
Guaranteed Bounds for the Control Performance
Evaluation in Distributed System Architectures

Tobias Bund, Steffen Moser, Steffen Kollmann and Frank Slomka
Institute of Embedded Systems/Real-Time Systems

Faculty of Engineering and Computer Science
Ulm University

89069 Ulm, Germany
Email: {tobias.bund | steffen.moser | steffen.kollmann | frank.slomka}@uni-ulm.de

Abstract—Controlling physical systems is a common task of
embedded systems. The requirements for a control system are
correctness, stability and control performance. This leads to real-
time constraints which have to be hold by the implemented
controller. We present an approach that supports the control
engineer to get guaranteed bounds for the timing behavior of the
controller at early design steps. This is done by connecting the
Matlab/Simulink environment widely used for controller design
to real-time analysis using a mapping between graphs.

I. INTRODUCTION

As the requirements of embedded systems are increasing,
we can see more and more complex architectures consisting
of a large number of inter-networked electronic control units
(ECUs). Taking the automotive industry as an example, we
can find up to seventy ECUs in a modern upper-class vehicle.
Each ECU consists of various subcomponents like general and
application-specific processing units, communication networks
and memory architectures. A control unit can be a host for
multiple tasks which brings the challenge of finding a suitable
task schedule. All these degrees of freedom result in a large
design space whereof the system engineer has to choose a
solution which must fulfill all requirements that have been
specified for the system.

Model driven development is one paradigm that supports the
system engineer to handle this task, as it allows to simulate
and to analyze the behavior of a system at an early design
step.

One commonly required task in embedded systems is con-
trolling a physical system. This results in real-time constraints,
which, if violated, can not only have a negative impact on
the control performance but may also let the system fail
completely. In embedded systems it is not uncommon that the
tasks of a controller like gathering sensors values, calculating
the actuating signal and driving the actuator are distributed
on more than one ECU. This is, for example, the case if one
sensor value is needed for more than one technical process.
It follows that it is necessary for the system designer to
choose solutions of the design space by deciding on which
ECU the tasks are mapped and what priority they get on
the communication infrastructure. Figure 1 shows a general
design flow. The system architecture is designed based on
the specification. After then, it is verified regarding different

design goals, and changes to the design are done accordingly
to the results of the verification. These steps are repeated
until the system fulfills its requirements. It is a common way
that different verification aspects are explored independently.
Consider, for example, the control performance verification.
Normally, the controller is verified without any time delays,
but this is necessary since the time delay has a direct impact on
the control performance as we will see in section VI. Therefore
a connection between the control performance and real-time
verification is required.

In this paper we give an approach that enhances the model
driven design of embedded systems to allow the developer
to know in how far a chosen solution in the design space
influences the control performance. Therefore the missing
connections, depicted as the dashed line in the verification
block in figure 1, will be established. To accomplish this, we
present a mapping formalism of the compute and delay blocks
in controller theory to tasks and communication busses used
in real-time analysis. Thereby we show how the commonly
used Matlab/Simulink can be connected to a real-time analysis
which can be used to analyze the real-time behavior of a com-
plex distributed system with up-to-date algorithms. SimEvents
is used to get one model of both, the continuous world of the
control plant and the the discrete event simulation in real-time
systems.

The paper is structured as follows: In the next section, we

Specification

System
Design

Verification

System

Space

Real-Time
Analysis

Control
Perform.

Power ...

Contr.
Tasks

CPUs

Fig. 1. Exemplary design flow

state the problem and discuss related work. In the third section
we show how continuous time-driven and event-driven com-
ponents can be modeled in Matlab/Simulink using SimEvents.
This is followed by the fourth section that describes the real-
time analysis. After then we show how we connect controller
model and real-time analysis. This is followed by an example.

II. PROBLEM FORMULATION AND RELATED WORK

In classical control theory a dynamic system is described
by differential equations. To implement a controller on a
computer system, the controller algorithm is performed pe-
riodically at discrete time steps. Delays in a control loop
have always a destabilizing effect on the system dynamics.
To minimize this effect, systems engineers make a strong
effort in reducing transport lags. Jitterbug, a Matlab toolbox
for real-time control performance analysis [1] simulates the
effects of jitter and delays in a control loop and calculates
the corresponding cost criteria, which gives a mathematical
representation of the control performance.

In many embedded environments, especially in automotive
applications, it is necessary to run different tasks on one
resource and to transmit information over a bus system. This
leads to a delay, caused by the execution times and the
scheduling strategy on the resource. Therefore, the control
engineer needs to know the amount of delay in the control
loop and where it occurs to guarantee a desired control
performance. There are approaches to solve this problem by
simultions. For example, TrueTime [2], which is implemented
as a Matlab/Simulink toolbox, simulates the timely behavior
of real-time kernels, executing controller tasks and network
protocols to study the influence on networked control loops.
In [3] Korte and Slomka present an approach which is based
on examining C code by an external real-time simulator after
it has been created by a Matlab/Simulink code generating
toolbox. As both proposals rely on simulating the real-time be-
havior, they show the typical coverage problem of simulations,
i.e. it cannot be ensured that the worst-case behavior has been
observed during the simulation. However, we need to know
these bounds to get a guaranteed performance for the control
loop. Real-time analysis calculates an upper and a lower bound
for the response time of tasks, the worst-case response time
and the best-case response time. Those values, back-annotated
in the control simulation, can be used to determine an assured
control performance. If the performance is not sufficient,
improvements in the structure of the controller or adjustments
of control parameters can be handled in an early design step.

