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Abstract— Controller Area Network (CAN) is widely used in 
automotive applications. Existing schedulability analysis for 
CAN is based on the assumption that the highest priority 
message ready for transmission at each node on the network will 
be entered into arbitration on the bus. However, in practice, some 
CAN device drivers implement FIFO rather than priority-based 
queues invalidating this assumption. In this paper, we introduce 
response time analysis and optimal priority assignment policies 
for CAN messages in networks where some nodes use FIFO 
queues while other nodes use priority queues. We show, via a 
case study and experimental evaluation, the detrimental impact 
that FIFO queues have on the real-time performance of CAN. 

Keywords-Controller Area Network (CAN); real-time scheduling; 
FIFO; fixed priority; priority assignment; priority order. 

I. INTRODUCTION 
Controller Area Network (CAN) [3], [22] was designed 

as a simple, efficient, and robust, broadcast communications 
bus for in-vehicle networks. Today, typical mainstream 
family cars contain 25-35 Electronic Control Units (ECUs), 
many of which communicate using CAN. As a result of this 
wholesale adoption of CAN by the automotive industry, 
annual sales of CAN nodes (8, 16 and 32-bit micro-
controllers with on-chip CAN controllers) have grown from 
under 50 million in 1999 to around 750 million in 20101 

CAN is an asynchronous multi-master serial data bus that 
uses Carrier Sense Multiple Access / Collision Resolution 
(CSMA/CR) to determine access to the bus. The CAN 
protocol requires that nodes wait for a bus idle period before 
attempting to transmit. If two or more nodes attempt to 
transmit messages at the same time, then the node with the 
message with the lowest numeric CAN Identifier will win 
arbitration and continue to send its message. The other nodes 
will cease transmitting and must wait until the bus becomes 
idle again before attempting to re-transmit their messages. 
(Full details of the CAN physical layer protocol are given in 
[3], with a summary in [11]). In effect CAN messages are 
sent according to fixed priority non-pre-emptive scheduling, 
with the identifier (ID) of each message acting as its priority. 

A. Related work 
In 1994, Tindell et al. [31], [32], [33] showed how 

research into fixed priority scheduling for single processor 
systems could be adapted and applied to the scheduling of 
messages on CAN. The analysis of Tindell et al. provided a 
method of calculating the maximum queuing delay and 
hence the worst-case response time of each message on the 

                                                           
1 Figures from the CAN in Automation (CiA) website www.can-cia.org 

network. Tindell et al. also recognised that with fixed 
priority scheduling, an appropriate priority assignment policy 
is key to obtaining effective real-time performance. Tindell 
et al. suggested that messages should be assigned priorities in 
‘Deadline minus Jitter’ monotonic priority order [34]. 

The seminal work of Tindell et al. lead to a large body of 
research into scheduling theory for CAN [5], [6], [7], [8], 
[18], [19], [26], [27], [28], [29], and was used as the basis for 
commercial CAN schedulability analysis tools [9]. 

In 2007, Davis et al. [11] found and corrected significant 
flaws in the schedulability analysis given by Tindell et al. 
[31], [32], [33]. These flaws could potentially result in the 
original analysis providing guarantees for messages that 
could in fact miss their deadlines during network operation. 
Further, Davis et al. [11] showed that the ‘Deadline minus 
Jitter’ monotonic priority ordering, claimed by Tindell et al. 
to be optimal for CAN, is not in fact optimal; and that 
Audsley’s Optimal Priority Assignment (OPA) algorithm 
[1], [2] is required in this case.  

Prior to the advent of schedulability analysis and 
appropriate priority assignment policies for CAN, message 
IDs were typically assigned simply as a way of identifying 
the data and the sending node. This meant that only low 
levels of bus utilisation, typically around 30%, could be 
obtained before deadlines were missed. Further, the only 
means of obtaining confidence that message deadlines would 
not be missed was via extensive testing. Using the systematic 
approach of schedulability analysis, combined with a suitable 
priority assignment policy, it became possible to engineer 
CAN based systems for timing correctness, providing 
guarantees that all messages would meet their deadlines, 
with bus utilisations of up to about 80% [13], [9]. 

B. Motivation 
Engineers using schedulability analysis to analyse 

network / message configurations must ensure that all of the 
assumptions of the specified scheduling model hold for their 
particular system. Specifically, when using the analysis 
given by Davis et al. in [11], it is important that each CAN 
controller and device driver is capable of ensuring that 
whenever message arbitration starts on the bus, the highest 
priority message queued at that node is entered into 
arbitration. This behaviour is essential if message 
transmission is to take place as if there were a single global 
priority queue and for the analysis to be correct. 

As noted by Di Natale [16], there are a number of 
potential issues that can lead to behaviour that does not 
match that required by the scheduling model given in [11]. 
For example, if a CAN node has fewer transmit message 



buffers than the number of messages that it transmits, then 
the following properties of the CAN controller hardware can 
prove problematic: (i) internal message arbitration based on 
transmit buffer number rather than message ID (Fujitsu 
MB90385/90387, Fujitsu 90390, Intel 87C196 (82527), 
Infineon XC161CJ/167 (82C900)); (ii) non-abortable 
message transmission (Philips 82C200) [17]; (iii) less than 3 
transmit buffers [25] (Philips 8xC592 (SJA1000), Philips 
82C200).  

The CAN device driver / software protocol layer 
implementation also has the potential to result in behaviour 
which does not match that required by the standard 
scheduling model [11]. Issues include, delays in refilling a 
transmit buffer [21], and FIFO queuing of messages in the 
device driver or CAN controller (The BXCAN and BECAN 
for the ST7 and ST9 Microcontrollers from 
STMicroelectronics include hardware support for both 
priority-queued and FIFO-queued message transmission 
[30]). 

Di Natale [16] notes that using FIFO queues in CAN 
device drivers / software protocol layers can seem an 
attractive solution “because of its simplicity and the illusion 
that faster queue management improves the performance of 
the system”. This is unfortunate, because FIFO message 
queues undermine the priority-based bus arbitration used by 
CAN. They can introduce significant priority inversion and 
result in degraded real-time performance. Nevertheless, 
FIFO queues are a reality in some commercial CAN device 
drivers / software protocol layers. 

As far as we are aware, there is no published research2 
integrating FIFO queues into response time analysis for 
CAN. This paper focuses on the issue of FIFO queues. We 
provide response time analysis and appropriate priority 
assignment policies for Controller Area Networks 
comprising some nodes that use FIFO queues and other 
nodes that use priority queues. 

