
Controller Area Network (CAN) Schedulability Analysis with FIFO queues

Robert I. Davis
Real-Time Systems Research Group,
Department of Computer Science,

University of York, YO10 5DD, York, UK
rob.davis@cs.york.ac.uk

Steffen Kollmann, Victor Pollex, Frank Slomka
Institute of Embedded Systems / Real-Time Systems

Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
{steffen.kollmann, victor.pollex, frank.slomka} @uni-ulm.de

Abstract— Controller Area Network (CAN) is widely used in
automotive applications. Existing schedulability analysis for
CAN is based on the assumption that the highest priority
message ready for transmission at each node on the network will
be entered into arbitration on the bus. However, in practice, some
CAN device drivers implement FIFO rather than priority-based
queues invalidating this assumption. In this paper, we introduce
response time analysis and optimal priority assignment policies
for CAN messages in networks where some nodes use FIFO
queues while other nodes use priority queues. We show, via a
case study and experimental evaluation, the detrimental impact
that FIFO queues have on the real-time performance of CAN.

Keywords-Controller Area Network (CAN); real-time scheduling;
FIFO; fixed priority; priority assignment; priority order.

I. INTRODUCTION
Controller Area Network (CAN) [3], [22] was designed

as a simple, efficient, and robust, broadcast communications
bus for in-vehicle networks. Today, typical mainstream
family cars contain 25-35 Electronic Control Units (ECUs),
many of which communicate using CAN. As a result of this
wholesale adoption of CAN by the automotive industry,
annual sales of CAN nodes (8, 16 and 32-bit micro-
controllers with on-chip CAN controllers) have grown from
under 50 million in 1999 to around 750 million in 20101

CAN is an asynchronous multi-master serial data bus that
uses Carrier Sense Multiple Access / Collision Resolution
(CSMA/CR) to determine access to the bus. The CAN
protocol requires that nodes wait for a bus idle period before
attempting to transmit. If two or more nodes attempt to
transmit messages at the same time, then the node with the
message with the lowest numeric CAN Identifier will win
arbitration and continue to send its message. The other nodes
will cease transmitting and must wait until the bus becomes
idle again before attempting to re-transmit their messages.
(Full details of the CAN physical layer protocol are given in
[3], with a summary in [11]). In effect CAN messages are
sent according to fixed priority non-pre-emptive scheduling,
with the identifier (ID) of each message acting as its priority.

A. Related work
In 1994, Tindell et al. [31], [32], [33] showed how

research into fixed priority scheduling for single processor
systems could be adapted and applied to the scheduling of
messages on CAN. The analysis of Tindell et al. provided a
method of calculating the maximum queuing delay and
hence the worst-case response time of each message on the

1 Figures from the CAN in Automation (CiA) website www.can-cia.org

network. Tindell et al. also recognised that with fixed
priority scheduling, an appropriate priority assignment policy
is key to obtaining effective real-time performance. Tindell
et al. suggested that messages should be assigned priorities in
‘Deadline minus Jitter’ monotonic priority order [34].

The seminal work of Tindell et al. lead to a large body of
research into scheduling theory for CAN [5], [6], [7], [8],
[18], [19], [26], [27], [28], [29], and was used as the basis for
commercial CAN schedulability analysis tools [9].

In 2007, Davis et al. [11] found and corrected significant
flaws in the schedulability analysis given by Tindell et al.
[31], [32], [33]. These flaws could potentially result in the
original analysis providing guarantees for messages that
could in fact miss their deadlines during network operation.
Further, Davis et al. [11] showed that the ‘Deadline minus
Jitter’ monotonic priority ordering, claimed by Tindell et al.
to be optimal for CAN, is not in fact optimal; and that
Audsley’s Optimal Priority Assignment (OPA) algorithm
[1], [2] is required in this case.

Prior to the advent of schedulability analysis and
appropriate priority assignment policies for CAN, message
IDs were typically assigned simply as a way of identifying
the data and the sending node. This meant that only low
levels of bus utilisation, typically around 30%, could be
obtained before deadlines were missed. Further, the only
means of obtaining confidence that message deadlines would
not be missed was via extensive testing. Using the systematic
approach of schedulability analysis, combined with a suitable
priority assignment policy, it became possible to engineer
CAN based systems for timing correctness, providing
guarantees that all messages would meet their deadlines,
with bus utilisations of up to about 80% [13], [9].

B. Motivation
Engineers using schedulability analysis to analyse

network / message configurations must ensure that all of the
assumptions of the specified scheduling model hold for their
particular system. Specifically, when using the analysis
given by Davis et al. in [11], it is important that each CAN
controller and device driver is capable of ensuring that
whenever message arbitration starts on the bus, the highest
priority message queued at that node is entered into
arbitration. This behaviour is essential if message
transmission is to take place as if there were a single global
priority queue and for the analysis to be correct.

As noted by Di Natale [16], there are a number of
potential issues that can lead to behaviour that does not
match that required by the scheduling model given in [11].
For example, if a CAN node has fewer transmit message

buffers than the number of messages that it transmits, then
the following properties of the CAN controller hardware can
prove problematic: (i) internal message arbitration based on
transmit buffer number rather than message ID (Fujitsu
MB90385/90387, Fujitsu 90390, Intel 87C196 (82527),
Infineon XC161CJ/167 (82C900)); (ii) non-abortable
message transmission (Philips 82C200) [17]; (iii) less than 3
transmit buffers [25] (Philips 8xC592 (SJA1000), Philips
82C200).

The CAN device driver / software protocol layer
implementation also has the potential to result in behaviour
which does not match that required by the standard
scheduling model [11]. Issues include, delays in refilling a
transmit buffer [21], and FIFO queuing of messages in the
device driver or CAN controller (The BXCAN and BECAN
for the ST7 and ST9 Microcontrollers from
STMicroelectronics include hardware support for both
priority-queued and FIFO-queued message transmission
[30]).

Di Natale [16] notes that using FIFO queues in CAN
device drivers / software protocol layers can seem an
attractive solution “because of its simplicity and the illusion
that faster queue management improves the performance of
the system”. This is unfortunate, because FIFO message
queues undermine the priority-based bus arbitration used by
CAN. They can introduce significant priority inversion and
result in degraded real-time performance. Nevertheless,
FIFO queues are a reality in some commercial CAN device
drivers / software protocol layers.

As far as we are aware, there is no published research2
integrating FIFO queues into response time analysis for
CAN. This paper focuses on the issue of FIFO queues. We
provide response time analysis and appropriate priority
assignment policies for Controller Area Networks
comprising some nodes that use FIFO queues and other
nodes that use priority queues.

C. Organisation
The remainder of this paper is organised as follows: In

section II, we introduce the scheduling model, notation, and
terminology used in the rest of the paper. In section III we
recap on the sufficient schedulability analysis for CAN given
in [11]. Section IV then extends this analysis to networks
where some nodes implement priority-based queues while
others implement FIFO queues. Section V discusses priority
assignment for mixed sets of FIFO-queued and priority-
queued messages. Section VI presents the results of a case
study exploring the impact of FIFO queues on message
response times and network schedulability. Section VII
further evaluates the effect of priority assignment and FIFO
queues on the maximum achievable network utilisation.
Finally, section VII concludes with a summary and
recommendations.

2 The commercial tool NETCAR-Analyzer (www.realtimeatwork.com)
claims to address the case of FIFO queues.

II. SYSTEM MODEL, NOTATION AND TERMINOLOGY
In this section we describe a system model and notation

that can be used to analyse the worst-case response times of
messages on CAN. This model is based on that used in [11]
with extensions to describe FIFO queues.