Aida [4] is a toolset that translates a Simulink model into a
data flow diagram which is then used to do the response-time
analysis. Compared to Aida, our approach describes a direct
formal relation between the controller components and the
task level view which makes the flow diagram representation
obsolete in our case. To integrate both, the continuous-variable
time-driven dynamic system (the plant to be controlled) and
the discrete events (for transport and computation) into one
model, the Aida toolset appends a layer on top of the simula-
tion. This layer manages the execution time delays and triggers

the standard blocks.
In [5], Cassandras and Lafortune describe possible methods

to achieve this in general. Digital controllers having a discrete
state space can be described as a discrete event system.
Systems that combine time-driven with event-driven dynamics
are referred to as hybrid systems. One solution to model hybrid
systems is the Matlab/Simulink toolbox SimEvents.

In [6], Xu and Wang show how SimEvents can be used
for simulating distributed control systems. While they focus
on the influence of different routing algorithms on control
performance, we will use SimEvents to establish the miss-
ing connection between the control simulation and real-time
analysis. The usage of SimEvents for this purpose is presented
in the next chapter.

III. CONTROLLER MODEL

Technical systems, like an embedded controller operating on
discrete time steps are not suitable to be simulated in a con-
tinuous time environment. The usage of triggered subsystems
is one possibility to solve this problem. The main challenge of
modeling control loops is to combine the continuous time base
with the discrete time base. Matlab/Simulink is the common
standard in the industry to model controllers, that applies a
numerical method to solve the set of differential equations
represented by a model. The toolbox SimEvents [7] adds
a library to the Simulink environment, providing blocks for
discrete event simulation. This toolbox is normally used to
simulate the behavior of networks, but, as we will show, it
can also be used to model a discrete distributed embedded
controller.

In SimEvents, entities represent a discrete item that can be
transmitted over a network consisting of queues, servers, gates
and switches. The information which has to be transported is
added to an entity as an attribute of it. For a simple usage and
for a better connection to the real-time analysis, we define our
control loop on basis of graphs. First we define a distributed
embedded controller.

signal processing
(spb)

In1 Out1

IN OUT

sensor
(sb)

xOUT

plant

In1Out1

delay block2
(db2)

IN OUT

delay block1
(db1)

IN OUT

behavior
(bhb)

DinDout

actuator
(ab)

u IN

Fig. 2. Content of control loop

OUT
1

sample_time

0.01

Time Based
Entity Generator

(eg)

t OUT

Set Attribute
(sa)

A1

IN
OUT

Infinite Server
(db)

IN OUT

x
1

Fig. 3. Content of sensor subsystem (sb)

Definition 1. A distributed embedded control system
is a tuple dec := (V,E) consisting of V :=
{sb1, .., sbn, ab1, .., abn, spb1, .., spbn, db1, .., dbn} and a rela-
tion E where E ⊆ V × V .

The element sb is the sensor block with a continuous input
signal and an event stream of entities as output, the actuator
block ab extracts the information from an entity, the signal
processing block delays entities and modifies the information
of the entities’ attributes, delay blocks db specify the time
delay of the messages between the elements in sb, ab and spb.

Figure 2 shows a control loop, composed from the basic
blocks (grey), control algorithms in the logic block and the
plant. Entities are transmitted over signal connections with
a doubled arrowhead. Time-continuous signals are transmitted
over connections with a single arrowhead. In the next step, we
have to define the building blocks of the distributed embedded
controller in more detail.

A. Sensor Block

First we define the sensor block which is the entry point for
the control loop.

Definition 2. A sensor block is a tuple sb := (V,E) consisting
of V := (eg, sa, db) and a relation E where E ⊆ V × V .

Consider figure 3 where an example of a sensor block is
depicted. Basically, the sensor block has the same functionality
as a sample-and-hold circuit.

The main component of the sensor block is the entity
generator eg, which generates an entity on every sample time.

Out1
1

OUT
2

IN
1

Single Server
(db)

IN OUT

Set Attribute
(sa)

A1

IN
OUT

Get Attribute
(ga)

IN
A1

OUT

In1
1

Fig. 4. Content of signal processing subsystem (spb)

u
1

IN
1

Infinite Server
(db)

IN OUT

Get Attribute
(ga)

IN
A1

OUT

Entity Sink
(es)

IN

Fig. 5. Content of actuator subsystem (as)

The signal x, which is a physical value, is put as an attribute
on the entity by the set attribute block sa. To model the delay
of the sensor block, e.g. caused by the time needed to convert
an analog value in a digital value, a delay block db is used.
In SimEvents a server with infinite capacity can be used to
model the conversion time.

B. Actuator Block

The actuator block is the counterpart to the sensor block.
An example for the actuator block is depicted in figure 5.
While the sensor block generates an entity stream and adds
information on it, the actuator block extracts the information
from the entities by the get attribute block ga. Finally, the
entity stream is terminated in an entity sink block es. The
time delay of the actuator is modeled by a delay block db.
Based on this we can define the actuator block as follows:

Definition 3. An actuator block is a tuple ab := (V,E)
consisting of V := (db, ga, es) and a relation E where
E ⊆ V × V .

C. Signal Processing Block

The signal processing block models the computation unit of
the control system. In this basic block, the signal processing
in general, for example, filtering and the control algorithm as
in our example is realized. The basic block consists of a pre-
defined part which models the time delay and an application-
specific block bhb. This behavior block has to be filled by
the system engineer. We define the signal processing block as
follows:

Definition 4. A signal processing block is a two tuple spb :=
(V,E) consisting of V := (ga, db, sa, bhb) and a relation E
where E ⊆ V × V .

In the predefined part, the information is separated from the
entities with the get attribute block ga and forwarded to the
behavior block bhb, represented by a discrete event subsystem
block in SimEvents. While a new actuating signal is computed,
the entity is hold in the delay block db which is a single
server block in SimEvents. The service time of this block
simulates the effect of the delay time of the information flow
in the system and thus can hold only one entity. After the
service time is elapsed, the new attribute is set and the entity
is released by a set attribute block sa. Consider the example
depicted in figure 4.

