Slomka
Department of Computing Science – University of Oldenburg

{Frank.Bodmann, Karsten.Albers, Frank.Slomka}@informatik.uni-oldenburg.de

Abstract

We propose a model and method to determine the tem-
poral distribution of task activations occurring within an
event driven real time system. As real time systems even
in safety critical applications are becoming increasingly
complex, it becomes increasingly important to get a bet-
ter understanding of the activity within these systems. The
event stream model is a powerful yet efficient way to de-
scribe the temporal occurrence of events within a system.
Real time analysis can be elegantly performed using given
event streams, however it has so far not been investigated
how the event streams themselves can be acquired. By
calculating the temporal distribution of task activations
within a system, a more accurate description of the tim-
ing behavior of a system is possible which in the end can
lead to a save and cost efficient estimate on the hardware
required for the system.

1. Introduction

Verifying and finding a cost optimal mapping of soft-
ware onto hardware components for a distributed real time
system requires expressive models and efficient methods
to determine the systems timing behavior. One important
aspect is to determine the worst case and best case ex-
ecution times of the systems individual tasks. However
once this information is known, the timing behavior of the
interaction of these tasks has to be considered, as the ac-
tivity of one task may trigger activity of other tasks which
translates into load on the system. Consequently this has
to be taken into account when verifying whether the se-
lected hardware is guaranteed to always meet the desired
timings.

In this paper we introduce a method that allows an effi-
cient automatic extraction of its relevant timing dependen-
cies from a system specification or implementation. This
is achieved by taking the inner state of tasks into account,
but abstracting from it by transforming the tasks control
flow into its impact on the overall system within arbitrary
time intervals. The result is a description of the systems
timing behavior that can be analyzed efficiently using es-
tablished real time analysis techniques.

∗This research has been supported in part by the Deutsche
Forschungsgemeinschaft under grant SL 47/1-1, SL 47/2-1

This paper is organized as follows: after presenting the
related work, the model used by this approach is intro-
duced and a method is described to calculate the timing of
events generated by a task during one invocation. Based
on this method a generalization is offered which shows
the timing of events generated by a task, which is itself
triggered by events with a given timing. These informa-
tion are used for an efficient real time analysis of static or
dynamic priority scheduling. Finally an example is given
where the results are compared to those generated by tra-
ditional means.

2. Related Work

The periodic task model [1] shown in Figure 1 assumes
tasks to be activated at a constant rate T . Several exten-
sions have been introduced to the traditional periodic task
model to overcome its shortcomings, such as the sporadic
task model [2] and the recurring real time task model [3].
The event stream model [4] is more expressive by describ-
ing the maximum number of events in arbitrary time inter-
vals. It is described in detail in Section 3.1.

!0

!1

!2

T

T

T

WCET

!1

!2

T T T

T

!0

Figure 1. Simple task model

All these models assume that internal events are gen-
erated by tasks at the end of their execution. However in
reality these events may occur anytime during their exe-
cution, so these models lead to overly pessimistic approx-
imations. Consider Figure 2. As the runtime of task τ0
may vary across activations, the density of events activat-
ing task τ0 (ESin) would differ from the density of events
that activate τ1 (ESA′) and τ2 (ESB′). In order to maintain
analyzability, buffers are introduced that are to restore the

1-4244-0777-X/06/$20.00 ©2006 IEEE

Karsten Albers
Textfeld
First IEEE Symposium on Industrial Embedded Systems,
Antribes Juan-Les-Pins, October 2006

!0

!1

!2

ESin

ESin

ESin

ESin

ESout

ESout

ESout

Figure 2. Task model for event streams

WCET

!0

!1

!0

!1

!2

ESin

ESA'

ESB'

!2 !2 !1

Figure 3. Event dependency graph

original event stream ESin [4]. These buffers make it un-
necessary to calculate the modified event stream, however
additional hardware is required to make the analysis fea-
sible.