The system is assumed to comprise a number of nodes
(microprocessors) connected to a single CAN bus. Nodes are
classified according to the type of message queue used in
their device driver. Thus FQ-nodes implement a FIFO
message queue, whereas PQ-nodes implement a priority
queue. PQ-nodes are assumed to be capable of ensuring that,
at any given time when bus arbitration starts, the highest
priority message queued at the node is entered into
arbitration. FQ-nodes are assumed to be capable of ensuring
that, at any given time when bus arbitration starts, the oldest
message in the FIFO queue is entered into arbitration.

The system is assumed to contain a static set of hard real-
time messages, each statically assigned to a single node on
the network. Each message m has a fixed Identifier (ID) and
hence a unique priority. As priority uniquely identifies each
message, in the remainder of the paper we will overload m to
mean either message m or priority m as appropriate. We use

)(mhp to denote the set of messages with priorities higher
than m, and similarly,)(mlp to denote the set of messages
with priorities lower than m.

Each message m has a maximum transmission time of
mC (see [11] for details of how to compute the maximum

transmission time of messages on CAN, taking into account
the number of data bytes and bit-stuffing).

The event that triggers queuing of message m is assumed
to occur with a minimum inter-arrival time of mT , referred
to as the message period. Each message m has a hard
deadline mD , corresponding to the maximum permitted
time from occurrence of the initiating event to the end of
successful transmission of the message, at which time the
message data is assumed to be available on the receiving
nodes that require it. Tasks on the receiving nodes may place
different timing requirements on the data, however in such
cases we assume that mD is the shortest such time
constraint. We assume that the deadline of each message is
less than or equal to its period (mm TD ≤). Each message m is
assumed to be queued by a software task, process or interrupt
handler executing on the sending node. This task is either
invoked by, or polls for, the event that initiates the message,
and takes a bounded amount of time, between 0 and mJ ,
before the message is in the device driver queue available for
transmission. mJ is referred to as the queuing jitter of the
message and is inherited from the overall response time of
the task, including any polling delay 3 . The transmission
deadline mE of message m is given by mmm JDE −= , and
represents the maximum permitted time from the message
being queued at the sending node to it being received at other
nodes on the bus.

3 In the best case, the task could arrive the instant the event occurs and
queue the message immediately, whereas in the worst-case, there could be
a delay of up to the task’s period before it arrives and then a further delay
of up to the task’s worst-case response time before it queues the message.

The maximum queuing delay mw , corresponds to the
longest time that message m can remain in the device driver
queue or CAN controller transmit buffers, before
commencing successful transmission on the bus.

In this paper4, we define the worst-case response time
mR of a message m as the maximum possible transmission

delay from the message being queued until it is received at
the receiving nodes. Hence:
 mmm CwR += (1)

A message is said to be schedulable if its worst-case
response time is less than or equal to its transmission
deadline)(mm ER ≤ . A system is said to be schedulable if all
of the messages in the system are schedulable.

The following additional notation is used to describe the
properties of a set of messages that are transmitted by the
same FQ-node and so share a FIFO queue. The FIFO group

)(mM is the set of messages that are transmitted by the FQ-
node that transmits message m. The lowest priority of any
message in the FIFO group)(mM is denoted by mL . MAX

mC
and MIN

mC are the transmission times of the longest and
shortest messages in the FIFO group, while SUM

mC is the
sum of the transmission times of all of the messages in the
group. MIN

mE is the shortest transmission deadline of any
message in the group.

We use mf to denote the maximum buffering time from
message m being queued until it is able to take part in
priority-based arbitration. For a FIFO-queued message mf
equates to the time from the message being entered into the
FIFO queue to it becoming the oldest message in that queue.
For a priority-queued message 0=mf .

As well as determining message schedulability given a
particular priority ordering, we are also interested in
effective priority assignment policies.
Definition 1: Optimal priority assignment policy: A priority
assignment policy P is referred to as optimal with respect to
a schedulability test S and a given network model, if and
only if there is no set of messages that are compliant with the
model that are deemed schedulable by test S using another
priority assignment policy, that are not also deemed
schedulable according to test S using policy P.

We note that the above definition is applicable to both
sufficient schedulability tests such as those given in sections
III and IV, as well as exact schedulability tests.

III. SCHEDULABILITY ANALYSIS WITH PRIORITY QUEUES
In this section, we recapitulate the simple sufficient

schedulability analysis given in [11]. For networks of PQ-
nodes, complying with the scheduling model given in
section II, CAN effectively implements fixed priority non-
pre-emptive scheduling. In this case, Davis et al. [11]
showed that an upper bound on the response time mR of
each message m can be found by computing the maximum
queuing delay mw using the following fixed point iteration:

4 Note this is a different way of defining response time to that used in [11]
which includes queuing jitter. To compensate for not including queuing
jitter in the response time, in this paper we compare response times with
transmission deadlines to determine schedulability.

 k
mhpk k

bitk
n
m

mm
n
m C

T
Jw

CBw ∑
∈∀

+

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡ ++
+=

)(

1),max(
τ

 (2)

where bitτ is the transmission time for a single bit, and
mB is the blocking factor described below. Iteration starts

with a suitable initial value such as mm Cw =0 , and continues
until either mm

n
m ECw >++1 in which case the message is

not schedulable, or n
m

n
m ww =+1 in which case the message is

schedulable and its worst-case response time is given by:
 m

n
mm CwR += +1 (3)

As CAN message transmission is non-pre-emptable, the
transmission of a single lower priority message can cause a
delay of up to mB (referred to as direct blocking) between
message m being queued and the first time that message m
could be entered into arbitration on the bus. mB represents
the maximum blocking time due to lower priority messages:
)(max

)(
k

mlpk
m CB

∈∀
= (4)

Alternatively, in some cases, the transmission of the
previous instance of message m could delay transmission of
a higher priority message causing a similar delay (referred to
as push-through blocking5) of up to mC . Both direct and
push-through blocking are accounted for by the 1st term on
the RHS of (2). The 2nd term represents interference from
higher priority messages that can win arbitration over
message m and so delay its transmission. Note that once
message m starts successful transmission it cannot be pre-
empted, so the message’s overall response time is simply the
queuing delay plus its transmission time (given by (3)).

Using (2) and (3), engineers can determine upper bounds6
on worst-case response times and hence the schedulability of
all messages on a network comprising solely PQ-nodes.
Although the analysis embodied in (2) and (3) is pseudo-
polynomial in complexity in practice it is tractable on a
desktop PC for complex systems with hundreds of messages.
(A number of techniques are also available for increasing the
efficiency of such fixed point iterations [12]).

IV. SCHEDULABILITY ANALYSIS WITH FIFO QUEUES
In this section, we derive sufficient schedulability

analysis for messages on networks with both PQ-nodes and
FQ-nodes. The analysis we introduce is FIFO-symmetric, by
this we mean that the same worst-case response time is
attributed to all of the messages in a FIFO group. We note
that FIFO-symmetric analysis incurs some pessimism in
terms of the worst-case response time attributed to the higher
priority messages in a FIFO group; however, in practice this
pessimism is likely to be small. This is because the order in
which messages are placed in a FIFO queue is undefined,
and so in the worst case, the highest priority message in a
FIFO group has to wait for an instance of each lower priority
message in the group to be transmitted.