D. Delay Block

A delay block db is an atomic block and represents the time
delay caused by the system architecture where the controller
is mapped to. In the view of a control engineer, the different
effects on transport component are reduced to a guaranteed
delay interval. Hence, the delay blocks contain only an infinite
server that holds a random number of entities for the service
time, or single server components holding only one entity. For
the mapping to the real-time analysis we define that Vdb :=
{db ∈ Vdec ∪ Vsb ∪ Vab ∪ Vspb|db is a delay block} is the set
of all delay blocks of the control loop.

IV. REAL-TIME ANALYSIS

As discussed in section II we need guaranteed bounds
for the timing behavior of control systems to evaluate the
performance of a control loop. A possibility to solve this is to
use schedulability analysis approaches because these deliver
for each task in a system a guaranteed bound for the best-case
and worst-case response time. Many approaches have been
developed in this domain. The base for the real-time analysis
of distributed system was introduced by Tindell and Clark in
[8]. Since then many improvements have been conducted to
obtain more realistic response times of the tasks. Recently,
Kollmann et al. proposed in [9] a holistic real-time analysis
with an expressive event model. Based on this we will give
here the main ideas of the real-time analysis. We start with
the definition of a real-time task.

Definition 5. A task τ from a task set Γ mapped on a resource
κ is a tuple τ := (c+, c−, ρ, b,Θ+, Θ̇+). Thereby, c+ defines
the worst-case execution time, c− the best-case execution time,
ρ the priority for the scheduling, b the blocking time, Θ+ the
maximum incoming stimulation triggering the task and Θ̇+ the
maximum outgoing stimulation generated by the task.

The worst-case execution time describes the maximum
execution demand of a task’s job for a resource κ. The best-
case execution time is the corresponding counterpart. Due
to space limitation we are not able to consider all possible
schedulers and therefore we consider here only schedulers with
fixed-priorities. Hence, each task must have an unique priority
for the scheduler to determine the execution order of the tasks
τi ∈ Γ mapped on the same resource κ. The blocking time bτ
determines the maximum delay for a task τ produced by tasks
having a lower priority. The incoming stimulation describes
the maximum number of events or jobs for a task τ which
can be demanded in a specific time interval. The outgoing
stimulation describes the maximum number of events which
can be generated by a task τ in a specific time interval.

From this we can define two functions necessary for the
real-time analysis of fixed-priority systems.

Definition 6. The event function η(∆t,Θ+) denotes for an
incoming stimulation Θ+ the maximum number of events
which can occur in an interval ∆t.

The pseudo-inverse function is defined as follows:

Definition 7. The interval function δ(n,Θ+) denotes for an
incoming stimulation Θ+ the minimum interval in which n
events can occur.

A detailed definition of these functions in conjunction with
a concrete event model is given in [9]. From these definitions
we can formulate how the worst-case response time of a task
τ can be determined scheduled non-preemptively by fixed-
priorities.

Lemma 1. The worst-case response time of a task is bounded
by:

r+(τ) = max
k∈[1,...,m]

{r+(k, τ)− δ(k,Θ+
τ)}

m = max
k∈N
{k|δ(k,Θ+

τ) ≤

min{∆t|∆t = bτ +
∑

τi∈Γhp∪τ
η(∆t, τi) · c+τi}}

r+(k, τ) = min{∆t|∆t = bτ + (k − 1) · c+τ
+

∑
τi∈Γhp

η(∆t, τi) · c+τi}+ c+τ

Proof: The proof is given in [10].
The idea of this analysis is the following. The equation

for r+(k, τ) determines for the k − th job the maximum
completion time. The maximum completion time is the interval
from the request of the first event δ(1,Θ+

τ) up to the point in
time where the k − th job has finished its execution. For this
the maximum blocking time of the task bτ and the maximum
execution demands of (k − 1)-jobs of the task (k − 1)c+τ are
added. Then the maximum interference of all higher priority
tasks τi ∈ Γhp are added. This equation can be solved by a
fixed-point iteration starting with the value of bτ + (k− 1)c+τ .
After that, c+τ is added for the execution time of the k − th
job as we assume a non-preemptive system. To compute the
concrete response time of a job the request time must be
subtracted from the completion time r+(k, τ)−δ(k,Θ+

τ). The
maximum over all jobs in [1, . . . ,m] is the worst-case response
time. For a detailed description of the response-time analysis
see [10] and [11]. For the best-case response time r−(τ), c−τ
is always a bound. How the whole analysis for distributed
systems works and how the outgoing stimulations of a task
can be computed is described in [8] and [9], for example. For
the real-time analysis the tasks must be connected. This can
be solved by defining a graph.

Definition 8. A real-time graph is a two tuple rtg := (V,E)
consisting of V := {τ1, . . . , τn} and a relation E where E ⊆
V × V .

V. INTERCONNECTION OF CONTROLLER MODEL AND
REAL-TIME ANALYSIS

From the previous sections we know that the delay of the
controller blocks and the messages between the controller
blocks are modeled by delay blocks. The aim of the real-time
analysis is to determine the best-case and worst-case delay of
these delay blocks. This is equal to the best-case and worst-
case response time of a task in a real-time system. Therefore

Delay
Block 2

II. PROBLEM FORMULATION AND RELATED WORK

In classical control theory a dynamic system is described
by differential equations. To implement a controller on a
computer system, the controller algorithm is performed pe-
riodically at discrete time steps. Delays in a control loop
have always an destabilizing effect on the system dynamics.
To minimize this effect, systems engineers make a strong
effort in reducing transport lags. Jitterbug, a Matlab toolbox
for real-time control performance analysis [1] simulates the
effects of jitter and delays in a control loop and calculates
the corresponding cost criteria, which gives a mathematical
representation of the controller performance.