C. Organisation 
The remainder of this paper is organised as follows: In 

section II, we introduce the scheduling model, notation, and 
terminology used in the rest of the paper. In section III we 
recap on the sufficient schedulability analysis for CAN given 
in [11]. Section IV then extends this analysis to networks 
where some nodes implement priority-based queues while 
others implement FIFO queues. Section V discusses priority 
assignment for mixed sets of FIFO-queued and priority-
queued messages. Section VI presents the results of a case 
study exploring the impact of FIFO queues on message 
response times and network schedulability. Section VII 
further evaluates the effect of priority assignment and FIFO 
queues on the maximum achievable network utilisation. 
Finally, section VII concludes with a summary and 
recommendations. 

                                                           
2 The commercial tool NETCAR-Analyzer (www.realtimeatwork.com) 
claims to address the case of FIFO queues. 

II. SYSTEM MODEL, NOTATION AND TERMINOLOGY 
In this section we describe a system model and notation 

that can be used to analyse the worst-case response times of 
messages on CAN. This model is based on that used in [11] 
with extensions to describe FIFO queues. 

The system is assumed to comprise a number of nodes 
(microprocessors) connected to a single CAN bus. Nodes are 
classified according to the type of message queue used in 
their device driver. Thus FQ-nodes implement a FIFO 
message queue, whereas PQ-nodes implement a priority 
queue. PQ-nodes are assumed to be capable of ensuring that, 
at any given time when bus arbitration starts, the highest 
priority message queued at the node is entered into 
arbitration. FQ-nodes are assumed to be capable of ensuring 
that, at any given time when bus arbitration starts, the oldest 
message in the FIFO queue is entered into arbitration. 

The system is assumed to contain a static set of hard real-
time messages, each statically assigned to a single node on 
the network. Each message m has a fixed Identifier (ID) and 
hence a unique priority. As priority uniquely identifies each 
message, in the remainder of the paper we will overload m to 
mean either message m or priority m as appropriate. We use 

)(mhp  to denote the set of messages with priorities higher 
than m, and similarly, )(mlp  to denote the set of messages 
with priorities lower than m. 

Each message m has a maximum transmission time of 
mC  (see [11] for details of how to compute the maximum 

transmission time of messages on CAN, taking into account 
the number of data bytes and bit-stuffing). 

The event that triggers queuing of message m is assumed 
to occur with a minimum inter-arrival time of mT , referred 
to as the message period. Each message m has a hard 
deadline mD , corresponding to the maximum permitted 
time from occurrence of the initiating event to the end of 
successful transmission of the message, at which time the 
message data is assumed to be available on the receiving 
nodes that require it. Tasks on the receiving nodes may place 
different timing requirements on the data, however in such 
cases we assume that mD  is the shortest such time 
constraint. We assume that the deadline of each message is 
less than or equal to its period ( mm TD ≤ ). Each message m is 
assumed to be queued by a software task, process or interrupt 
handler executing on the sending node. This task is either 
invoked by, or polls for, the event that initiates the message, 
and takes a bounded amount of time, between 0 and mJ , 
before the message is in the device driver queue available for 
transmission. mJ  is referred to as the queuing jitter of the 
message and is inherited from the overall response time of 
the task, including any polling delay 3 . The transmission 
deadline mE  of message m is given by mmm JDE −= , and 
represents the maximum permitted time from the message 
being queued at the sending node to it being received at other 
nodes on the bus. 

                                                           
3 In the best case, the task could arrive the instant the event occurs and 
queue the message immediately, whereas in the worst-case, there could be 
a delay of up to the task’s period before it arrives and then a further delay 
of up to the task’s worst-case response time before it queues the message. 



The maximum queuing delay mw , corresponds to the 
longest time that message m can remain in the device driver 
queue or CAN controller transmit buffers, before 
commencing successful transmission on the bus. 

In this paper4, we define the worst-case response time 
mR  of a message m as the maximum possible transmission 

delay from the message being queued until it is received at 
the receiving nodes. Hence: 
 mmm CwR +=  (1) 

A message is said to be schedulable if its worst-case 
response time is less than or equal to its transmission 
deadline )( mm ER ≤ . A system is said to be schedulable if all 
of the messages in the system are schedulable. 

The following additional notation is used to describe the 
properties of a set of messages that are transmitted by the 
same FQ-node and so share a FIFO queue. The FIFO group 

)(mM  is the set of messages that are transmitted by the FQ-
node that transmits message m. The lowest priority of any 
message in the FIFO group )(mM  is denoted by mL . MAX

mC  
and MIN

mC  are the transmission times of the longest and 
shortest messages in the FIFO group, while SUM

mC  is the 
sum of the transmission times of all of the messages in the 
group. MIN

mE  is the shortest transmission deadline of any 
message in the group. 

We use mf  to denote the maximum buffering time from 
message m being queued until it is able to take part in 
priority-based arbitration. For a FIFO-queued message mf  
equates to the time from the message being entered into the 
FIFO queue to it becoming the oldest message in that queue. 
For a priority-queued message 0=mf . 

As well as determining message schedulability given a 
particular priority ordering, we are also interested in 
effective priority assignment policies.  
Definition 1: Optimal priority assignment policy: A priority 
assignment policy P is referred to as optimal with respect to 
a schedulability test S and a given network model, if and 
only if there is no set of messages that are compliant with the 
model that are deemed schedulable by test S using another 
priority assignment policy, that are not also deemed 
schedulable according to test S using policy P. 

We note that the above definition is applicable to both 
sufficient schedulability tests such as those given in sections 
III and IV, as well as exact schedulability tests. 

III. SCHEDULABILITY ANALYSIS WITH PRIORITY QUEUES 
In this section, we recapitulate the simple sufficient 

schedulability analysis given in [11]. For networks of PQ-
nodes, complying with the scheduling model given in  
section II, CAN effectively implements fixed priority non-
pre-emptive scheduling. In this case, Davis et al. [11] 
showed that an upper bound on the response time mR  of 
each message m can be found by computing the maximum 
queuing delay mw  using the following fixed point iteration: 

                                                           
4 Note this is a different way of defining response time to that used in [11] 
which includes queuing jitter. To compensate for not including queuing 
jitter in the response time, in this paper we compare response times with 
transmission deadlines to determine schedulability. 
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where bitτ is the transmission time for a single bit, and 
mB  is the blocking factor described below. Iteration starts 

with a suitable initial value such as mm Cw =0 , and continues 
until either mm

n
m ECw >++1  in which case the message is 

not schedulable, or n
m

n
m ww =+1  in which case the message is 

schedulable and its worst-case response time is given by: 
 m

n
mm CwR += +1   (3) 

As CAN message transmission is non-pre-emptable, the 
transmission of a single lower priority message can cause a 
delay of up to mB  (referred to as direct blocking) between 
message m being queued and the first time that message m 
could be entered into arbitration on the bus. mB  represents 
the maximum blocking time due to lower priority messages: 
 )(max

)(
k

mlpk
m CB

∈∀
=  (4) 

Alternatively, in some cases, the transmission of the 
previous instance of message m could delay transmission of 
a higher priority message causing a similar delay (referred to 
as push-through blocking5) of up to mC . Both direct and 
push-through blocking are accounted for by the 1st term on 
the RHS of (2). The 2nd term represents interference from 
higher priority messages that can win arbitration over 
message m and so delay its transmission. Note that once 
message m starts successful transmission it cannot be pre-
empted, so the message’s overall response time is simply the 
queuing delay plus its transmission time (given by (3)).  