5 See [11] for an explanation of why push-through blocking is important.
6 Equation (2) is sufficient rather than exact due to the fact that push
through blocking may not necessarily be possible.

A. Priority-queued messages
We now derive an upper bound on the worst-case

queuing delay for a priority-queued message m, in a system
with both PQ-nodes and FQ-nodes.

In the case of systems with only PQ-nodes, Davis et al.
[11] showed that the worst-case queuing delay for a priority-
queued message m occurs for an instance of that message
queued at the beginning of a priority level-m busy period7
that starts immediately after the longest lower priority
message begins transmission. Further, this maximal busy
period begins with a so-called critical instant where message
m is queued simultaneously with all higher priority messages
and then each of these higher priority messages is
subsequently queued again after the shortest possible time
interval. Equation (2) provides a sufficient upper bound on
this worst-case queuing delay.

The analysis embodied in (2) assumes that higher priority
messages are able to compete for access to the bus (i.e. enter
bus arbitration) as soon as they are queued; however, this
assumption does not hold for FIFO-queued messages.
Instead a FIFO-queued message k may have to wait for up to
a maximum time kf before it becomes the oldest message in
its FIFO queue, and can enter priority-based arbitration. A
FIFO-queued message k can therefore be thought of as
becoming priority queued after an additional delay of kf .
Stated otherwise, in terms of its interference on lower
priority messages, a FIFO-queued message k can be viewed
as if it were a priority-queued message with its jitter
increased by kf . (Note, we will return to how kf is
calculated for FIFO-queued messages later). An upper bound
on the queuing delay for a priority-queued message m can
therefore be calculated via the fixed-point iteration given by
(5).

 k
mhpk k

bitkk
n
m

mm
n
m C

T
fJw

CBw ∑
∈∀

+

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡ +++
+=

)(

1),max(
τ

 (5)

As with (3), iteration starts with a suitable initial value
such as mm Cw =0 , and continues until mm

n
m ECw >++1 in

which case the message is not schedulable, or n
m

n
m ww =+1 in

which case its response time is given by:
 m

n
mm CwR += +1 (6)

Note that the queuing delay and response time are only
valid with respect to the values of kf used. We return to this
point later.

B. FIFO-queued messages
We now derive an upper bound on the worst-case

queuing delay for a FIFO-queued message m, in a system
with both PQ-nodes and FQ-nodes.

As our analysis is FIFO-symmetric, we will attribute the
same upper bound response time to all of the messages sent
by the same FQ-node. Our analysis derives this sufficient
response time by considering an arbitrary message from the
FIFO group)(mM . For the sake of simplicity, we will still

7 A priority level-m busy period is a contiguous interval of time during
which there is always at least one message of priority m that has not yet
completed transmission.

refer to this message as message m; however our analysis
will be independent of the exact choice of message from the
FIFO group. At each stage in our analysis we will make
worst-case assumptions, ensuring that the derived response
time is a correct upper bound. For example, we will frame
our calculation of the queuing delay mw by assuming the
lowest priority mL of any message in the FIFO group.

 As every message j in)(mM has jj TD ≤ then in a
schedulable system, when any arbitrary message from

)(mM is queued, there can be at most one instance of each
of the other messages in)(mM ahead of it in the FIFO
queue. The maximum transmission time of these messages,
and hence the maximum interference on an arbitrary
message m, due to messages sent by the same FQ-node, is
therefore upper bounded by:
 MIN

m
SUM
m CC − (7)

Indirect blocking could also occur due to the non-pre-
emptive transmission of a previous instance of any one of the
messages in)(mM . This indirect blocking is upper bounded
by MAX

mC . As an alternative, direct blocking could occur due
to transmission of any of the messages of lower priority than

mL sent by other nodes. Finally, in terms of interference
from higher priority messages sent by other FQ-nodes and
PQ-nodes, the argument about increased jitter made in the
previous section applies, and so the interference term from
(5) can again be used. Considering all of the above, an upper
bound on the queuing delay for an arbitrary message m
belonging to the FIFO group)(mM is given by the solution
to the following fixed point iteration:

+−+=+)(),max(1 MIN
m

SUM
m

MAX
mL

n
m CCCBw

m

 k
mMkLhpk k

bitkk
n
m C

T
fJw

m

∑
∉∧∈∀ ⎥

⎥
⎥

⎤

⎢
⎢
⎢

⎡ +++

)()(

τ
 (8)

Iteration starts with a value of),max(0 MAX
mLm CBw

m
=

)(MIN
m

SUM
m CC −+ and continues until either

MIN
m

MIN
m

n
m ECw >++1 in which case the set of messages

)(mM is declared unschedulable, or n
m

n
m ww =+1 in which

case all of the messages in)(mM are deemed to have a
response time of:
 MIN

m
n
mm CwR += +1 (9)

Equations (8) and (9) make the worst-case assumption
that interference from higher priority messages can occur up
to a time MIN

mC before transmission of message m
completes. We note that this is a pessimistic assumption with
respect to those messages belonging to the FIFO group that
have transmission times8 longer than MIN

mC .

C. Schedulability test with arbitrary priorities
We now derive a schedulability test from (5) & (6) and

(8) & (9). The basic idea is to avoid having to consider the
potentially complex interactions between the FIFO queues of
different nodes. This is achieved by abstracting the FIFO

8 In practice all messages sent on CAN often have the maximum length (8
data bytes) so as to minimise the relative overheads of the other fields in
the message (ID, CRC etc). In this case, no additional pessimism is
introduced by this assumption.

behaviour of messages sent by other nodes as simply
additional jitter kf before each message k can enter priority
based arbitration on the bus. When calculating the response
time of a given message, we therefore need only consider the
behaviour of the node that sends that message (PQ-node or
FQ-node) and the buffering delays of messages sent by other
nodes9.

1 repeat = true
2 initialise all kf = 0
3 while(repeat){
4 repeat = false
5 for each priority m, highest first{
6 if (m is FIFO-queued){
7 calc mR according to Eqs (8) & (9)
8 if(mR > MIN

mE) {
9 return unschedulable
10 }
11 if(mf mw=!){
12 mm wf =
13 repeat = true;
14 }
15 }
16 else {
17 calc mR according to Eqs (5) & (6)
18 if(mR > MIN

mE) {
19 return unschedulable
20 }
21 }
22 }
23 }
24 return schedulable

Algorithm 1: FIFO Symmetric Schedulability Test

An upper bound on the buffering time mf of a FIFO-
queued message m is:
 MIN

mmm CRf −= (10)
When the priorities of messages in different FIFO groups

are interleaved, this leads to an apparently circular
dependency in the response time calculations. For example,
let m and k be the priorities of messages in two different
FIFO groups with interleaved priorities (i.e.)(mLhpk ∈ and

)(kLhpm ∈). The response time kR of message k, and
hence its buffering time kf , depend on the buffering time

mf of message m as)(kLhpm ∈ ; however, the buffering
time mf of message m depends on its response time mR
which in turn depends on kf as)(mLhpk ∈ . This apparent
problem can be solved by noting that the response times
calculated via (5) & (6) and (8) & (9) are monotonically non-
decreasing with respect to the buffering times, and that the
buffering times given by (10) are monotonically non-
decreasing with respect to the response times calculated via
(8) & (9). Hence by using an outer loop iteration, and
repeating response time calculations until the buffering times

9 If the message belongs to a PQ-node, then the other messages sent by the
same node have buffering delays of zero, if it belongs to an FQ-node, then
the buffering delays for other messages sent by the same node are not
needed in the calculations (8) &(9).

no longer change, we can compute correct upper bound
response times and hence schedulability for all messages, as
shown in Algorithm 1. (Note, to speed up the schedulability
test, for each message m, the value of mw computed on one
iteration of the while loop (lines 3 to 23) can be used as an
initial value on the next iteration).