In many embedded environments, especially in automotive
applications, it is necessary to run different tasks on one
resource and to transmit information over a bus-system. This
leads to a delay, caused by the execution times and the schedul-
ing strategy on the resource. Therefore, the control engineer
needs to know the amount of dead time and where the delay
occurs to guarantee a desired controller performance. There
are approaches to solve this problem in a simulating way.
For example, TrueTime [2], which is implemented as a Mat-
lab/Simulink toolbox, simulates the timely behavior of real-
time kernels, executing control tasks and network protocols to
study the influence on networked control loops. In [3] Korte
and Slomka present an approach which is based on examining
C code by an external real-time simulator after it has been
created by a Matlab/Simulink code generating toolbox. As
both proposals rely on simulating the real-time behavior, they
show the typical coverage problem of simulations, i.e. it cannot
be ensured that the worst-case behavior has been observed
during the simulation. However, we need to know these bounds
to get a guaranteed performance for the control circuit. Real-
time analysis calculates an upper and a lower bound for the
response time of tasks, the worst-case response time and the
best-case response time. Those values, back-annotated in the
controller simulation, can be used to determine an assured
controller performance. If the performance is not sufficient,
improvements in the structure of the controller or adjustments
of control parameters can be handled in an early design step.

Aida [4] is a toolset that translates a Simulink model into a
data flow diagram which is then used to do the response time
analysis. Compared to Aida, our approach describes a direct
formal relation between the controller components and the
task level view which makes the flow diagram representation
obsolete in our case. To integrate both, the continuous-variable
time-driven dynamic system (the plant to be controlled) and
the discrete events (for transport and computation) into one
model, the Aida toolset appends a layer on top of the
simulation. This layer contorols the execution time delays
and triggereing of the standard blocks. In [5], Cassandras
and Lafortune describe possible methods to achieve this in
general. Digital controllers having a discrete state space can
be described as a discrete event system. Systems that combine
time-driven with event-driven dynamics are referred to as
Hybrid Systems. One solution to model hybrid systems is the

Matlab/Simulink toolbox SimEvents.
In [6], Xu and Wang show how SimEvents can be used

for simulating controllers distributed via a computer network.
While they focus on the influence of different routing al-
gorithms on control performance, we will use SimEvents
to establish the missing connection between the controller
simulation and real-time analysis. The usage of SimEvents
for this purpose is presented in the next chapter.

III. CONTROLLER MODEL

Technical systems, like an embedded controller operating on
discrete time steps are not suitable to be simulated in a con-
tinuos time environment. The usage of triggered subsystems
is one possibility to solve this problem. The main challenge
of modeling control loops is to combine the continuous time
base with the discrete time base. Matlab/Simulink is the
common standard in industriy to model controlers, that applies
a numerical method to solve the set of differential equations
represented by a model. The toolbox SimEvents [7] adds
a library to the Simulink environment, providing blocks for
discrete event simulation. This toolbox is normally used to
simulate the behavior of networks, but, as we will show, it
can also be used to model a discrete distributed embedded
controller.

In SimEvents, entities represent a discrete item that can be
transmitted over a network consisting of queues, servers, gates
and switches. The information which has to be transported is
added to an entity as an attribute of it. For a simple usage
and for a better connection to the real-time analysis we define
our control loop on basis of the graphs. First we define a
distributed embedded controller.

Definition 1. A distributed embedded controller
is a tuple dec := (V, E) consisting of V :=
{sb1, .., sbn, ab1, .., abn, spb1, .., spbn, db1, .., dbn} and a
relation E where E ⊆ V × V .

The element sb is the sensor block with a continuous input
signal and an event stream of entities as output, the actuator

signal processing
(spb)

In1 Out1

IN OUT

sensor
(sb)

xOUT

plant

In1Out1

delay block2
(db2)

IN OUT

delay block1
(db1)

IN OUT

behavior
(bhb)

DinDout

actuator
(ab)

u IN

Fig. 2. Content of control loop

II. PROBLEM FORMULATION AND RELATED WORK

In classical control theory a dynamic system is described
by differential equations. To implement a controller on a
computer system, the controller algorithm is performed pe-
riodically at discrete time steps. Delays in a control loop
have always an destabilizing effect on the system dynamics.
To minimize this effect, systems engineers make a strong
effort in reducing transport lags. Jitterbug, a Matlab toolbox
for real-time control performance analysis [1] simulates the
effects of jitter and delays in a control loop and calculates
the corresponding cost criteria, which gives a mathematical
representation of the controller performance.

In many embedded environments, especially in automotive
applications, it is necessary to run different tasks on one
resource and to transmit information over a bus-system. This
leads to a delay, caused by the execution times and the schedul-
ing strategy on the resource. Therefore, the control engineer
needs to know the amount of dead time and where the delay
occurs to guarantee a desired controller performance. There
are approaches to solve this problem in a simulating way.
For example, TrueTime [2], which is implemented as a Mat-
lab/Simulink toolbox, simulates the timely behavior of real-
time kernels, executing control tasks and network protocols to
study the influence on networked control loops. In [3] Korte
and Slomka present an approach which is based on examining
C code by an external real-time simulator after it has been
created by a Matlab/Simulink code generating toolbox. As
both proposals rely on simulating the real-time behavior, they
show the typical coverage problem of simulations, i.e. it cannot
be ensured that the worst-case behavior has been observed
during the simulation. However, we need to know these bounds
to get a guaranteed performance for the control circuit. Real-
time analysis calculates an upper and a lower bound for the
response time of tasks, the worst-case response time and the
best-case response time. Those values, back-annotated in the
controller simulation, can be used to determine an assured
controller performance. If the performance is not sufficient,
improvements in the structure of the controller or adjustments
of control parameters can be handled in an early design step.