Using (2) and (3), engineers can determine upper bounds6 
on worst-case response times and hence the schedulability of 
all messages on a network comprising solely PQ-nodes. 
Although the analysis embodied in (2) and (3) is pseudo-
polynomial in complexity in practice it is tractable on a 
desktop PC for complex systems with hundreds of messages. 
(A number of techniques are also available for increasing the 
efficiency of such fixed point iterations [12]). 

IV. SCHEDULABILITY ANALYSIS WITH FIFO QUEUES 
In this section, we derive sufficient schedulability 

analysis for messages on networks with both PQ-nodes and 
FQ-nodes. The analysis we introduce is FIFO-symmetric, by 
this we mean that the same worst-case response time is 
attributed to all of the messages in a FIFO group. We note 
that FIFO-symmetric analysis incurs some pessimism in 
terms of the worst-case response time attributed to the higher 
priority messages in a FIFO group; however, in practice this 
pessimism is likely to be small. This is because the order in 
which messages are placed in a FIFO queue is undefined, 
and so in the worst case, the highest priority message in a 
FIFO group has to wait for an instance of each lower priority 
message in the group to be transmitted. 

                                                           
5 See [11] for an explanation of why push-through blocking is important.  
6 Equation (2) is sufficient rather than exact due to the fact that push 
through blocking may not necessarily be possible. 



A. Priority-queued messages 
We now derive an upper bound on the worst-case 

queuing delay for a priority-queued message m, in a system 
with both PQ-nodes and FQ-nodes. 

In the case of systems with only PQ-nodes, Davis et al. 
[11] showed that the worst-case queuing delay for a priority-
queued message m occurs for an instance of that message 
queued at the beginning of a priority level-m busy period7 
that starts immediately after the longest lower priority 
message begins transmission. Further, this maximal busy 
period begins with a so-called critical instant where message 
m is queued simultaneously with all higher priority messages 
and then each of these higher priority messages is 
subsequently queued again after the shortest possible time 
interval. Equation (2) provides a sufficient upper bound on 
this worst-case queuing delay.  

The analysis embodied in (2) assumes that higher priority 
messages are able to compete for access to the bus (i.e. enter 
bus arbitration) as soon as they are queued; however, this 
assumption does not hold for FIFO-queued messages. 
Instead a FIFO-queued message k may have to wait for up to 
a maximum time kf  before it becomes the oldest message in 
its FIFO queue, and can enter priority-based arbitration. A 
FIFO-queued message k can therefore be thought of as 
becoming priority queued after an additional delay of kf . 
Stated otherwise, in terms of its interference on lower 
priority messages, a FIFO-queued message k can be viewed 
as if it were a priority-queued message with its jitter 
increased by kf . (Note, we will return to how kf  is 
calculated for FIFO-queued messages later). An upper bound 
on the queuing delay for a priority-queued message m can 
therefore be calculated via the fixed-point iteration given by 
(5). 
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As with (3), iteration starts with a suitable initial value 
such as mm Cw =0 , and continues until mm

n
m ECw >++1  in 

which case the message is not schedulable, or n
m

n
m ww =+1  in 

which case its response time is given by: 
 m

n
mm CwR += +1  (6) 

Note that the queuing delay and response time are only 
valid with respect to the values of kf  used. We return to this 
point later. 

B. FIFO-queued messages 
We now derive an upper bound on the worst-case 

queuing delay for a FIFO-queued message m, in a system 
with both PQ-nodes and FQ-nodes. 

As our analysis is FIFO-symmetric, we will attribute the 
same upper bound response time to all of the messages sent 
by the same FQ-node. Our analysis derives this sufficient 
response time by considering an arbitrary message from the 
FIFO group )(mM . For the sake of simplicity, we will still 

                                                           
7 A priority level-m busy period is a contiguous interval of time during 
which there is always at least one message of priority m that has not yet 
completed transmission. 

refer to this message as message m; however our analysis 
will be independent of the exact choice of message from the 
FIFO group. At each stage in our analysis we will make 
worst-case assumptions, ensuring that the derived response 
time is a correct upper bound. For example, we will frame 
our calculation of the queuing delay mw  by assuming the 
lowest priority mL  of any message in the FIFO group. 

 As every message j in )(mM  has jj TD ≤  then in a 
schedulable system, when any arbitrary message from 

)(mM  is queued, there can be at most one instance of each 
of the other messages in )(mM  ahead of it in the FIFO 
queue. The maximum transmission time of these messages, 
and hence the maximum interference on an arbitrary 
message m, due to messages sent by the same FQ-node, is 
therefore upper bounded by: 
 MIN

m
SUM
m CC −  (7) 

Indirect blocking could also occur due to the non-pre-
emptive transmission of a previous instance of any one of the 
messages in )(mM . This indirect blocking is upper bounded 
by MAX

mC . As an alternative, direct blocking could occur due 
to transmission of any of the messages of lower priority than 

mL  sent by other nodes. Finally, in terms of interference 
from higher priority messages sent by other FQ-nodes and 
PQ-nodes, the argument about increased jitter made in the 
previous section applies, and so the interference term from 
(5) can again be used. Considering all of the above, an upper 
bound on the queuing delay for an arbitrary message m 
belonging to the FIFO group )(mM  is given by the solution 
to the following fixed point iteration: 

+−+=+ )(),max(1 MIN
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Iteration starts with a value of ),max(0 MAX
mLm CBw

m
=  

)( MIN
m

SUM
m CC −+  and continues until either 

MIN
m

MIN
m

n
m ECw >++1  in which case the set of messages 

)(mM  is declared unschedulable, or n
m

n
m ww =+1  in which 

case all of the messages in )(mM  are deemed to have a 
response time of: 
 MIN

m
n
mm CwR += +1   (9) 

Equations (8) and (9) make the worst-case assumption 
that interference from higher priority messages can occur up 
to a time MIN

mC  before transmission of message m 
completes. We note that this is a pessimistic assumption with 
respect to those messages belonging to the FIFO group that 
have transmission times8 longer than MIN

mC . 