Algorithm 1 provides a sufficient schedulability test for
FIFO-queued and priority-queued messages in any arbitrary
priority ordering.

D. Partial priority ordering within a FIFO group
In this section, we consider an appropriate priority

ordering for messages within a FIFO group.
Definition 2: A FIFO-adjacent priority ordering is any
priority ordering whereby all of the messages sharing a FIFO
queue are assigned adjacent priorities.

Theorem 1: If a priority ordering Q exists that is schedulable
according to the FIFO-symmetric schedulability analysis of
Algorithm 1 then a schedulable FIFO-adjacent priority
ordering P also exists.
Proof: Let m be a FIFO-queued message that is not the
lowest priority message in its FIFO group. Now consider a
priority transformation whereby message m is shifted down
in priority so that it is at a priority level immediately above
that of the lowest priority message in its FIFO group. We
will refer to the old priority ordering as Q and the new
priority ordering as Q’.

We observe from (5) and (8), that given the same fixed
set of buffering times kf , then (i) the response time
computed for message m is the same for both priority
orderings, and (ii) the response times computed for all other
messages are no larger in priority ordering Q’ than they are
in priority ordering Q. Due to the mutual monotonically non-
decreasing relationship between message buffering times and
response times, and the fact that Algorithm 1 starts with all
the buffering times set to zero, this means that on every
iteration of Algorithm 1, the response times and buffering
times computed for each message under priority ordering Q’
are no larger than those computed on the same iteration for
priority ordering Q. Hence if priority ordering Q is
schedulable, then so is priority ordering Q’.

Applying the priority transformation described above to
every FIFO-queued message that is not the lowest priority
message in its FIFO group transforms any schedulable
priority ordering Q into a FIFO-adjacent priority ordering P,
without any loss of schedulability □

Theorem 1 tells us that regardless of the priority
assignment applied to priority-queued messages, we should
ensure that all of the messages that share a single FIFO
queue have adjacent priorities. In terms of CAN message IDs
we note that this does not require that consecutive values are
used for the IDs, only that there is no interleaving with
respect to the priorities of other messages. In practice
message IDs can be chosen to meet these requirements,
while also providing appropriate bit patterns for message
filtering.

E. Schedulability test for FIFO-adjacent priorities
In this section, we derive an improved schedulability test

that is only valid for FIFO-adjacent priority orderings.
Recall that Davis et al. [11] showed that the worst-case

queuing delay for a priority-queued message m occurs within
the priority level-m busy period that starts with a critical
instant. Provided that a FIFO-adjacent priority ordering is
used, then the same situation also represents the worst-case
scenario when higher priority messages are sent by either
PQ-nodes or FQ-nodes. This can be seen by considering the
interference on a priority-queued message m from a higher
priority FIFO-queued message k. As message k is of higher
priority than message m, then so are all of the other messages
in the same FIFO group (i.e.)(kM). Thus any message in

)(kM that is queued prior to the start of transmission of
message m will be sent on the bus before message m,
irrespective of the order in which the messages in)(kM are
placed in the FIFO queue. In effect all of the additional jitter
on message k is already accounted for by interference on
message m from other messages in the same FIFO group
()(kM). In this case, there is no additional jitter on message
k caused by messages of lower priority than m. Hence for
each FIFO message k, we can set kf = 0, and use (5) & (6)
to calculate the queuing delay and worst-case response time
of each message m. The same argument applies when we
consider the schedulability of a FIFO-queued message m. In
this case we can use (8) & (9) to calculate the queuing delay
and worst-case response time, with all buffering times kf =
0. Further, as the buffering times are all fixed at zero, a
single pass over the priority levels is all that is needed to
determine schedulability. In other words, lines 11-14 of
Algorithm 1 can be omitted when considering FIFO-adjacent
priority orderings. This revised schedulability test therefore
dominates the test given in Section IV.C (i.e. Algorithm 1
with lines 11-14 present).

The simplified analysis given in this section is similar to
that provided for FP/FIFO scheduling of flows in [24] and
for OSEK/VDX tasks in [4], [20].

V. PRIORITY ASSIGNMENT POLICIES
The schedulability test presented in section IV.E is

applicable irrespective of the overall priority ordering,
provided that messages sharing the same FIFO queue are
assigned adjacent priorities. Choosing an appropriate priority
ordering among the priority-queued messages and the FIFO
groups is however an important aspect of achieving overall
schedulability and hence effective real-time performance.

In this section, we consider the assignment of messages
to priority bands, where a priority band comprises either a
single priority level containing one priority-queued message,
or a number of adjacent priority levels containing a FIFO
group of messages. We derive priority assignment policies
that are optimal with respect to the schedulability analysis
given in Section IV.E.

A. Optimal priority assignment
Davis et al. [11], showed that, assuming solely priority

queuing, Audsley’s Optimal Priority Assignment (OPA)

algorithm [1], [2] provides the optimal priority assignment
for CAN messages. We now show that with an appropriate
modification to handle FIFO groups, Audsley’s algorithm is
also optimal with respect to the schedulability test given in
section IV.E. The pseudo code for this OPA-FP/FIFO
algorithm is given in Algorithm 2. Note that only one
message from each FIFO group is considered in the initial
list, as once this message is assigned to a priority band, then
so are the other messages in the same FIFO group.

for each priority band k, lowest first
{

for each message msg in the initial list {
 if msg is schedulable in priority band k according to

 schedulability test S with all unassigned priority-
 queued messages / other FIFO groups assumed to be
 in higher priority bands {

 assign msg to priority band k
 if msg is part of a FIFO group {
 assign all other messages in the FIFO group

 to adjacent priorities within priority band k
 }
 break (continue outer loop)
 }
}
 return unschedulable

}
return schedulable

Algorithm 2: Optimal Priority Assignment (OPA-FP/FIFO)

In [14] Davis and Burns showed that Audsley’s OPA
algorithm is optimal with respect to any schedulability test
that meets three specific Conditions. According to
Theorem 1, we need only consider the priority bands
assigned to each priority-queued message, and each FIFO
group (as all messages in a FIFO group have adjacent
priorities in an optimal priority ordering). We therefore re-
state these three conditions in the context of priority-queued
messages and FIFO groups.

The three conditions refer to properties or attributes of
the messages. Message properties are referred to as
independent if they have no dependency on the priority
assigned to the message. For example the longest
transmission time, deadline, and minimum inter-arrival time
of a message are all independent properties, while the worst-
case response time typically depends on the message’s
priority and so is a dependent property.

Condition 1: The schedulability of a message / FIFO group
identified by m, may, according to test S, depend on any
independent properties of other messages / FIFO groups in
higher priority bands than m, but not on any properties of
those messages / FIFO groups that depend on their relative
priority ordering.
Condition 2: The schedulability of a message / FIFO group
identified by m may, according to test S, depend on any
independent properties of the messages / FIFO groups in
lower priority bands than m, but not on any properties of
those messages / FIFO groups that depend on their relative
priority ordering.