Aida [4] is a toolset that translates a Simulink model into a
data flow diagram which is then used to do the response time
analysis. Compared to Aida, our approach describes a direct
formal relation between the controller components and the
task level view which makes the flow diagram representation
obsolete in our case. To integrate both, the continuous-variable
time-driven dynamic system (the plant to be controlled) and
the discrete events (for transport and computation) into one
model, the Aida toolset appends a layer on top of the
simulation. This layer contorols the execution time delays
and triggereing of the standard blocks. In [5], Cassandras
and Lafortune describe possible methods to achieve this in
general. Digital controllers having a discrete state space can
be described as a discrete event system. Systems that combine
time-driven with event-driven dynamics are referred to as
Hybrid Systems. One solution to model hybrid systems is the

Matlab/Simulink toolbox SimEvents.
In [6], Xu and Wang show how SimEvents can be used

for simulating controllers distributed via a computer network.
While they focus on the influence of different routing al-
gorithms on control performance, we will use SimEvents
to establish the missing connection between the controller
simulation and real-time analysis. The usage of SimEvents
for this purpose is presented in the next chapter.

III. CONTROLLER MODEL

Technical systems, like an embedded controller operating on
discrete time steps are not suitable to be simulated in a con-
tinuos time environment. The usage of triggered subsystems
is one possibility to solve this problem. The main challenge
of modeling control loops is to combine the continuous time
base with the discrete time base. Matlab/Simulink is the
common standard in industriy to model controlers, that applies
a numerical method to solve the set of differential equations
represented by a model. The toolbox SimEvents [7] adds
a library to the Simulink environment, providing blocks for
discrete event simulation. This toolbox is normally used to
simulate the behavior of networks, but, as we will show, it
can also be used to model a discrete distributed embedded
controller.

In SimEvents, entities represent a discrete item that can be
transmitted over a network consisting of queues, servers, gates
and switches. The information which has to be transported is
added to an entity as an attribute of it. For a simple usage
and for a better connection to the real-time analysis we define
our control loop on basis of the graphs. First we define a
distributed embedded controller.

Definition 1. A distributed embedded controller
is a tuple dec := (V, E) consisting of V :=
{sb1, .., sbn, ab1, .., abn, spb1, .., spbn, db1, .., dbn} and a
relation E where E ⊆ V × V .

The element sb is the sensor block with a continuous input
signal and an event stream of entities as output, the actuator

signal processing
(spb)

In1 Out1

IN OUT

sensor
(sb)

xOUT

plant

In1Out1

delay block2
(db2)

IN OUT

delay block1
(db1)

IN OUT

behavior
(bhb)

DinDout

actuator
(ab)

u IN

Fig. 2. Content of control loop

OUT
1

sample_time

0.01

Time Based
Entity Generator

(eg)

t OUT

Set Attribute
(sa)

A1

IN
OUT

Infinite Server
(db)

IN OUT

x
1

Fig. 3. Content of sensor subsystem (sb)

block ab extracts the information from an entity, the signal
processing block delays entities and modifies the information
of the entities’ attributes, delay blocks db specify the time
delay of the messages between the elements in sb, ab and spb.

Figure 2 shows a control loop, composed from the basic
blocks (grey), control algorithms in the logic block and the
plant. Entities are transmitted over signal connections with a
doubled arrowhead. Time continuous signals are transmitted
over connections with a single arrowhead. In the next step, we
have to define the building blocks of the distributed embedded
controller in more detail.

A. Sensor Block

First we define the sensor block which is the entry point for
the control loop.

Definition 2. A sensor block is a tuple sb := (V, E) consisting
of V := (eg, sa, db) and a relation E where E ⊆ V × V .

Consider figure 3 where an example of a sensor block is
depicted. Basically, the sensor block has the same functionality
as a sample-and-hold circuit.

The main component of the sensor block is the entity
generator eg, which generates an entity on every sample time.
The signal x, which is a physical value, is put as an attribute
on the entity by the set attribute block sa. To model the delay
of the sensor block, e.g. caused by the time needed to convert
an analog value in a digital value, a delay block db is used.
In SimEvents an server with infinite capacity can be usedto
model the convert time.

Out1
1

OUT
2

IN
1

Single Server
(db)

IN OUT

Set Attribute
(sa)

A1

IN
OUT

Get Attribute
(ga)

IN
A1

OUT

In1
1

Fig. 4. Content of signal processing subsystem (spb)

u
1

IN
1

Infinite Server
(db)

IN OUT

Get Attribute
(ga)

IN
A1

OUT

Entity Sink
(es)

IN

Fig. 5. Content of actuator subsystem (as)

B. Actuator Block

The actuator block is the counterpart to the sensor block.
An example for the actuator block is depicted in figure 5.
While the sensor block generates an entity stream and adds
information on it, the actuator block extracts the information
from the entities by the get attribute block ga. Finally the
entity stream is terminated in an entity sink block es. The
time delay of the actuator is modeled by a delay block db.
Based on this we can define the actuator block as follows.

Definition 3. An actuator block is a tuple ab := (V, E)
consisting of V := (db, ga, es) and a relation E where
E ⊆ V × V .

C. Signal Processing Block

The signal processing block models the behavior of a
processor in the control system. Whenever an entity arrives
at the signal processing block, a signal with the value of the
entity’s attribute is passed to the logic block, which contains
the behavioral description. In this basic block, the signal
processing in general and the control algorithm in the case
of a controller is realized. In the signal processing block the
flow of information is managed, and therefore acts as control
unit for the entities.