C. Schedulability test with arbitrary priorities  
We now derive a schedulability test from (5) & (6) and 

(8) & (9). The basic idea is to avoid having to consider the 
potentially complex interactions between the FIFO queues of 
different nodes. This is achieved by abstracting the FIFO 

                                                           
8 In practice all messages sent on CAN often have the maximum length (8 
data bytes) so as to minimise the relative overheads of the other fields in 
the message (ID, CRC etc). In this case, no additional pessimism is 
introduced by this assumption. 



behaviour of messages sent by other nodes as simply 
additional jitter kf  before each message k can enter priority 
based arbitration on the bus. When calculating the response 
time of a given message, we therefore need only consider the 
behaviour of the node that sends that message (PQ-node or 
FQ-node) and the buffering delays of messages sent by other 
nodes9.  

1 repeat = true 
2 initialise all kf  = 0 
3 while(repeat){ 
4 repeat = false 
5 for each priority m, highest first{ 
6  if (m is FIFO-queued){ 
7   calc mR  according to Eqs (8) & (9) 
8   if( mR > MIN

mE ) { 
9    return unschedulable 
10   } 
11   if( mf  mw=! ){ 
12    mm wf =  
13    repeat = true; 
14   } 
15  } 
16  else { 
17   calc mR  according to Eqs (5) & (6)  
18   if( mR > MIN

mE ) { 
19    return unschedulable 
20   } 
21  } 
22 } 
23 } 
24 return schedulable 

Algorithm 1: FIFO Symmetric Schedulability Test 

An upper bound on the buffering time mf  of a FIFO-
queued message m is: 
 MIN

mmm CRf −=   (10) 
When the priorities of messages in different FIFO groups 

are interleaved, this leads to an apparently circular 
dependency in the response time calculations. For example, 
let m and k be the priorities of messages in two different 
FIFO groups with interleaved priorities (i.e. )( mLhpk ∈  and 

)( kLhpm ∈ ). The response time kR  of message k, and 
hence its buffering time kf , depend on the buffering time 

mf  of message m as )( kLhpm ∈ ; however, the buffering 
time mf  of message m depends on its response time mR  
which in turn depends on kf  as )( mLhpk ∈ . This apparent 
problem can be solved by noting that the response times 
calculated via (5) & (6) and (8) & (9) are monotonically non-
decreasing with respect to the buffering times, and that the 
buffering times given by (10) are monotonically non-
decreasing with respect to the response times calculated via 
(8) & (9). Hence by using an outer loop iteration, and 
repeating response time calculations until the buffering times 

                                                           
9 If the message belongs to a PQ-node, then the other messages sent by the 
same node have buffering delays of zero, if it belongs to an FQ-node, then 
the buffering delays for other messages sent by the same node are not 
needed in the calculations (8) &(9). 

no longer change, we can compute correct upper bound 
response times and hence schedulability for all messages, as 
shown in Algorithm 1. (Note, to speed up the schedulability 
test, for each message m, the value of mw  computed on one 
iteration of the while loop (lines 3 to 23) can be used as an 
initial value on the next iteration). 

Algorithm 1 provides a sufficient schedulability test for 
FIFO-queued and priority-queued messages in any arbitrary 
priority ordering. 

D. Partial priority ordering within a FIFO group 
In this section, we consider an appropriate priority 

ordering for messages within a FIFO group. 
Definition 2: A FIFO-adjacent priority ordering is any 
priority ordering whereby all of the messages sharing a FIFO 
queue are assigned adjacent priorities. 

Theorem 1: If a priority ordering Q exists that is schedulable 
according to the FIFO-symmetric schedulability analysis of 
Algorithm 1 then a schedulable FIFO-adjacent priority 
ordering P also exists. 
Proof: Let m be a FIFO-queued message that is not the 
lowest priority message in its FIFO group. Now consider a 
priority transformation whereby message m is shifted down 
in priority so that it is at a priority level immediately above 
that of the lowest priority message in its FIFO group. We 
will refer to the old priority ordering as Q and the new 
priority ordering as Q’. 

We observe from (5) and (8), that given the same fixed 
set of buffering times kf , then (i) the response time 
computed for message m is the same for both priority 
orderings, and (ii) the response times computed for all other 
messages are no larger in priority ordering Q’ than they are 
in priority ordering Q. Due to the mutual monotonically non-
decreasing relationship between message buffering times and 
response times, and the fact that Algorithm 1 starts with all 
the buffering times set to zero, this means that on every 
iteration of Algorithm 1, the response times and buffering 
times computed for each message under priority ordering Q’ 
are no larger than those computed on the same iteration for 
priority ordering Q. Hence if priority ordering Q is 
schedulable, then so is priority ordering Q’. 

Applying the priority transformation described above to 
every FIFO-queued message that is not the lowest priority 
message in its FIFO group transforms any schedulable 
priority ordering Q into a FIFO-adjacent priority ordering P, 
without any loss of schedulability □ 

Theorem 1 tells us that regardless of the priority 
assignment applied to priority-queued messages, we should 
ensure that all of the messages that share a single FIFO 
queue have adjacent priorities. In terms of CAN message IDs 
we note that this does not require that consecutive values are 
used for the IDs, only that there is no interleaving with 
respect to the priorities of other messages. In practice 
message IDs can be chosen to meet these requirements, 
while also providing appropriate bit patterns for message 
filtering. 



E. Schedulability test for FIFO-adjacent priorities 
In this section, we derive an improved schedulability test 

that is only valid for FIFO-adjacent priority orderings.  
Recall that Davis et al. [11] showed that the worst-case 

queuing delay for a priority-queued message m occurs within 
the priority level-m busy period that starts with a critical 
instant. Provided that a FIFO-adjacent priority ordering is 
used, then the same situation also represents the worst-case 
scenario when higher priority messages are sent by either 
PQ-nodes or FQ-nodes. This can be seen by considering the 
interference on a priority-queued message m from a higher 
priority FIFO-queued message k. As message k is of higher 
priority than message m, then so are all of the other messages 
in the same FIFO group (i.e. )(kM ). Thus any message in 

)(kM  that is queued prior to the start of transmission of 
message m will be sent on the bus before message m, 
irrespective of the order in which the messages in )(kM  are 
placed in the FIFO queue. In effect all of the additional jitter 
on message k is already accounted for by interference on 
message m from other messages in the same FIFO group 
( )(kM ). In this case, there is no additional jitter on message 
k caused by messages of lower priority than m. Hence for 
each FIFO message k, we can set kf  = 0, and use (5) & (6) 
to calculate the queuing delay and worst-case response time 
of each message m. The same argument applies when we 
consider the schedulability of a FIFO-queued message m. In 
this case we can use (8) & (9) to calculate the queuing delay 
and worst-case response time, with all buffering times kf  = 
0. Further, as the buffering times are all fixed at zero, a 
single pass over the priority levels is all that is needed to 
determine schedulability. In other words, lines 11-14 of 
Algorithm 1 can be omitted when considering FIFO-adjacent 
priority orderings. This revised schedulability test therefore 
dominates the test given in Section IV.C (i.e. Algorithm 1 
with lines 11-14 present). 