Synchronous data flow graphs [5] are a model for sig-
nal processing real time task systems which are a sim-
plification of Petri Nets to make their analysis feasible.
However they are restricted to periodic events. Process-
ing Graphs [6] describe the occurrence of events based on
the rate-based execution theory. In rate-based execution
a time interval is given for which the average number of
events occurring is known. As there is no upper bound on
the events that can actually occur in a given interval, the
deadline has to be adjusted and only the feasibility of the
system in regard to these adjusted deadlines is considered.

The SPI (System Property Intervals) Workbench [7] is
a methodology to describe the characteristics of a hetero-
geneous system. However realistic systems lead to highly
complex models that are hard to analyze.

3. Model

In this section the model used by this approach is de-
scribed. The event stream model is used to describe the
timing of events. Task graphs are used to describe the con-
current tasks of the system while the tasks themselves are
specified as flow graphs. Finally the timing information
yielded by this approach will be added to the task graph
which produces the event dependency graph.

3.1. Event Stream Model
The event stream model is introduced in [4]. The key

question this approach answers is: How many events can

at most occur within any time span of a given length? This
allows an abstraction from the absolute time towards a de-
scription in arbitrary time intervals. This provides a pow-
erful way to describe the timing of events and at the same
time allows an efficient analysis of the real time properties
of a system.

An event stream is a set of event elements
(p

a

)
. Each el-

ement represents an additional event that can occur when
the observed interval has a size equal to or larger than a.
The period p allows the event to be repeated every p time
units.

1

2

3

4

5

2

10

16

0 5 10 2119

0

21

#
 o

f
E

v
e

n
ts

Absolute

Time

In
te

rv
a

ls

Figure 4. Event stream model

Consider Figure 4 as an example. Only one event oc-
curs concurrently so there is a maximum of one event
in any interval with a size towards zero. As the interval
grows, the number of events that can occur within it in-
creases. Two events can occur in an interval sized two,
etc. So the depicted sequence of events adheres to the
event stream{(

p
0

)
,

(
p
2

)
,

(
p

10

)
,

(
p

16

)
,

(
p

21

)}
The period p indicates that a set of events following the

same constraints may occur every p time units. Note that
a sequence of events that matches this event stream could
be more relaxed: the event at time 10 could have occurred
at 11. If it would occur at 12 however, the three events at
12, 19 and 21 lie within an interval of nine time units, but
only two events would be allowed in an interval that size.

The maximum number of events that can occur in a
given time interval I can be calculated by the event func-
tion (n is the number of event elements describing the
event stream):

E(I) =
n

∑
i=1

⌊
I−ai

pi
+1

⌋
By scaling the event function by the maximum compu-

tation time c each event causes, the amount of requested
computation time for intervals can be determined. This
is known as the request bound function. By reducing the
size of the given interval by the deadline d the computa-
tion time of those events that have to be completely pro-
cessed during the interval is retrieved. So the demand

bound function C(I) tells how much demand for compu-
tation time is at most possible for any interval [8].

C(I) = E(I−d) · c

These functions are sufficient for the analysis of static
and dynamic priority scheduling using the methods pro-
posed by Baruah [3]. For the dynamic priority case it is
sufficient to test whether the required computation time is
lower than the available computation time for all intervals
up to a sufficient bound. So the overall schedulability can
be verified. Through the reduction of the number of re-
quired test intervals the run time complexity of the real
time analysis is O(n · logn · 1

ε
) where n is the number of

event elements and ε is an adjustable error [9].
Hence the accuracy of real time analysis can greatly be

increased by considering the event stream of events occur-
ring within a task system.

3.2. Task Graph
The nodes of a task graph are individual tasks of an

application. An edge from one task to another indicates
that the first task may activate the second by sending an
internal event. An activated task may itself create events
for other tasks as a result. The events triggering the task
currently observed will be called external events. Figure
5 shows a task graph consisting of the tasks τ0, τ1 and τ2
where τ1 is triggered by τ0 and τ2 is triggered by τ1.