Definition 4. A signal processing block is a two tuple spb :=
(V, E) consisting of V := (ga, db, sa, bhb) and a relation E
where E ⊆ V × V .

The information is separated from the entities with the get
attribute block ga and forwarded to a discrete event subsystem
block, where the controller is stored. While a new actuating
signal is computed, the entity is hold in the delay block db
which is a single server block in SimEvents. The service time
of this block simulates the effect of the response time of the
information flow in the system and thus can hold only one
entity. After the service time is elapsed, the new attribute is set
and the entity is released by a set attribute block sa. Consider
the example depicted in figure 4.

D. Delay Block

A delay block is an atomic block and represents the time
delay caused by the system architecture where the controller
is mapped to. In the view of a control engineer, the different
effects on transport component are reduced to a guaranteed
delay interval. Hence, the delay blocks contain only an infinite
server that holds a random number of entities for the service

OUT
1

sample_time

0.01

Time Based
Entity Generator

(eg)

t OUT

Set Attribute
(sa)

A1

IN
OUT

Infinite Server
(db)

IN OUT

x
1

Fig. 3. Content of sensor subsystem (sb)

block ab extracts the information from an entity, the signal
processing block delays entities and modifies the information
of the entities’ attributes, delay blocks db specify the time
delay of the messages between the elements in sb, ab and spb.

Figure 2 shows a control loop, composed from the basic
blocks (grey), control algorithms in the logic block and the
plant. Entities are transmitted over signal connections with a
doubled arrowhead. Time continuous signals are transmitted
over connections with a single arrowhead. In the next step, we
have to define the building blocks of the distributed embedded
controller in more detail.

A. Sensor Block

First we define the sensor block which is the entry point for
the control loop.

Definition 2. A sensor block is a tuple sb := (V, E) consisting
of V := (eg, sa, db) and a relation E where E ⊆ V × V .

Consider figure 3 where an example of a sensor block is
depicted. Basically, the sensor block has the same functionality
as a sample-and-hold circuit.

The main component of the sensor block is the entity
generator eg, which generates an entity on every sample time.
The signal x, which is a physical value, is put as an attribute
on the entity by the set attribute block sa. To model the delay
of the sensor block, e.g. caused by the time needed to convert
an analog value in a digital value, a delay block db is used.
In SimEvents an server with infinite capacity can be usedto
model the convert time.

Out1
1

OUT
2

IN
1

Single Server
(db)

IN OUT

Set Attribute
(sa)

A1

IN
OUT

Get Attribute
(ga)

IN
A1

OUT

In1
1

Fig. 4. Content of signal processing subsystem (spb)

u
1

IN
1

Infinite Server
(db)

IN OUT

Get Attribute
(ga)

IN
A1

OUT

Entity Sink
(es)

IN

Fig. 5. Content of actuator subsystem (as)

B. Actuator Block

The actuator block is the counterpart to the sensor block.
An example for the actuator block is depicted in figure 5.
While the sensor block generates an entity stream and adds
information on it, the actuator block extracts the information
from the entities by the get attribute block ga. Finally the
entity stream is terminated in an entity sink block es. The
time delay of the actuator is modeled by a delay block db.
Based on this we can define the actuator block as follows.

Definition 3. An actuator block is a tuple ab := (V, E)
consisting of V := (db, ga, es) and a relation E where
E ⊆ V × V .

C. Signal Processing Block

The signal processing block models the behavior of a
processor in the control system. Whenever an entity arrives
at the signal processing block, a signal with the value of the
entity’s attribute is passed to the logic block, which contains
the behavioral description. In this basic block, the signal
processing in general and the control algorithm in the case
of a controller is realized. In the signal processing block the
flow of information is managed, and therefore acts as control
unit for the entities.

Definition 4. A signal processing block is a two tuple spb :=
(V, E) consisting of V := (ga, db, sa, bhb) and a relation E
where E ⊆ V × V .

The information is separated from the entities with the get
attribute block ga and forwarded to a discrete event subsystem
block, where the controller is stored. While a new actuating
signal is computed, the entity is hold in the delay block db
which is a single server block in SimEvents. The service time
of this block simulates the effect of the response time of the
information flow in the system and thus can hold only one
entity. After the service time is elapsed, the new attribute is set
and the entity is released by a set attribute block sa. Consider
the example depicted in figure 4.

D. Delay Block

A delay block is an atomic block and represents the time
delay caused by the system architecture where the controller
is mapped to. In the view of a control engineer, the different
effects on transport component are reduced to a guaranteed
delay interval. Hence, the delay blocks contain only an infinite
server that holds a random number of entities for the service

OUT
1

sample_time

0.01

Time Based
Entity Generator

(eg)

t OUT

Set Attribute
(sa)

A1

IN
OUT

Infinite Server
(db)

IN OUT

x
1

Fig. 3. Content of sensor subsystem (sb)

block ab extracts the information from an entity, the signal
processing block delays entities and modifies the information
of the entities’ attributes, delay blocks db specify the time
delay of the messages between the elements in sb, ab and spb.

Figure 2 shows a control loop, composed from the basic
blocks (grey), control algorithms in the logic block and the
plant. Entities are transmitted over signal connections with a
doubled arrowhead. Time continuous signals are transmitted
over connections with a single arrowhead. In the next step, we
have to define the building blocks of the distributed embedded
controller in more detail.

A. Sensor Block

First we define the sensor block which is the entry point for
the control loop.

Definition 2. A sensor block is a tuple sb := (V, E) consisting
of V := (eg, sa, db) and a relation E where E ⊆ V × V .

Consider figure 3 where an example of a sensor block is
depicted. Basically, the sensor block has the same functionality
as a sample-and-hold circuit.