The simplified analysis given in this section is similar to 
that provided for FP/FIFO scheduling of flows in [24] and 
for OSEK/VDX tasks in [4], [20]. 

V. PRIORITY ASSIGNMENT POLICIES 
The schedulability test presented in section IV.E is 

applicable irrespective of the overall priority ordering, 
provided that messages sharing the same FIFO queue are 
assigned adjacent priorities. Choosing an appropriate priority 
ordering among the priority-queued messages and the FIFO 
groups is however an important aspect of achieving overall 
schedulability and hence effective real-time performance. 

In this section, we consider the assignment of messages 
to priority bands, where a priority band comprises either a 
single priority level containing one priority-queued message, 
or a number of adjacent priority levels containing a FIFO 
group of messages. We derive priority assignment policies 
that are optimal with respect to the schedulability analysis 
given in Section IV.E. 

A. Optimal priority assignment 
Davis et al. [11], showed that, assuming solely priority 

queuing, Audsley’s Optimal Priority Assignment (OPA) 

algorithm [1], [2] provides the optimal priority assignment 
for CAN messages. We now show that with an appropriate 
modification to handle FIFO groups, Audsley’s algorithm is 
also optimal with respect to the schedulability test given in 
section IV.E. The pseudo code for this OPA-FP/FIFO 
algorithm is given in Algorithm 2. Note that only one 
message from each FIFO group is considered in the initial 
list, as once this message is assigned to a priority band, then 
so are the other messages in the same FIFO group. 

for each priority band k, lowest first 
{ 

for each message msg in the initial list { 
  if msg is schedulable in priority band k according to 

  schedulability test S with all unassigned priority- 
  queued messages / other FIFO groups assumed to be 
  in higher priority bands { 

   assign msg to priority band k 
   if msg is part of a FIFO group { 
    assign all other messages in the FIFO group 

    to adjacent priorities within priority band k 
   }  
   break (continue outer loop) 
  } 
} 
 return unschedulable 

} 
return schedulable 

Algorithm 2: Optimal Priority Assignment (OPA-FP/FIFO) 

In [14] Davis and Burns showed that Audsley’s OPA 
algorithm is optimal with respect to any schedulability test 
that meets three specific Conditions. According to  
Theorem 1, we need only consider the priority bands 
assigned to each priority-queued message, and each FIFO 
group (as all messages in a FIFO group have adjacent 
priorities in an optimal priority ordering). We therefore re-
state these three conditions in the context of priority-queued 
messages and FIFO groups. 

The three conditions refer to properties or attributes of 
the messages. Message properties are referred to as 
independent if they have no dependency on the priority 
assigned to the message. For example the longest 
transmission time, deadline, and minimum inter-arrival time 
of a message are all independent properties, while the worst-
case response time typically depends on the message’s 
priority and so is a dependent property. 

Condition 1: The schedulability of a message / FIFO group 
identified by m, may, according to test S, depend on any 
independent properties of other messages / FIFO groups in 
higher priority bands than m, but not on any properties of 
those messages / FIFO groups that depend on their relative 
priority ordering. 
Condition 2: The schedulability of a message / FIFO group 
identified by m may, according to test S, depend on any 
independent properties of the messages / FIFO groups in 
lower priority bands than m, but not on any properties of 
those messages / FIFO groups that depend on their relative 
priority ordering. 



Condition 3: When the priorities of any two adjacent priority 
bands are swapped, then the message / FIFO group being 
assigned the higher priority band cannot become 
unschedulable according to test S, if it was previously 
schedulable in the lower priority band. (As a corollary, the 
message / FIFO group being assigned the lower priority band 
cannot become schedulable according to test S, if it was 
previously unschedulable in the higher priority band). 
Theorem 2: The OPA-FP/FIFO algorithm is an optimal 
priority assignment algorithm with respect to the FIFO-
symmetric schedulability test of section IV.E (Algorithm 1 
with lines 11-14 omitted). 
Proof: It suffices to show that Conditions 1-3 hold with 
respect to the schedulability test given by Algorithm 1 with 
lines 11-14 omitted. 

Condition 1: Inspection of (5) & (6) and (8) & (9), 
assuming all kf  are fixed at zero, shows that the response 
time of each message m is dependent on the set of messages 
in higher priority bands, but not on their relative priority 
ordering. 

Condition 2: Inspection of (5) & (6) and (8) & (9), shows 
that the response time of each message m is dependent on the 
set of messages in lower priority bands via the direct 
blocking term, but not on their relative priority ordering. 

Condition 3: Inspection of (5) & (6) and (8) & (9), 
assuming all kf  are fixed at zero, shows that increasing the 
priority band of message m cannot result in a longer response 
time. This is because although the direct blocking term can 
get larger with increasing priority this is always counteracted 
by a decrease in interference that is at least as large; hence 
the length of the queuing delay cannot increase with 
increasing priority, and so neither can the response time □ 

For N priority-queued messages / FIFO groups, the OPA-
FP/FIFO algorithm performs at most N(N-1)/2 schedulability 
tests and is guaranteed to find a schedulable priority 
assignment if one exists. It does not however specify an 
order in which messages should be tried in each priority 
band. This order heavily influences the priority assignment 
chosen if there is more than one ordering that is schedulable. 
In fact, a poor choice of initial ordering can result in a 
priority assignment that leaves the system only just 
schedulable. We suggest that, as a useful heuristic, priority-
queued messages and FIFO groups are tried at each priority 
level in order of transmission deadline (i.e. mE  or MIN

mE ), 
largest value first. This will result in a priority ordering 
reflecting transmission deadlines if such an ordering is 
schedulable. Alternatively, approaches which result in a 
robust priority assignment can be developed from the 
techniques described in [13]. 

B. TDMPO-FP/FIFO priority assignment 
In industrial practice, CAN configurations are often 

designed such that all of the messages are of the same 
maximum length (8 data bytes). This is done to ameliorate 
the effects of the large overhead of the other fields 
(arbitration, CRC etc) in each message. 