3.3. Flow Graph
In order to get a deeper understanding of the behavior

of an individual task, their flow graph as used in compiler
theory [10] can be observed. A flow graph describes the
sequential behavior of a task. Figure 5 shows the flow
graph of τ1. The GNU Compiler Collection (GCC) has
been used to provide the necessary flow graphs in our
implementation of the method introduced in this paper.
ChronEst [11] was used to determine the execution times
of the individual nodes of the graphs.

The nodes V of a flow graph are basic blocks. They
are connected by edges E that represent a possible execu-
tion path. pred(k) and succ(k) are the sets of successors
and predecessors of a node k. For every basic block the
following additional properties must be known:

eventτ(k) is true iff node k generates an event for task
τ . Basic blocks that trigger events can be represented
as block arrows in the style of the output symbol of the
SDL (Specification and Description Language) specifica-
tion [12]. In Figure 5 nodes 0 and 4 of τ1 activate τ2.

time(k) is the minimum execution time of node k. As
the maximum number of events in a given interval is of
interest it is the minimum execution time that is used as
the basis for all following calculations.

Events are generated after the basic block has been pro-
cessed. If need be this can easily be adjusted by splitting
the node and letting the first trigger the event and the sec-
ond consume the remaining time.

Any flow graph can be constructed by using two oper-
ations, concatenate and merge. A concatenation of two
graphs represents the consecutive execution of the two
graphs. A merge represents the conditional execution of
basic blocks. The following formal definitions are specifi-
cally modeled to partition the flow graph in a way to match
the requirements of the timing analysis functions that will
be introduced in section 4.1.

Definition 1 (Concatenate cat) The concatenation of
(V1,E1) and (V2,E2) is constructed by introducing an
edge for every node of the first graph that has no succes-
sor (end) to all nodes of the second graph that have no
predecessor (start).

cat((V1,E1),(V2,E2)) = (V1 ∪V2,E1 ∪E2 ∪
{(k,k′)|k ∈ end(V1,E1),
k′ ∈ start(V2,E2)})

cat((V1,E1),k1) = cat((V1,E1),(k1, /0))

Definition 2 (Merge mrg) A merge is the union of all
nodes and edges of two graphs. The two graphs may
have common nodes, but nodes only present in one graph
may not have a successor in the other graph. Therefore a
merge is performed to produce a forking into alternative
paths of execution that may have a common beginning.

mrg((V1,E1),(V2,E2)) = {V1 ∪V2,E1 ∪E2} where

succ(k ∈V1 \V2) ∈V1 \V2,

succ(k ∈V2 \V1) ∈V2 \V1

As an example the flow graph shown in Figure 5 could
be constructed as

G1 = cat(cat(/0,0),1)
G2 = mrg(cat(G1,2),cat(G1,3))
G = cat(cat(G2,4),5)

3.4. Event Dependency Graph
Event Dependency Graphs are based on task graphs.

The edges of the graph are additionally weighted by the
event stream flowing from one task to another. These
event streams consist of events sent from the environment
and also of events generated by the tasks themselves.

4. Retrieving the Event Stream

In order to retrieve the event stream of tasks their flow
graph must be traversed. During this process the timing
analysis functions introduced in the next section are used
to collect the required timing information. The functions
are defined recursively and determine the change in the

2

t=30

3

t=4

5

t=11

0

t=15

4

t=15

1

t=20

!0

!1

!2

!1

Task Graph

Flow Graph

Node Instruction
procedure foo(int x);
begin

0 sendτ2 (x);
1 if (condition) then
2 x := (slow operation)

else
3 x := (quick operation)

end if ;
4 sendτ2 (x);
5 doSomething() ;

end ;

Figure 5. Task graph and flow graph

timing behavior of a flow graph as it is extended by at-
taching further nodes or graphs to it. Next an algorithm
is given that will visit the nodes of the flow graph in the
order required for this method. After these steps the event
stream that is generated by a task if it is triggered just once
is known.