The main component of the sensor block is the entity
generator eg, which generates an entity on every sample time.
The signal x, which is a physical value, is put as an attribute
on the entity by the set attribute block sa. To model the delay
of the sensor block, e.g. caused by the time needed to convert
an analog value in a digital value, a delay block db is used.
In SimEvents an server with infinite capacity can be usedto
model the convert time.

Out1
1

OUT
2

IN
1

Single Server
(db)

IN OUT

Set Attribute
(sa)

A1

IN
OUT

Get Attribute
(ga)

IN
A1

OUT

In1
1

Fig. 4. Content of signal processing subsystem (spb)

u
1

IN
1

Infinite Server
(db)

IN OUT

Get Attribute
(ga)

IN
A1

OUT

Entity Sink
(es)

IN

Fig. 5. Content of actuator subsystem (as)

B. Actuator Block

The actuator block is the counterpart to the sensor block.
An example for the actuator block is depicted in figure 5.
While the sensor block generates an entity stream and adds
information on it, the actuator block extracts the information
from the entities by the get attribute block ga. Finally the
entity stream is terminated in an entity sink block es. The
time delay of the actuator is modeled by a delay block db.
Based on this we can define the actuator block as follows.

Definition 3. An actuator block is a tuple ab := (V, E)
consisting of V := (db, ga, es) and a relation E where
E ⊆ V × V .

C. Signal Processing Block

The signal processing block models the behavior of a
processor in the control system. Whenever an entity arrives
at the signal processing block, a signal with the value of the
entity’s attribute is passed to the logic block, which contains
the behavioral description. In this basic block, the signal
processing in general and the control algorithm in the case
of a controller is realized. In the signal processing block the
flow of information is managed, and therefore acts as control
unit for the entities.

Definition 4. A signal processing block is a two tuple spb :=
(V, E) consisting of V := (ga, db, sa, bhb) and a relation E
where E ⊆ V × V .

The information is separated from the entities with the get
attribute block ga and forwarded to a discrete event subsystem
block, where the controller is stored. While a new actuating
signal is computed, the entity is hold in the delay block db
which is a single server block in SimEvents. The service time
of this block simulates the effect of the response time of the
information flow in the system and thus can hold only one
entity. After the service time is elapsed, the new attribute is set
and the entity is released by a set attribute block sa. Consider
the example depicted in figure 4.

D. Delay Block

A delay block is an atomic block and represents the time
delay caused by the system architecture where the controller
is mapped to. In the view of a control engineer, the different
effects on transport component are reduced to a guaranteed
delay interval. Hence, the delay blocks contain only an infinite
server that holds a random number of entities for the service

Signal
Pro-

cessing
ActuatorSensor Delay

Block 1

Fig. 6. The controller as graph representation for the real-time analysis

the delay block can be mapped to a task in a real-time
system. For this task the best-case and worst-case response
time is determined and therefore the timing of the delay block.
Since both approaches are defined on graphs, we need only a
bijective mapping between the graphs to interconnect the two
approaches. Therefore we define:

Definition 9. Let db ∈ Vdb and τ ∈ Vrtg . Then f : Vdb → Vrtg
is a bijective mapping, so that f(db) returns of real-time task
and f−1(τ) returns the corresponding delay block.

In order to clarify our procedure, the controller loop in
figure 2 is mapped to a real-time graph as depicted in figure 6.
With the methods of the graph theory it is quite easy to connect
the two approaches without any transformation. To the best of
our knowledge this is not considered by previous work.

Via this mapping it is possible to exchange information
between the control model and the real-time analysis. For
example, the initial event streams can be directly derived from
the Simulink model, because SimEvents works also on discrete
events. The worst-case and best-case execution times depend
on the hardware where the tasks are mapped to. To get these
times it is possible to use the code generation of Simulink to
get the source code which must be executed on the hardware.
Via a worst-case execution time analysis as proposed in [12]
it is possible to get bounds for the worst-case and best-case
execution times.

VI. EXAMPLE

As a sample application, the system in figure 2 is regarded.
The motivation is to control a oscillatory plant over the
Controller Area Network (CAN) with an additional load. The
system that needs to be controlled is a PT2 plant with transfer
function

F (s) =
K

T 2
2 s

2 + T1s+ 1
(1)

and parameters T2 = 0.1, T1 = 0.05 and gain K = 10. The
sample rate in the sensor block is chosen to Ts = 0.01s and
the controller algorithm in the logic block is constructed as an
empirical determined discrete PID controller.

Figure 7 shows the hardware architecture. Additional to the
sensor, actuator and the controller, three ECUs are connected
to the CAN bus. For simplicity, the sensor, actuator and
controller tasks have a fixed best-case and worst-case response
time of 50µs. The CAN bus has a speed of 500 kBit/s and
each message has a size of 8 bytes. Sensor and controller

CAN
500 kBit/s

Tx: 3 Tx: 10

Tx: 5

ECU1 ECU2

ECU3

τ1

τ3

τ2

Sensor Controller

Actuator

Fig. 7. Hardware architecture

block transmit one message whereas the number of messages
transmitted by ECU1, ECU2 and ECU3 are described in
figure 7 by Tx. Twenty messages in total are sent over the
bus. All messages from ECU1 to ECU3 are sent strictly
periodically. The smallest period is 20ms and the greatest
100ms.

In this example we consider the performance of the control
loop by shifting the priorities of the sensor message and the
controller message. For this we explore the following cases:
Assume, the CAN bus has twenty unique priorities. The sensor
message starts with the highest priority and in each step the
priority is decreased to the next lower priority up to the second
lowest priority. The controller message has always one priority
lower than the sensor message. The remaining priorities are
distributed to the remaining messages. In each step the best-
and worst-case response times are calculated and the influence
on the control loop performance is computed. Table I gives an
overview of the properties of the CAN messages. The best-
case and worst-case response times for the sensor message and
the controller message are also described.