Definition 3: Transmission deadline monotonic priority 
ordering for FP/FIFO (TDMPO-FP/FIFO) is a priority 
assignment policy that assigns priority bands to priority 
queued messages and FIFO groups according to their 
transmission deadlines; with a shorter transmission deadline 
implying a higher priority. (Recall that the transmission 
deadline of a FIFO group is given by the shortest 
transmission deadline of any message in that group). 
Figure 1 illustrates the TDMPO-FP/FIFO priority 
assignment policy.  
Theorem 3: TDMPO-FP/FIFO is an optimal policy for 
assigning priority-queued messages and FIFO groups to 
priority bands, with respect to the sufficient schedulability 
test given in section IV.E (Algorithm 1 with lines 11-14 
omitted), provided that all messages have the same worst-
case transmission time.  
Proof: See the technical report [15] which is an extended 
version of this paper. 
Corollary 1: For the case where all nodes use priority queues 
and all messages have the same worst-case transmission 
time, TDMPO-FP-FIFO reduces to transmission deadline 
monotonic priority ordering, which is therefore an optimal 
priority assignment policy with respect to the sufficient 
schedulability test given by Davis et al. in [11] (recapitulated 
in section III). We note that transmission deadline (i.e. 
Deadline minus Jitter) monotonic priority ordering has also 
been shown to be an effective heuristic policy in the general 
case with mixed length messages [13]. 

C. Priority inversion 
All of the messages in a FIFO group need to have 

sufficiently high priorities that the message with the shortest 
transmission deadline in the group can still meet its deadline. 
We have shown that with the FIFO-symmetric schedulability 
analysis introduced in this paper, the most effective way to 
achieve this is to assign adjacent priorities to all of the 
messages in a FIFO group. Despite this, we note that the use 
of FIFO queues still typically results in priority inversion 
with respect to the priority assignment that would be used if 
all nodes implemented priority queues. 

The problem of priority inversion can be seen by 
considering priority assignment according to the TDMPO-
FP/FIFO policy, see Figure 1 below. With only PQ-nodes, 
the priority assigned to each message would depend only on 
its transmission deadline, with a longer deadline implying 
lower priority. With FIFO queues, there are two forms of 
priority inversion: internal and external. Internal priority 
inversion takes place within a FIFO queue when messages 
with longer transmission deadlines enter the queue before, 
and so are transmitted ahead of, messages with shorter 
transmission deadlines. External priority inversion occurs 
because all of the messages in a FIFO group effectively 
obtain priorities based on the shortest transmission deadline 
of any message in that group. This has the effect of creating 
priority inversion with respect to messages sent by other 
nodes that have transmission deadlines between the 
maximum and minimum transmission deadlines of messages 



in the FIFO group. This is illustrated in Figure 1, where 
messages causing external priority inversion are shaded in 
grey. 

PQ-msg1: E = 5 

FQ-group1: EMIN = 10 
FQ-msg1: E = 10

FQ-group2: EMIN = 50 

PQ-msg2: E = 10 

PQ-msg3: E = 20 
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FQ-msg8: E = 1000
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FIFO group1
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Figure 1: TDMPO-FP/FIFO priority ordering 

In Figure 1, observe that the messages within each FIFO 
group also have their priorities assigned according to 
transmission deadline monotonic priority assignment. We 
recommend this approach as although it does not alter the 
sufficient worst-case response times of the messages as 
calculated by our analysis, in practice it could result in lower 
actual worst-case response times for those messages in the 
group that have shorter transmission deadlines. 

VI. CASE STUDY: AUTOMOTIVE 
To show that our priority assignment policies and 

schedulability analysis work with a real application we 
analysed a CAN bus architecture from the automotive 
domain, first presented in [23]. Figure 2 shows this 
architecture. The system consists of a 500 kBit/s CAN bus 
connecting 10 ECUs. There are a total of 85 messages sent 
on the bus. The number of messages sent by each ECU is 
given by the annotations in Figure 2. All messages are sent 
strictly periodically and have no offsets with respect to each 
other. We assumed that the queuing jitter for each message 
was 1% of its period.  

 
Figure 2: CAN bus architecture 

We compared five different configurations of the system: 
Expt. 1: All ECUs used priority queues. 
Expt. 2: ECU3 and ECU6 used FIFO queues and the 

remaining ECUs used priority queues. 
Expt. 3: All ECUs used FIFO queues. 
Expt. 4: All ECUs used priority queues, but the priority 

ordering was that established by Expt 3. 
Expt. 5: All ECUs used priority queues, but the priority 

ordering used was random. 

In each experiment we determined the lowest bus speed 
commensurate with a schedulable system. The minimum bus 
speed was found by a binary search with the message 
priorities assigned according to the OPA-FP/FIFO algorithm 
(Algorithm 2) using transmission deadline monotonic 
priority ordering as the reverse ordering for the initial list. 
(For each FIFO group, only the message with the shortest 
transmission deadline was included in the initial list). Based 
on the priority ordering obtained, we analysed and simulated 
the system assuming a 500 kBit/s bus. The simulated 
network operating time was 1 hour. We used the commercial 
simulator chronSIM from Inchron [10] to produce the 
simulation results. 

There are four lines plotted on each of the graphs. The 
lines give the following information for each message: (i) 
transmission deadline; (ii) worst-case response time 
computed using the analysis given in section IV.E, assuming 
a 500 Kbit/s bus; (iii) maximum observed response time 
found by simulation, assuming a 500 Kbit/s bus, and (iv) 
worst-case response time computed using the analysis given 
in section IV.E, assuming the minimum schedulable bus 
speed for the expt. All of this data is plotted in ms on the y-
axis using a logarithmic scale. The x-axis on the graphs 
represents the priority order of the messages. Hence data for 
the message assigned the highest priority in a particular 
experiment appears on the LHS of the graph, while data for 
the lowest priority message appears on the RHS. Note the 
priority order is different in each experiment. 

Figure 3 depicts the results of Expt. 1, where all ECUs 
used priority queues. In this case, the minimum bus speed 
was 277 kBit/s, and the corresponding bus utilisation 84.5%. 
We observe that with this bus speed, the 26th highest priority 
message only just meets its deadline. Further, the results of 
analysis and simulation for a 500 kBit/s bus are close 
together. This is because the messages have no offsets, and 
all of the ECUs used priority-based queues, hence there is 
very little pessimism in the analysis, and the simulation 
captures the worst-case scenario well. 

Figure 4 depicts the results of Expt. 2, where ECU3 and 
ECU6 used FIFO queues and the other ECUs used priority 
queues. In this case, the minimum bus speed was 389 kBit/s, 
and the corresponding bus utilisation 60.1%. Our analysis 
attributes the same worst-case response time to all of the 
messages in a FIFO queue; this results in the horizontal 
segments of the analysis lines in Figure 4. The first FIFO 
queue is the 12 messages sent by ECU3, and the second, the 
6 messages sent by ECU6. The minimum transmission 
deadline for both FIFO queues was 13.8 ms. Observe that in 
Figure 4 the results of analysis and simulation are close 
together for the messages sent via priority queues, whereas 
for the messages sent via FIFO queue there are larger gaps. 
These gaps are predominantly due to the simulation not 
capturing the worst-case scenario for all of the FIFO-queued 
messages. This is evident from the variability of the 
maximum response times obtained via simulation for 
messages in the same FIFO group. 