Condition 3: When the priorities of any two adjacent priority
bands are swapped, then the message / FIFO group being
assigned the higher priority band cannot become
unschedulable according to test S, if it was previously
schedulable in the lower priority band. (As a corollary, the
message / FIFO group being assigned the lower priority band
cannot become schedulable according to test S, if it was
previously unschedulable in the higher priority band).
Theorem 2: The OPA-FP/FIFO algorithm is an optimal
priority assignment algorithm with respect to the FIFO-
symmetric schedulability test of section IV.E (Algorithm 1
with lines 11-14 omitted).
Proof: It suffices to show that Conditions 1-3 hold with
respect to the schedulability test given by Algorithm 1 with
lines 11-14 omitted.

Condition 1: Inspection of (5) & (6) and (8) & (9),
assuming all kf are fixed at zero, shows that the response
time of each message m is dependent on the set of messages
in higher priority bands, but not on their relative priority
ordering.

Condition 2: Inspection of (5) & (6) and (8) & (9), shows
that the response time of each message m is dependent on the
set of messages in lower priority bands via the direct
blocking term, but not on their relative priority ordering.

Condition 3: Inspection of (5) & (6) and (8) & (9),
assuming all kf are fixed at zero, shows that increasing the
priority band of message m cannot result in a longer response
time. This is because although the direct blocking term can
get larger with increasing priority this is always counteracted
by a decrease in interference that is at least as large; hence
the length of the queuing delay cannot increase with
increasing priority, and so neither can the response time □

For N priority-queued messages / FIFO groups, the OPA-
FP/FIFO algorithm performs at most N(N-1)/2 schedulability
tests and is guaranteed to find a schedulable priority
assignment if one exists. It does not however specify an
order in which messages should be tried in each priority
band. This order heavily influences the priority assignment
chosen if there is more than one ordering that is schedulable.
In fact, a poor choice of initial ordering can result in a
priority assignment that leaves the system only just
schedulable. We suggest that, as a useful heuristic, priority-
queued messages and FIFO groups are tried at each priority
level in order of transmission deadline (i.e. mE or MIN

mE),
largest value first. This will result in a priority ordering
reflecting transmission deadlines if such an ordering is
schedulable. Alternatively, approaches which result in a
robust priority assignment can be developed from the
techniques described in [13].

B. TDMPO-FP/FIFO priority assignment
In industrial practice, CAN configurations are often

designed such that all of the messages are of the same
maximum length (8 data bytes). This is done to ameliorate
the effects of the large overhead of the other fields
(arbitration, CRC etc) in each message.

Definition 3: Transmission deadline monotonic priority
ordering for FP/FIFO (TDMPO-FP/FIFO) is a priority
assignment policy that assigns priority bands to priority
queued messages and FIFO groups according to their
transmission deadlines; with a shorter transmission deadline
implying a higher priority. (Recall that the transmission
deadline of a FIFO group is given by the shortest
transmission deadline of any message in that group).
Figure 1 illustrates the TDMPO-FP/FIFO priority
assignment policy.
Theorem 3: TDMPO-FP/FIFO is an optimal policy for
assigning priority-queued messages and FIFO groups to
priority bands, with respect to the sufficient schedulability
test given in section IV.E (Algorithm 1 with lines 11-14
omitted), provided that all messages have the same worst-
case transmission time.
Proof: See the technical report [15] which is an extended
version of this paper.
Corollary 1: For the case where all nodes use priority queues
and all messages have the same worst-case transmission
time, TDMPO-FP-FIFO reduces to transmission deadline
monotonic priority ordering, which is therefore an optimal
priority assignment policy with respect to the sufficient
schedulability test given by Davis et al. in [11] (recapitulated
in section III). We note that transmission deadline (i.e.
Deadline minus Jitter) monotonic priority ordering has also
been shown to be an effective heuristic policy in the general
case with mixed length messages [13].

C. Priority inversion
All of the messages in a FIFO group need to have

sufficiently high priorities that the message with the shortest
transmission deadline in the group can still meet its deadline.
We have shown that with the FIFO-symmetric schedulability
analysis introduced in this paper, the most effective way to
achieve this is to assign adjacent priorities to all of the
messages in a FIFO group. Despite this, we note that the use
of FIFO queues still typically results in priority inversion
with respect to the priority assignment that would be used if
all nodes implemented priority queues.

The problem of priority inversion can be seen by
considering priority assignment according to the TDMPO-
FP/FIFO policy, see Figure 1 below. With only PQ-nodes,
the priority assigned to each message would depend only on
its transmission deadline, with a longer deadline implying
lower priority. With FIFO queues, there are two forms of
priority inversion: internal and external. Internal priority
inversion takes place within a FIFO queue when messages
with longer transmission deadlines enter the queue before,
and so are transmitted ahead of, messages with shorter
transmission deadlines. External priority inversion occurs
because all of the messages in a FIFO group effectively
obtain priorities based on the shortest transmission deadline
of any message in that group. This has the effect of creating
priority inversion with respect to messages sent by other
nodes that have transmission deadlines between the
maximum and minimum transmission deadlines of messages

in the FIFO group. This is illustrated in Figure 1, where
messages causing external priority inversion are shaded in
grey.

PQ-msg1: E = 5

FQ-group1: EMIN = 10
FQ-msg1: E = 10

FQ-group2: EMIN = 50

PQ-msg2: E = 10

PQ-msg3: E = 20

PQ-msg4: E = 50

PQ-msg5: E = 100

PQ-msg6: E = 250

PQ-msg7: E = 250

PQ-msg8: E = 500

FQ-msg2: E = 25
FQ-msg3: E = 100

FQ-msg4: E = 50
FQ-msg5: E = 100
FQ-msg6: E = 1000
FQ-msg7: E = 1000
FQ-msg8: E = 1000

Higher
priority

Lower
priority

FIFO group1

FIFO group2

Figure 1: TDMPO-FP/FIFO priority ordering

In Figure 1, observe that the messages within each FIFO
group also have their priorities assigned according to
transmission deadline monotonic priority assignment. We
recommend this approach as although it does not alter the
sufficient worst-case response times of the messages as
calculated by our analysis, in practice it could result in lower
actual worst-case response times for those messages in the
group that have shorter transmission deadlines.

VI. CASE STUDY: AUTOMOTIVE
To show that our priority assignment policies and

schedulability analysis work with a real application we
analysed a CAN bus architecture from the automotive
domain, first presented in [23]. Figure 2 shows this
architecture. The system consists of a 500 kBit/s CAN bus
connecting 10 ECUs. There are a total of 85 messages sent
on the bus. The number of messages sent by each ECU is
given by the annotations in Figure 2. All messages are sent
strictly periodically and have no offsets with respect to each
other. We assumed that the queuing jitter for each message
was 1% of its period.

Figure 2: CAN bus architecture

We compared five different configurations of the system:
Expt. 1: All ECUs used priority queues.
Expt. 2: ECU3 and ECU6 used FIFO queues and the

remaining ECUs used priority queues.
Expt. 3: All ECUs used FIFO queues.
Expt. 4: All ECUs used priority queues, but the priority

ordering was that established by Expt 3.
Expt. 5: All ECUs used priority queues, but the priority

ordering used was random.

In each experiment we determined the lowest bus speed
commensurate with a schedulable system. The minimum bus
speed was found by a binary search with the message
priorities assigned according to the OPA-FP/FIFO algorithm
(Algorithm 2) using transmission deadline monotonic
priority ordering as the reverse ordering for the initial list.
(For each FIFO group, only the message with the shortest
transmission deadline was included in the initial list). Based
on the priority ordering obtained, we analysed and simulated
the system assuming a 500 kBit/s bus. The simulated
network operating time was 1 hour. We used the commercial
simulator chronSIM from Inchron [10] to produce the
simulation results.