The knowledge about the worst-case response times feeds
the delay blocks with the corresponding information. Since
not only the bounds, defined by r+(τ) and r−(τ) have a
destabilizing effect on the control performance, a varying
response time between these bounds can lead to at least the
same performance losses. In this example, the jitter is modeled
as an equally distributed service time for the delay blocks.

The step response for a step from zero to one regarding the
command variable at t = 1 s is drawn in figure 8, which shows
the transient response for different delays. The differences
between the step response with best-case response time and
no delay are negligible, whereas in a simulation with worst-
case response time a distinct oscillating behavior is shown.
In the case of a jitter between the best-case and the worst-

CAN priority size r−(τ) r+(τ)
1 8 byte 240µs 480 µs
2 8 byte 240µs 720 µs
...

...
...

...
18 8 byte 240µs 4560 µs
19 8 byte 240µs 4800 µs
20 8 byte 240µs 4800 µs

TABLE I
PROPERTIES OF THE CAN MESSAGES

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time [s]

C
on

tro
l v

ar
ia

bl
e

0 delay
only with best case response time
only with worst case response time
jittered between best case and worst case response time

Fig. 8. Step response of the control loop

case response time, the step response for the system has less
overshoot, but leads to a longer oscillation.

For further analysis, a quadratic cost criteria is defined,
where a high cost results in a poor control performance. A
common cost criteria is the integral of the squared error,
defined as:

J =

∫ ∞
0

x2
d(t) dt (2)

with xd(t) as control difference. Figure 9 plots the defined
cost criteria over CAN priority for the previously described
step response of the controlled system. As depicted in Figure 9,
the curves for the worst-case response time and in the case of
a jitter show a disproportionate rise, whereas the slight curve
at priority 18 is caused by the equivalent transport delay for
priority 19 and 20 (see Table 1). Note that the choice of the
jitter distribution function affects the resulting cost.

0 2 4 6 8 10 12 14 16 18

0.015

0.02

0.025

0.03

0.035

0.04

CAN priority

C
os

t J

0 delay
only with best case response time
only with worst case response time
jittered between best case and worst case response time

Fig. 9. Cost criteria by decreasing CAN priority of the sensor message

At this point, the controller can be redesigned to reach a
better performance for the new knowledge of the delay in the
system. This leads to an iterative process in improving the
overall performance of the system, as described above.

VII. CONCLUSION AND OUTLOOK

In this paper we presented an approach to connect a control
model to real-time analysis by giving a formal mapping
between the model components of a controller and tasks of a
distributed real-time system. This helps the control engineer to
simulate the control performance based on guaranteed timing
bounds that are derived mathematically. In the example we
have shown in how far control performance is dependant on the
system’s real-time behavior. Here, not only the the worst- and
best-case response times are of interest, but also the amount
of jitter of the reponse time.

In this paper we have shown how guaranteed bounds for
the timing behavior can be derived and how these can be
included in the control performance evaluation. Thereby an
open question is how the worst-case performance of the
controller can be constructed by these bounds.

The introduced method gives us the opportunity to con-
sider also recently developed control strategies like the event-
triggered control.

REFERENCES

[1] B. Lincoln and A. Cervin, “Jitterbug: A tool for analysis of real-time
control performance,” in Proceedings of the 41st IEEE Conference on
Decision and Control, Las Vegas, NV, Dec. 2002.

[2] A. Cervin and K.-E. Årzén, “TrueTime: Simulation tool for performance
analysis of real-time embedded systems,” in Model-Based Design for
Embedded Systems, G. Nicolescu and P. J. Mosterman, Eds. CRC
Press, Nov. 2009.

[3] M. Korte and F. Slomka, “C-based system development of asynchronous
distributed systems. proceedings of the forum on design languages,”
in Proceedings of the Forum on Design Languages, ECSI, Barcelona,
Spain, Sep. 2007.

[4] O. Redell, J. El-khoury, and M. Törngren, “The aida tool-set for design
and implementation analysis of distributed real-time control systems,”
in J. of Microprocessors and Microsystems. Elsevier, 2004, vol. Vol
28/4 pp 163-182.

[5] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event
Systems Second Edition. Springer, 2008.

[6] X. Xu and Z. Wang, “Networked modeling and simulation based on
simevents,” in Asia Simulation Conference - 7th International Confer-
ence on System Simulation and Scientific Computing, ICSC, Beijing,
China, Oct. 2008.

[7] Mathworks. (2010, Aug.) Simevents 3.1. [Online]. Available:
http://www.mathworks.com/products/simevents/

[8] K. Tindell and J. Clark, “Holistic schedulability analysis for dis-
tributed hard real-time systems,” Microprocessing and Microprogram-
ming, vol. 40, pp. 117–134, 1994.

[9] S. Kollmann, V. Pollex, and F. Slomka, “Holisitc real-time analysis with
an expressive event model,” in proceedings of the 13th Workshop of
Methoden und Beschreibungssprachen zur Modellierung und Verifikation
von Schaltungen und Systemen, 2010.

[10] L. George, N. Rivierre, and M. Spuri, “Preemptive and non-preemptive
real-time uniprocessor scheduling,” INRIA, Tech. Rep., 1996.

[11] J. P. Lehoczky, “Fixed priority scheduling of periodic task sets with
arbitrary deadlines,” in Proceedings of the 11th IEEE Real-Time Systems
Symposium, December 1990, pp. 201–209.

[12] C. Ferdinand, “Worst case execution time prediction by static program
analysis,” in 18th International Parallel and Distributed Processing
Symposium, IPDPS, Santa Fe, New Mexico, Apr. 2004.