Figure 5 depicts the results of Expt. 3, where all ECUs 
used FIFO queues. In this case, the minimum bus speed was 



654 kBit/s, and the corresponding bus utilisation only 35.8%. 
In contrast to the Expt. 1 & 2, this configuration was not 
schedulable at a bus speed of 500 kBit/s. At 500 kBit/s, the 
54 highest priority messages were found to be schedulable 
by the analysis. For the remaining lower priority messages, 
some appear to have worst-case response times that are less 
than their deadlines; however, this does not imply that such 
messages are schedulable. Once a single higher priority 
message is unschedulable, then the assumptions made by the 
analysis may be broken and the computed worst-case 
response times no longer valid. For example, the analysis 
assumes that due to constrained deadlines at most one 
instance of each of the other messages in the same FIFO 
group may be ahead of a particular message in the queue. If 
one of the messages in a FIFO group cannot meet its 
deadline then this assumption may no longer hold. In  
Expt. 3, some of the maximum response times observed in 
the simulation are very low compared to the worst-case 
response times computed by the analysis. This is caused by 
differences in the order in which messages enter the FIFO 
queues in the simulation, compared to the assumptions made 
by the analysis. 

 
Figure 3: Response Times (PQ only) 

 
Figure 4: Response Times (FQ and PQ) 

 
Figure 5: Response Times (FQ only) 

 
Figure 6: Response Times (PQ only, FQ priorities) 

 
Figure 7: Response Times (PQ only, random priorities) 

Figure 6 depicts the results of Expt. 4 which used the 
priority ordering obtained in Expt. 3, but assumed priority 
queues rather than FIFO queues. In this case, the minimum 



bus speed required was 608 kBit/s, and the corresponding 
bus utilisation 38.5%. Comparison of these results with those 
from Expt. 1 and Expt. 3 shows that the majority of the 
performance degradation caused by using FIFO queues 
occurs as a result of unavoidable priority inversion in the 
form of a disrupted priority ordering, rather than as a 
consequence of pessimistic schedulability analysis for FIFO 
queues. Finally, Expt. 5 examined 1000 random priority 
orderings with no correlation between message priority and 
transmission deadline. This experiment simulates assigning 
priorities to messages on the basis of the type of data or 
ECU, or indeed any other metric that has little or no 
correlation with message transmission deadlines. In this case, 
the mean value for the minimum bus speed required was 
731 kBit/s (min. 618 kBit/s, max. 750 kBit/s), and the 
corresponding bus utilisation 32.0% (max. 37.8%, min. 
31.2%). Figure 7 depicts the results of Expt. 5 for the worst 
of the random priority orderings, which required a minimum 
bus speed of 750 kBit/s to be schedulable. It is clear from the 
graph, that it is the assignment of a low priority (80th highest 
priority) to a message with a short transmission deadline that 
results in the need for such a high bus speed. Expt. 5 is 
directly comparable with Expt. 1 and shows the importance 
of appropriate priority assignment. In this case, arbitrary 
priority assignment increased the minimum bus speed 
required by 163% while reducing the max. bus utilisation 
from 84.5% to 32.0% (figures for the average case). The 
results of the experiments are summarised in Table I below. 

TABLE I.  CASE STUDY: SUMMARY OF RESULTS 

Expt. Node 
type 

Priority order Min bus 
speed  

Max 
bus util. 

1 All PQ OPA 277 Kbit/s 84.5% 
2 2 FQ, 

8 PQ 
OPA-FP/FIFO 389 Kbit/s 60.1% 

3 All FQ OPA-FP/FIFO 654 Kbit/s 35.8% 
4 All PQ Priority ordering 

from Expt. 3 
608 Kbit/s 38.5% 

5 All PQ Random10 731 Kbit/s 32.0% 

VII. EXPERIMENTAL EVALUATION 
In this section we explore further the effects that FIFO 

queues and priority assignment policies have on the 
maximum bus utilisation. Our experimental evaluation 
examined a system with 8 nodes and 80 messages connected 
via a single CAN bus. We considered five different 
configurations of this network. In configuration #1, all of the 
nodes used priority queues. Configurations #2, #3, and #4 
increased the number of nodes using FIFO queues from 2, to 
4 to 8 respectively. In configurations #1–#4, message 
priorities were assigned according to the TDMPO-FP/FIFO 
policy as depicted in Figure 1. (As all the messages were of 
the same length – 8 data bytes – this priority ordering was 
optimal). In contrast, in configuration #5, message priorities 
were assigned at random, and all nodes used priority queues. 

To examine the performance of these five configurations, 
we randomly generated 10,000 sets of messages as follows: 

                                                           
10 Values are the average for 1000 random orderings. 

o The period of each message was chosen according to a 
log-uniform distribution from the range 10-1000ms; thus 
generating an equal number of messages in each time 
band (e.g. 10-100ms, 100-1000 ms etc.). 

o The deadline of each message was equal to its period. 
o The jitter of each message was chosen according to a 

uniform random distribution in the range 2.5ms to 5ms. 
o Each message was randomly allocated to one of the 

eight nodes on the network, thus on average each node 
transmitted 10 messages. 

For each configuration, we computed the maximum bus 
utilisation for each message set. This was done via a binary 
search combined with the schedulability analysis given in 
sections III and IV.  

The solid lines in Figure 8 illustrate the frequency 
distribution of the maximum bus utilisation across the 10,000 
message sets for each of the five configurations. From  
Figure 8, it is clear that the use of FIFO queues significantly 
degrades the real-time performance of the network. With all 
eight nodes using priority queues (#1), the mean value of the 
maximum bus utilisation was 89.5%. This reduced to 62.7%, 
44.9%, and 28.4% with two, four and eight nodes using 
FIFO queues (configurations #2, #3, and #4 respectively). 
Worse still was random priority assignment (#5) with a mean 
value of just 18.4%; despite using priority queues. 
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Figure 8: Frequency distribution of max. bus utilisation (8 nodes, 80 

messages, 10,000 message sets) 

Figure 8 also shows results for the priority orderings 
obtained from configurations #2, #3, and #4, but assuming 
that all nodes use priority queues. These results are labelled 
#2a, #3a, and #4a respectively (dashed lines). The difference 
between configurations #1, #2a, #3a, and #4a is indicative of 
the performance degradation caused by the FIFO queues due 
to external priority inversion (i.e. priority inversion with 
respect to messages sent by other nodes). By contrast, the 
difference between the pairs of configurations #2–#2a, #3–
#3a, and #4–#4a is indicative of the performance degradation 
caused by the FIFO queues due to internal priority inversion 
(i.e. priority inversion with respect to messages sent by the 
same node), and also potential pessimism in the 



schedulability analysis for FIFO queues. As expected, the 
degradation in performance due to external priority inversion 
is much larger than that due to internal priority inversion, 
which affects only a limited number of messages. 