There are four lines plotted on each of the graphs. The
lines give the following information for each message: (i)
transmission deadline; (ii) worst-case response time
computed using the analysis given in section IV.E, assuming
a 500 Kbit/s bus; (iii) maximum observed response time
found by simulation, assuming a 500 Kbit/s bus, and (iv)
worst-case response time computed using the analysis given
in section IV.E, assuming the minimum schedulable bus
speed for the expt. All of this data is plotted in ms on the y-
axis using a logarithmic scale. The x-axis on the graphs
represents the priority order of the messages. Hence data for
the message assigned the highest priority in a particular
experiment appears on the LHS of the graph, while data for
the lowest priority message appears on the RHS. Note the
priority order is different in each experiment.

Figure 3 depicts the results of Expt. 1, where all ECUs
used priority queues. In this case, the minimum bus speed
was 277 kBit/s, and the corresponding bus utilisation 84.5%.
We observe that with this bus speed, the 26th highest priority
message only just meets its deadline. Further, the results of
analysis and simulation for a 500 kBit/s bus are close
together. This is because the messages have no offsets, and
all of the ECUs used priority-based queues, hence there is
very little pessimism in the analysis, and the simulation
captures the worst-case scenario well.

Figure 4 depicts the results of Expt. 2, where ECU3 and
ECU6 used FIFO queues and the other ECUs used priority
queues. In this case, the minimum bus speed was 389 kBit/s,
and the corresponding bus utilisation 60.1%. Our analysis
attributes the same worst-case response time to all of the
messages in a FIFO queue; this results in the horizontal
segments of the analysis lines in Figure 4. The first FIFO
queue is the 12 messages sent by ECU3, and the second, the
6 messages sent by ECU6. The minimum transmission
deadline for both FIFO queues was 13.8 ms. Observe that in
Figure 4 the results of analysis and simulation are close
together for the messages sent via priority queues, whereas
for the messages sent via FIFO queue there are larger gaps.
These gaps are predominantly due to the simulation not
capturing the worst-case scenario for all of the FIFO-queued
messages. This is evident from the variability of the
maximum response times obtained via simulation for
messages in the same FIFO group.

Figure 5 depicts the results of Expt. 3, where all ECUs
used FIFO queues. In this case, the minimum bus speed was

654 kBit/s, and the corresponding bus utilisation only 35.8%.
In contrast to the Expt. 1 & 2, this configuration was not
schedulable at a bus speed of 500 kBit/s. At 500 kBit/s, the
54 highest priority messages were found to be schedulable
by the analysis. For the remaining lower priority messages,
some appear to have worst-case response times that are less
than their deadlines; however, this does not imply that such
messages are schedulable. Once a single higher priority
message is unschedulable, then the assumptions made by the
analysis may be broken and the computed worst-case
response times no longer valid. For example, the analysis
assumes that due to constrained deadlines at most one
instance of each of the other messages in the same FIFO
group may be ahead of a particular message in the queue. If
one of the messages in a FIFO group cannot meet its
deadline then this assumption may no longer hold. In
Expt. 3, some of the maximum response times observed in
the simulation are very low compared to the worst-case
response times computed by the analysis. This is caused by
differences in the order in which messages enter the FIFO
queues in the simulation, compared to the assumptions made
by the analysis.

Figure 3: Response Times (PQ only)

Figure 4: Response Times (FQ and PQ)

Figure 5: Response Times (FQ only)

Figure 6: Response Times (PQ only, FQ priorities)

Figure 7: Response Times (PQ only, random priorities)

Figure 6 depicts the results of Expt. 4 which used the
priority ordering obtained in Expt. 3, but assumed priority
queues rather than FIFO queues. In this case, the minimum

bus speed required was 608 kBit/s, and the corresponding
bus utilisation 38.5%. Comparison of these results with those
from Expt. 1 and Expt. 3 shows that the majority of the
performance degradation caused by using FIFO queues
occurs as a result of unavoidable priority inversion in the
form of a disrupted priority ordering, rather than as a
consequence of pessimistic schedulability analysis for FIFO
queues. Finally, Expt. 5 examined 1000 random priority
orderings with no correlation between message priority and
transmission deadline. This experiment simulates assigning
priorities to messages on the basis of the type of data or
ECU, or indeed any other metric that has little or no
correlation with message transmission deadlines. In this case,
the mean value for the minimum bus speed required was
731 kBit/s (min. 618 kBit/s, max. 750 kBit/s), and the
corresponding bus utilisation 32.0% (max. 37.8%, min.
31.2%). Figure 7 depicts the results of Expt. 5 for the worst
of the random priority orderings, which required a minimum
bus speed of 750 kBit/s to be schedulable. It is clear from the
graph, that it is the assignment of a low priority (80th highest
priority) to a message with a short transmission deadline that
results in the need for such a high bus speed. Expt. 5 is
directly comparable with Expt. 1 and shows the importance
of appropriate priority assignment. In this case, arbitrary
priority assignment increased the minimum bus speed
required by 163% while reducing the max. bus utilisation
from 84.5% to 32.0% (figures for the average case). The
results of the experiments are summarised in Table I below.

TABLE I. CASE STUDY: SUMMARY OF RESULTS

Expt. Node
type

Priority order Min bus
speed

Max
bus util.

1 All PQ OPA 277 Kbit/s 84.5%
2 2 FQ,

8 PQ
OPA-FP/FIFO 389 Kbit/s 60.1%

3 All FQ OPA-FP/FIFO 654 Kbit/s 35.8%
4 All PQ Priority ordering

from Expt. 3
608 Kbit/s 38.5%

5 All PQ Random10 731 Kbit/s 32.0%

VII. EXPERIMENTAL EVALUATION
In this section we explore further the effects that FIFO

queues and priority assignment policies have on the
maximum bus utilisation. Our experimental evaluation
examined a system with 8 nodes and 80 messages connected
via a single CAN bus. We considered five different
configurations of this network. In configuration #1, all of the
nodes used priority queues. Configurations #2, #3, and #4
increased the number of nodes using FIFO queues from 2, to
4 to 8 respectively. In configurations #1–#4, message
priorities were assigned according to the TDMPO-FP/FIFO
policy as depicted in Figure 1. (As all the messages were of
the same length – 8 data bytes – this priority ordering was
optimal). In contrast, in configuration #5, message priorities
were assigned at random, and all nodes used priority queues.

To examine the performance of these five configurations,
we randomly generated 10,000 sets of messages as follows:

10 Values are the average for 1000 random orderings.

o The period of each message was chosen according to a
log-uniform distribution from the range 10-1000ms; thus
generating an equal number of messages in each time
band (e.g. 10-100ms, 100-1000 ms etc.).

o The deadline of each message was equal to its period.
o The jitter of each message was chosen according to a

uniform random distribution in the range 2.5ms to 5ms.
o Each message was randomly allocated to one of the

eight nodes on the network, thus on average each node
transmitted 10 messages.

For each configuration, we computed the maximum bus
utilisation for each message set. This was done via a binary
search combined with the schedulability analysis given in
sections III and IV.