4.1. Timing Analysis Functions
The following timing analysis functions are defined for

subgraphs of a flow graph generated by the cat and mrg
operation. They are recursively defined to decompose the
graph into further subgraphs.

4.2. Maximum Number of Events Generated by a Task
maxE(G) is the maximum number of events that can be

generated by a task represented by its flow graph G during
a single activation.

Definition 3 (maxE)

maxE(/0) = 0

maxE(cat(G,k)) =


if eventτ(k) = true:

maxE(G)+1
else:

maxE(G)

maxE(cat(G,H)) = maxE(G)+maxE(H)
maxE(mrg(G,H)) = max(maxE(G),maxE(H))

The values of maxE for any flow graph can be com-
puted by systematically rebuilding the graph and in each

step use the function defined for the performed composi-
tion. The timing analysis functions introduced in the next
sections are used in the same way.

The flow graph shown in Figure 5 can be constructed
while calculating the values for maxE as follows:

G1 = cat(/0,0)
maxE(G1) = maxE(/0)+1 = 1

G2 = cat(G1,1)
maxE(G2) = maxE(G1) = 1

G3 = cat(G2,2)
maxE(G3) = maxE(G2) = 1

G4 = cat(G2,3)
maxE(G4) = maxE(G3) = 1

G5 = mrg(G3,G4)
maxE(G5) = max(maxE(G3),maxE(G4)) = 1

G6 = cat(G5,4)
maxE(G6) = maxE(G5)+1 = 2

G = cat(G6,5)
maxE(G) = maxE(G6) = 2

4.3. Intervals from Start to End of Graph
totalIn is the minimum amount of time the task needs

from start to end while generating exactly n events. If the
requested number of events can not be generated, the time
is infinity, even if a higher or lower number of events is
possible.

Definition 4 (totalI)

totalI0(/0) = 0
totalIn>0(/0) = ∞

totalI0(cat(G,k)) =


if eventτ(k) = true:

∞

else:
totalI0(G)+ time(k)

totalIn>0(cat(G,k)) =


if eventτ(k) = true:

totalIn−1(G)+ time(k)
else:
totalIn(G)+ time(k)

totalIn(cat(G,H)) = min
x∈[0,n]

(totalIx(G)+ totalIn−x(H))

totalIn(mrg(G,H)) = min(totalIn(G), totalIn(H))

4.4. Intervals Relative to End of Graph

2

t=30

3

t=4

5

t=11

0

t=15

4

t=15

1

t=20

of Events 1 2 3

Time 11 50 !

Figure 6. Intervals relative to end of graph

endIn is the minimum interval from the end of the flow
graph back into the graph so that n events are generated.
As events are assumed to occur at the end of the nodes
the minimum execution time of the first node is not added
to the interval. Figure 6 illustrates the endI values for the
given graph. One event can be triggered 11 time units be-
fore the end; 50 time units are needed to reach two events.
As three events can not be generated, the time required is
considered infinite.

Definition 5 (endI)

endI0(G) = 0
endIn>0(/0) = ∞

endI1(cat(G,k)) =


if eventτ(k) = true:

0
else:

endI1(G)+ time(k)

endIn>1(cat(G,k)) =


if eventτ(k) = true:

endIn−1(G)+ time(k)
else:

endIn(G)+ time(k)

endIn(cat(G,H)) = min


endIn(H),
min

x∈[1,n]
(endIx(G)

+ totalIn−x(H))

endIn(mrg(G,H)) = min(endIn(G),endIn(H))

4.5. Intervals Relative to Begin of Graph
startIn is complementary to endIn. It is the minimum

interval from the start of the flow graph in which n events
are generated.