We repeated our evaluation of an 8 node system for 
message sets of size 20 and 40. The form of the results and 
the broad conclusions that can be drawn from them remained 
the same as with message sets of size 80. However, with 
fewer messages to randomly allocate to each node, the 
performance degradation due to each FIFO queue became 
somewhat smaller. (This is expected as in the limit, with just 
one message per node, FIFO and priority queues are 
equivalent). Results for message sets of sizes 20, 40 and 80 
are summarised in Table II below. Equivalent graphs to 
Figure 8 are given for the 20 and 40 message cases in [15]. 

TABLE II.  EVALUATION: SUMMARY OF RESULTS 

Mean of Max. bus util. Config Node 
type 

Priority 
order n=20 n=40 n=80 

#1 All PQ TDMPO 86.8% 88.4% 89.5% 
#2 2 FQ, 

6 PQ 
TDMPO-
FP/FIFO 

72.7% 68.1% 62.7% 

#3 4 FQ, 4 
PQ 

TDMPO-
FP/FIFO 

61.6% 53.6% 44.9% 

#4 All FQ TDMPO-
FP/FIFO 

46.5% 36.9% 28.4% 

#5 All PQ Random 26.1% 21.5% 18.4% 

VIII. SUMMARY AND CONCLUSIONS 
The major contribution of this paper is the derivation of 

sufficient response time analysis for CAN where some of the 
nodes on the network implement FIFO queues, while others 
implement priority queues. This analysis is FIFO-symmetric 
in that it attributes the same worst-case response time 
(measured from the time a message is queued in the sending 
node until it is received by other nodes on the bus) to all of 
the messages that share the same FIFO. For this 
schedulability analysis, we proved that it is optimal to assign 
adjacent priorities to messages that share the same FIFO. We 
modified Audsley’s Optimal Priority Assignment algorithm 
to provide an overall priority assignment policy (OPA-
FP/FIFO) that is optimal with respect to our analysis for both 
priority-queued messages and groups of messages that share 
a FIFO. Further, we showed that a simple policy based on 
transmission deadlines (TDMPO-FP/FIFO), depicted in 
Figure 1, is optimal with respect to our analysis for the 
specific case when all messages are of the same length. 

Although this paper provides schedulability analysis for 
CAN assuming FIFO queues, we cannot recommend the use 
of such queues. By comparison with priority queues, FIFO 
queues inevitably cause priority inversion which is 
detrimental to real-time performance.  

The use of FIFO queues increases the minimum bus 
speed necessary to ensure that all deadlines are met. This 
was illustrated in our case study where allowing just two 
ECUs (sending 18 out of the 85 messages) to use FIFO 
queues increased the minimum bus speed required from 
277 kBit/s with priority queues to 389 kBit/s, a 40% 

increase. With all ECUs using FIFO queues, the minimum 
bus speed required increased to 654 kBit/s; an increase of 
over 130%. Using FIFO queues reduces the maximum bus 
utilisation achievable before any deadlines are missed, thus 
limiting the scope for extending a system by adding further 
messages without having to increase bus speed. In our case 
study, the maximum bus utilisation with priority queues was 
84.5%, this reduced to 60.1% when two ECUs used FIFO 
queues, and to just 35.8% when all of the ECUs used FIFO 
queues. These figures were backed-up by our experimental 
evaluation of an eight node system with 80 messages. This 
evaluation of 10,000 randomly generated message sets 
showed a degradation in the mean value of the maximum bus 
utilisation from 89.5% with all nodes using priority queues, 
to 62.7% with two nodes using FIFO queues, to 44.9% with 
four nodes using FIFO queues, to just 28.4% with all eight 
nodes using FIFO queues. Such reductions in achievable 
utilisation not only increase the minimum bus speed required 
to obtain a schedulable network, but also decrease the 
robustness of the network to errors that result in message re-
transmission. 

We recommend that CAN device drivers / software 
protocol layers implement priority-based queues, rather than 
FIFO queues whenever possible. FIFO queues are appealing 
because they are simpler to implement and make the device 
driver appear more efficient; however, this perceived local 
gain typically comes at the expense of undermining the 
priority-based message arbitration scheme used by CAN, and 
significantly degrading the overall real-time performance 
capability of the network. 

We note that the degree of priority inversion caused and 
hence the degradation in performance due to using FIFO 
queues is lower when only a few messages use each FIFO 
queue or alternatively when the messages that use each FIFO 
queue have similar transmission deadlines. Under these 
circumstances, the use of FIFO queues along with 
appropriate priority assignment may result in a satisfactory 
solution. If on the other hand, FIFO queues are used for large 
numbers of messages with a wide range of transmission 
deadlines, then this can be expected to have a significant 
detrimental impact on network performance. For ECUs that 
act as a gateway from one CAN bus to another and thus have 
a large number of messages to transmit, if a priority queue 
implementation is not possible, then system designers may 
wish to consider using multiple FIFO queues each utilising a 
separate hardware transmit buffer. An allocation of messages 
to these multiple FIFO queues can then avoid assigning 
messages with widely differing transmission deadlines to the 
same FIFO queue, while also keeping the number of 
messages in each FIFO queue relatively small. This approach 
can result in significantly higher network performance than 
the alternative of using a single FIFO queue. The 
schedulability analysis and priority assignment policies given 
in this paper provide the tools necessary to investigate such 
tradeoffs. 

Finally, both our case study and experimental evaluation 
confirmed that appropriate priority assignment is vital to 
obtaining effective real-time performance from Controller 



Area Networks. Using a random priority assignment policy, 
representative of priority assignment based on the type of 
data and ECU, or indeed any other metric that has little or no 
correlation with transmission deadlines, increased the 
minimum bus speed required from 277 kBit/s to 731 kBit/s, 
and reduced the maximum bus utilisation from 84.5% to just 
32.0% in the case study, as compared to an optimal priority 
assignment policy. This data was backed up by our 
experimental evaluation. Here, for message sets of size 80, 
such a priority assignment policy resulted in values for the 
maximum bus utilisation in the range 8% to 45% with a 
mean of just 18.4%, compared to a range of 69% to 96% and 
a mean of 89.5% when an optimal priority assignment policy 
was used. We therefore strongly recommend that in 
Controller Area Networks, message IDs are assigned using 
an optimal or near optimal priority ordering reflecting 
message transmission deadlines. 
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