The solid lines in Figure 8 illustrate the frequency
distribution of the maximum bus utilisation across the 10,000
message sets for each of the five configurations. From
Figure 8, it is clear that the use of FIFO queues significantly
degrades the real-time performance of the network. With all
eight nodes using priority queues (#1), the mean value of the
maximum bus utilisation was 89.5%. This reduced to 62.7%,
44.9%, and 28.4% with two, four and eight nodes using
FIFO queues (configurations #2, #3, and #4 respectively).
Worse still was random priority assignment (#5) with a mean
value of just 18.4%; despite using priority queues.

#5 PQ - Random
Priorities

#4 FQ (All FIFO
nodes)

#3 FQ and PQ
(Four FIFO nodes) #2 FQ and PQ

(Two FIFO nodes)

#1 PQ (No FIFO
nodes)

0

200

400

600

800

1000

1200

1400

1600

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

Breakdown Utilisation

Fr
eq

ue
nc

y

#5 PQ - Random Priorities
#4 FQ (All FIFO nodes)

#4a PQ (Priorities from 4.)
#3 FQ and PQ (Four FIFO nodes)
#3a PQ (Priorities from 3.)
#2 FQ and PQ (Two FIFO nodes)

#2a PQ (Priorities from 2.)
#1 PQ (No FIFO nodes)

Figure 8: Frequency distribution of max. bus utilisation (8 nodes, 80

messages, 10,000 message sets)

Figure 8 also shows results for the priority orderings
obtained from configurations #2, #3, and #4, but assuming
that all nodes use priority queues. These results are labelled
#2a, #3a, and #4a respectively (dashed lines). The difference
between configurations #1, #2a, #3a, and #4a is indicative of
the performance degradation caused by the FIFO queues due
to external priority inversion (i.e. priority inversion with
respect to messages sent by other nodes). By contrast, the
difference between the pairs of configurations #2–#2a, #3–
#3a, and #4–#4a is indicative of the performance degradation
caused by the FIFO queues due to internal priority inversion
(i.e. priority inversion with respect to messages sent by the
same node), and also potential pessimism in the

schedulability analysis for FIFO queues. As expected, the
degradation in performance due to external priority inversion
is much larger than that due to internal priority inversion,
which affects only a limited number of messages.

We repeated our evaluation of an 8 node system for
message sets of size 20 and 40. The form of the results and
the broad conclusions that can be drawn from them remained
the same as with message sets of size 80. However, with
fewer messages to randomly allocate to each node, the
performance degradation due to each FIFO queue became
somewhat smaller. (This is expected as in the limit, with just
one message per node, FIFO and priority queues are
equivalent). Results for message sets of sizes 20, 40 and 80
are summarised in Table II below. Equivalent graphs to
Figure 8 are given for the 20 and 40 message cases in [15].

TABLE II. EVALUATION: SUMMARY OF RESULTS

Mean of Max. bus util. Config Node
type

Priority
order n=20 n=40 n=80

#1 All PQ TDMPO 86.8% 88.4% 89.5%
#2 2 FQ,

6 PQ
TDMPO-
FP/FIFO

72.7% 68.1% 62.7%

#3 4 FQ, 4
PQ

TDMPO-
FP/FIFO

61.6% 53.6% 44.9%

#4 All FQ TDMPO-
FP/FIFO

46.5% 36.9% 28.4%

#5 All PQ Random 26.1% 21.5% 18.4%

VIII. SUMMARY AND CONCLUSIONS
The major contribution of this paper is the derivation of

sufficient response time analysis for CAN where some of the
nodes on the network implement FIFO queues, while others
implement priority queues. This analysis is FIFO-symmetric
in that it attributes the same worst-case response time
(measured from the time a message is queued in the sending
node until it is received by other nodes on the bus) to all of
the messages that share the same FIFO. For this
schedulability analysis, we proved that it is optimal to assign
adjacent priorities to messages that share the same FIFO. We
modified Audsley’s Optimal Priority Assignment algorithm
to provide an overall priority assignment policy (OPA-
FP/FIFO) that is optimal with respect to our analysis for both
priority-queued messages and groups of messages that share
a FIFO. Further, we showed that a simple policy based on
transmission deadlines (TDMPO-FP/FIFO), depicted in
Figure 1, is optimal with respect to our analysis for the
specific case when all messages are of the same length.

Although this paper provides schedulability analysis for
CAN assuming FIFO queues, we cannot recommend the use
of such queues. By comparison with priority queues, FIFO
queues inevitably cause priority inversion which is
detrimental to real-time performance.

The use of FIFO queues increases the minimum bus
speed necessary to ensure that all deadlines are met. This
was illustrated in our case study where allowing just two
ECUs (sending 18 out of the 85 messages) to use FIFO
queues increased the minimum bus speed required from
277 kBit/s with priority queues to 389 kBit/s, a 40%

increase. With all ECUs using FIFO queues, the minimum
bus speed required increased to 654 kBit/s; an increase of
over 130%. Using FIFO queues reduces the maximum bus
utilisation achievable before any deadlines are missed, thus
limiting the scope for extending a system by adding further
messages without having to increase bus speed. In our case
study, the maximum bus utilisation with priority queues was
84.5%, this reduced to 60.1% when two ECUs used FIFO
queues, and to just 35.8% when all of the ECUs used FIFO
queues. These figures were backed-up by our experimental
evaluation of an eight node system with 80 messages. This
evaluation of 10,000 randomly generated message sets
showed a degradation in the mean value of the maximum bus
utilisation from 89.5% with all nodes using priority queues,
to 62.7% with two nodes using FIFO queues, to 44.9% with
four nodes using FIFO queues, to just 28.4% with all eight
nodes using FIFO queues. Such reductions in achievable
utilisation not only increase the minimum bus speed required
to obtain a schedulable network, but also decrease the
robustness of the network to errors that result in message re-
transmission.

We recommend that CAN device drivers / software
protocol layers implement priority-based queues, rather than
FIFO queues whenever possible. FIFO queues are appealing
because they are simpler to implement and make the device
driver appear more efficient; however, this perceived local
gain typically comes at the expense of undermining the
priority-based message arbitration scheme used by CAN, and
significantly degrading the overall real-time performance
capability of the network.

We note that the degree of priority inversion caused and
hence the degradation in performance due to using FIFO
queues is lower when only a few messages use each FIFO
queue or alternatively when the messages that use each FIFO
queue have similar transmission deadlines. Under these
circumstances, the use of FIFO queues along with
appropriate priority assignment may result in a satisfactory
solution. If on the other hand, FIFO queues are used for large
numbers of messages with a wide range of transmission
deadlines, then this can be expected to have a significant
detrimental impact on network performance. For ECUs that
act as a gateway from one CAN bus to another and thus have
a large number of messages to transmit, if a priority queue
implementation is not possible, then system designers may
wish to consider using multiple FIFO queues each utilising a
separate hardware transmit buffer. An allocation of messages
to these multiple FIFO queues can then avoid assigning
messages with widely differing transmission deadlines to the
same FIFO queue, while also keeping the number of
messages in each FIFO queue relatively small. This approach
can result in significantly higher network performance than
the alternative of using a single FIFO queue. The
schedulability analysis and priority assignment policies given
in this paper provide the tools necessary to investigate such
tradeoffs.