Definition 6 (startI)

startI0(G) = 0
startIn>0(/0) = ∞

startIn(cat(k,G)) =


if eventτ(k) = true:

time(k)+ startIn−1(G)
else:

time(k)+ startIn(G)

startIn(cat(G,H)) = min


startIn(G),

min
x∈[0,n−1]

(totalIx(G)

+ startIn−x(H))

startIn(mrg(G,H)) = min(startIn(G),startIn(H))

4.6. Intervals Within the Graph
inIn(G) is the minimum interval within the flowgraph,

in which n events can be triggered.
inIn(cat(G,H)) finds a distribution of events on

endI(G) and startI(H) so that the resulting interval
endI(G) + startI(H) is minimal. If however there is al-
ready a smaller interval for the requested number of events
in G or H it remains the interval for inI(cat(G,H)).

procedure calculateIntervals(FlowGraph G);
begin

Node k := start(G);
k.preG := /0;
push(k);
while (stack not empty) do

Node k := pop();
if (allPredVisited(k)) then

if (predCount(k) ≤ 1) then
analyze k.preG := cat (pred(k).preG, k);

else if (predCount (k)) > 1) then
analyze k.preG := cat (mrg (pred(k).preG), k);

end if ;
markVisited(k);
for each k’ ∈ succ(k) do

push (succ(k’));
end for ;

end if ;
end while ;
assert (|end(G)| > 1 or k.preG = G);

end ;

Figure 7. Algorithm: traversal of a flow
graph

Definition 7 (inI)

inIn(cat(G,k)) = min(inIn(G),endIn(cat(G,k)))
inIn≤1(cat(G,H)) = min(inIn(G), inIn(H))

inIn>1(cat(G,H)) = min



inIn(G),
inIn(H),

min
x∈[1,n−1]

(endIx(G)

+ startIn−x(H))

inIn(mrg(G,H)) = min(inIn(G), inIn(H))

The event stream caused by a single execution of the
task can now easily be formulated:

ES(G) =
⋃

n∈[1,maxE(G)]

(
∞

inIn(G)

)

4.7. Flow Graph Traversal
To analyze a flow graph the operations cat and mrg

can be used beginning with the start node to match the
structures in the graph. A simple algorithm to traverse the

flow graph is given in Figure 7. For the sake of simplicity
it is assumed that loops in the graph have been unrolled. If
the flow graph has no single end node, a virtual end node
has to be introduced and all end nodes must be connected
to that node.

The algorithm begins with the start node of the flow
graph. If all predecessors of the current node have been
analyzed (allPredVisited(k)) the node itself is analyzed.
If it has a single predecessor the cat operation is used to
merge the current node to the preceding graph. If it has
more than one predecessor the node represents the end of
an alternative. The alternatives are merged using the mrg
operation and then concatenated to the current node us-
ing the cat operation. In the algorithm every node has a
property preG, which represents the graph preceding the
node.

When the algorithm is used in the context of an actual
analysis, a copy of the graph does not actually have to be
constructed. Instead the cat and mrg operations are only
needed to select the matching timing analysis functions.
The results of each function can be stored in a linear table
that maps numbers of events to times. Only these tables
have to be updated with every iteration of the algorithm.

5. Introducing External Events

Up to now the consequences of a single task activation
have been considered. The intervals that can be calcu-
lated so far can now be used to retrieve the resulting event
stream if the task is triggered not by a single event but
itself by an event stream.

The interval function a(n) is the minimum interval in
which n events can occur.

a(n) = min{I ∈ T |n = E(I)}

In the following we assume the deadline d to be smaller
than a(1) of the external event stream. This means a new
external event can only occur after the task has completed.
Therefore the deadlines are disjoint as shown in Figure 8.
As a consequence the execution times of the inner acti-
vations of the task (a(2) and a(3) in Figure 8) become
irrelevant in regard to the overall interval. Therefore the
maximum number of events maxE may be triggered dur-
ing each of these executions. Only the remaining events
must be distributed among the first and last execution in a
way to find the minimal overall interval.

innerE i represents the maximum number of events that
can be generated when i external events are taken into ac-
count minus the maximum number of events generated by
the first and last external event.

Definition 8 (innerE)

innerE i = max(0,(i−2) ·maxE)

The first and last event of an interval determine its over-
all size. marginSkew is the amount of time that has to be

a(1) a(2) a(3) a(4)

Time

endI (innerE) beginI

Deadline

Desired Interval

d - endI

Figure 8. Interval over multiple external
events

added to the last external event a(i) in order to get the
overall interval if the two outer invocations must generate
n events. For this a(i) has to be enlarged by startIx and
reduced by d − endIn−x. This may cause marginSkew to
become negative.

Definition 9 (marginSkew)

marginSkewn = min
x∈[1,n−1]

(startIx − (d− endIn−x)

inIi
n represents the minimum interval in which n events

are generated while considering i external events. All ex-
ternal events of a cycle taken into account this equals the
desired event stream.

Definition 10 (inI for Multiple External Events)

inI1
n = inIn

inIi>1
n = a(i)+marginSkewn−innerE i

5.1. Example: External Events
As an example the system described in Figure 5 will be

used. τ1 must be executed within the deadline d = 90. τ0
activates τ1 with the event stream{(

350
0

)
,

(
350
100

)
,

(
350
220

)}
In order to determine the interval in which two events can
occur, inI2

2 must be calculated:

inI2
2 = a(2)+marginSkew2

= a(2)+ startI1 − (d− endI1)
= 100+15− (90−11)
= 36

Note that the interval inI2
2 is 36 while the interval inI2 of τ1

alone is time(1)+time(3)+time(4) = 39. This worst case

τ0

τ1

τ2

{(
350
0

)
,

(
350
100

)
,

(
350
220

)}

{(
350
0

)
,

(
350
36

)
,

(
350
75

)
,

(
350
114

)
,

(
350
195

)
,

(
350
234

)}
{(

350
0

)
,

(
350
100

)
,

(
350
220

)}

{(
350
0

)
,

(
350
36

)
,

(
350
75

)
,

(
350
114

)
,

(
350
195

)
,

(
350
234

)}

Figure 9. Event dependency graph

takes place when node 4 is executed as late as possible (11
time units before the end of the deadline at 90) while node
0 is executed as soon as possible at the next execution: 15
time units after a second start, which can be 100 time units
after the first activation of τ1.

The intervals for all other events can be determined ac-
cordingly. The resulting event stream generated by τ1 for
τ2 is{(

350
0

)
,

(
350
36

)
,

(
350
75

)
,

(
350
114

)
,

(
350
195

)
,

(
350
234

)}
Figure 9 shows the event dependency graph for this ex-

ample.

6. Run Time Complexity

The algorithm introduced in Figure 7 must visit ev-
ery node once. For the analysis of every node the tim-
ing information of every event that may have occurred
up to that point must be adjusted. So the complexity is
O(nodes · events). Calculating the resulting event stream
when multiple external events are taken into account takes
a second step which has O(ext · int2) where ext is the num-
ber of external events and int is the maximum number of
events generated by the task within one activation.

For efficient loop unrolling the loop bodies can be ana-
lyzed as an isolated flow graph. If no events are triggered
in the loop this makes the computation time of the analy-
sis independent of the number of basic blocks or iterations
of that loop. As the combinatorial aspects of branches are
removed by the mrg operation, the conditional statements
do not have a negative impact on the run-time.

7. Example: Real Time Analysis using Event
Dependency Graphs

As an example the flow graph of the algorithm in Fig-
ure 7 itself can be used as the task that is triggered by the

event stream

{(
3400

0

)
,

(
3400
700

)
,

(
3400
1500

)
,

(
3400
2200

)}

The task is assigned a deadline of 640. Calls to the func-
tions push and pop have been chosen to generate events
for another task on a different computation unit and which
has a computation time of 45 with a deadline of 700. The
loops have been unrolled with an upper bound of five
passes for the while loop and two passes for the f or loop.
This results in a maximum of 16 events per activation or
a computation time of 4 ∗ 16 ∗ 45 = 2880 for the period
(p=3400).

Figure 10 shows the resulting demand bound func-
tion for the task triggered by the push and pop calls.
The dashed line indicates that in an interval of size I the
amount of computation time on an idle component is I.
If the demand for computation time within an interval is
smaller than the available computation time, the system is
schedulable [4].

In the periodic approach the event stream created by
the task is not known. Instead all events have to be as-
sumed to occur periodically at the end of the task; as the
events are assumed to occur at the same time, a great num-
ber of events has to be processed within the same dead-
line. If however more information is available about the
spread of events over the execution time of the task, fewer
events can be predicted to occur simultaneously and the
component is known to be able to process events at an
earlier stage. The example shows that our approach would
identify the system as schedulable while the traditional ap-
proach suggests that a more powerful processor or a more
relaxed deadline is required.

Figure 10. Demand bound function

8. Conclusions

We have proposed a methodology to extract the worst
case temporal distribution of events within a task system
using the information of the tasks individual control flow
graphs. We have shown how to use these results for a
more accurate real time analysis for static or dynamic pri-
ority scheduling, allowing an optimized estimate on the
required hardware. The acceptable run time complexity,
the integration of state of the art real time analysis tech-
niques and the use of readily available data structures such
as flow graphs are favorable properties of this approach.

References

[1] C. L. Liu and J. W. Layland, “Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environment”,
Journal of the ACM, vol. 20, no. 1, pp. 46–61, Januar 1973.

[2] A. K. Mok, Fundamental Design Problems of Distributed
Systems for the Hard-Real-Time Environment, PhD thesis,
Massachusetts Institute of Technology, 1983.

[3] S. K. Baruah, “Dynamic- and Static-priority Scheduling of
Recurring Real-Time Tasks”, Real-Time Systems, vol. 24,
pp. 93–128, 2003.

[4] K. Gresser, “An Event Model for Deadline Verification of
Hard Real-Time Systems”, in 5th Euromicro Workshop on
Real-Time Systems, 1993, Finland.

[5] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee, Soft-
ware Synthesis from Dataflow Graphs, volume 360 of The
Kluwer International Series in Engineering and Computer
Science, Kluwer Academic Press, 1996.

[6] S. Goddard, On the Management of Latency in the Syn-
thesis of Real-Time Signal Processing Systems from Pro-
cessing Graphs, PhD thesis, University of North Carolina,
1998.

[7] R. Ernst, D. Ziegenbein, K. Richter, L. Thiele, and J. Te-
ich, “Hardware/Software Codesign of Embedded Systems
- The SPI Workbench”, in Proceedings of the IEEE Com-
puter Society Workshop on VLSI’99, 1999.

[8] S. K. Baruah, D. Chen, S. Gorinsky, and A. K. Mok, “Gen-
eralized Multiframe Tasks”, Real-Time Systems, vol. 17,
no. 1, pp. 5–22, 1999.

[9] K. Albers and F. Slomka, “An Event Stream Driven Ap-
proximation for the Analysis of Real-Time Systems”, in
Proceedings of the 16th Euromicro Conference on Real-
Time Systems (ECRTS 04), July 2004. IEEE.

[10] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: princi-
ples, techniques, and tools, Addison–Wesley, second edi-
tion, 1986.

[11] F. Slomka, “New Techniques for the Design of Distributed
Embedded Real-Time Systems”, in Proceedings of the
Embedded World Conference, February 2005, Nuremberg,
Germany.

[12] Z.100, “Specification and description language (SDL)”,
November 1999, ITU-T Recommendation Z.100.