Finally, both our case study and experimental evaluation
confirmed that appropriate priority assignment is vital to
obtaining effective real-time performance from Controller

Area Networks. Using a random priority assignment policy,
representative of priority assignment based on the type of
data and ECU, or indeed any other metric that has little or no
correlation with transmission deadlines, increased the
minimum bus speed required from 277 kBit/s to 731 kBit/s,
and reduced the maximum bus utilisation from 84.5% to just
32.0% in the case study, as compared to an optimal priority
assignment policy. This data was backed up by our
experimental evaluation. Here, for message sets of size 80,
such a priority assignment policy resulted in values for the
maximum bus utilisation in the range 8% to 45% with a
mean of just 18.4%, compared to a range of 69% to 96% and
a mean of 89.5% when an optimal priority assignment policy
was used. We therefore strongly recommend that in
Controller Area Networks, message IDs are assigned using
an optimal or near optimal priority ordering reflecting
message transmission deadlines.

ACKNOWLEDGEMENTS
The authors would like to thank Alan Burns for his

comments on a previous draft of this paper. This work was
partially funded by the UK EPSRC funded Tempo project
(EP/G055548/1), the EU funded ArtistDesign Network of
Excellence, the German Research Foundation, and the Carl
Zeiss Foundation.

REFERENCES
[1] N.C. Audsley, "Optimal priority assignment and feasibility of static

priority tasks with arbitrary start times", Technical Report YCS 164,
Dept. Computer Science, University of York, UK, Dec. 1991.

[2] N.C. Audsley, “On priority assignment in fixed priority scheduling”,
Information Processing Letters, 79(1): 39-44, May 2001.

[3] Bosch. “CAN Specification version 2.0”. Robert Bosch GmbH,
Postfach 30 02 40, D-70442 Stuttgart, 1991.

[4] F. Bimbard and L. George. “FP/FIFO feasibility conditions with
kernel overheads for periodic tasks on an event driven OSEK
system”. In Proceeding of ISORC, 2006.

[5] I. Broster, A. Burns , G. Rodríguez-Navas, “Probabilistic Analysis of
CAN with Faults”, In Proceedings of RTSS, pp. 269-278, December,
2002.

[6] I. Broster and A. Burns. “An Analysable Bus-Guardian for Event-
Triggered Communication”. In Proceedings of RTSS, pp. 410-419,
December 2003.

[7] I. Broster. “Flexibility in dependable communication”. PhD Thesis,
Department of Computer Science, University of York, UK, August
2003.

[8] I. Broster, A. Burns and G. Rodriguez-Navas, “Timing analysis of
real-time communication under electromagnetic interference”, Real-
Time Systems, 30(1-2) pp. 55-81, May 2005.

[9] L. Casparsson, A. Rajnak, K. Tindell, and P. Malmberg. “Volcano - a
revolution in on-board communications”. Volvo Technology Report,
1998/1.

[10] chronSIM. http://www.inchron.com
[11] R.I. Davis, A. Burns, R.J. Bril, and J.J. Lukkien. “Controller Area

Network (CAN) Schedulability Analysis: Refuted, Revisited and
Revised”. Real-Time Systems, Vol. 35, No. 3, pp. 239-272, April
2007.

[12] R.I. Davis, A. Zabos, A. Burns, "Efficient Exact Schedulability Tests
for Fixed Priority Real-Time Systems”. IEEE Transactions on
Computers IEEE Computer Society Digital Library. IEEE Computer
Society, September 2008 (Vol. 57, No. 9) pp. 1261-1276.

[13] R.I. Davis, A. Burns "Robust priority assignment for messages on
Controller Area Network (CAN)”. Real-Time Systems, Volume 41,
Issue 2, pages 152-180, February 2009.

[14] R.I. Davis and A. Burns, "Improved Priority Assignment for Global
Fixed Priority Pre-emptive Scheduling in Multiprocessor Real-Time
Systems”. Real-Time Systems, Volume 47, Issue 1, pages 1-40, 2010.

[15] R.I. Davis, S. Kollmann, V. Pollex, F. Slomka “Controller Area
Network (CAN) Schedulability Analysis with FIFO queues”.
University of York, Dept. of Comp. Sci. Technical report. YCS-2011-
462. Available from http://www-users.cs.york.ac.uk/~robdavis/.

[16] M. Di Natale, “Understanding and using the Controller Area
network” inst.eecs.berkeley.edu/~ee249/fa08/Lectures/
handout_canbus2.pdf.

[17] M. Di Natale, “Evaluating message transmission times in Controller
Area Networks without buffer preemption”, In 8th Brazilian
Workshop on Real-Time Systems, 2006.

[18] J. Ferreira, A. Oliveira, P. Fonseca, J. A. Fonseca. “An Experiment to
Assess Bit Error Rate in CAN”. In Proceedings of 3rd International
Workshop of Real-Time Networks (RTN2004), pp. 15-18, Cantania,
Italy. June 2004.

[19] H. Hansson, T. Nolte, C. Norstrom, and S. Punnekkat. “Integrating
Reliability and Timing Analysis of CAN-based Systems”. IEEE
Transaction on Industrial Electronics, 49(6): 1240-1250, December
2002.

[20] P. Hladik, A. Deplanche, S. Faucou, and Y. Trinquet, “Schedulability
analysis of OSEKNVDX applications”. In Proceedings RTNS, 2007.

[21] D.A. Khan, R.J. Bril, N. Navet, "Integrating hardware limitations in
CAN schedulability analysis," IEEE International Workshop on
Factory Communication Systems (WFCS) pp.207-210, 18-21 May
2010. doi: 10.1109/WFCS.2010.5548604.

[22] ISO 11898-1. “Road Vehicles – interchange of digital information –
controller area network (CAN) for high-speed communication”, ISO
Standard-11898, International Standards Organisation (ISO), Nov.
1993.

[23] S. Kollmann, V. Pollex, K. Kempf, F. Slomka, M. Traub, T. Bone, J.
Becker (2010). "Comparative Application of Real-Time Verification
Methods to an Automotive Architecture," In Proceedings of RTNS,
Nov. 2010.

[24] S. Martin, P. Minet, L. George, “Non pre-emptive Fixed Priority
scheduling with FIFO arbitration: uniprocessor and distributed cases”,
Technical Report No. 5051, INRIA Rocquencourt, Dec. 2007.

[25] A. Meschi, M. DiNatale, and M. Spuri, “Priority inversion at the
network adapter when scheduling messages with earliest deadline
techniques,” In Proceedings of ECRTS, June 12-14 1996.

[26] T. Nolte. “Share-driven scheduling of embedded networks”, PhD
Thesis, Malardalen University Press, May 2006.

[27] T. Nolte, H. Hansson, and C. Norstrom. “Minimizing CAN response-
time analysis jitter by message manipulation”. In Proceedings of
RTAS, pp 197-206, September 2002.

[28] T. Nolte, H. Hansson, and C. Norstrom, "Probabilistic worst-case
response-time analysis for the Controller Area Network." In
Proceedings of RTAS, pp. 200-207, May 2003.

[29] J. Rufino, P. Verissimo, G. Arroz, C. Almeida, and L. Rodrigues.
“Fault-tolerant broadcasts in CAN”. In Digest of Papers, The 28th
IEEE International Symposium on Fault-Tolerant Computing
(FTCS’98). pp. 150-159, June 1998.

[30] STMicroelectronics, “AN1077 Application note. Overview of
enhanced CAN controllers for the ST7 and ST9 MCUS” 2001
(available from www.st.com).

[31] K.W. Tindell and A. Burns. “Guaranteeing message latencies on
Controller Area Network (CAN)”, In Proceedings of 1st International
CAN Conference, pp. 1-11, September 1994.

[32] K.W. Tindell, A. Burns, and A. J. Wellings. “Calculating Controller
Area Network (CAN) message response times”. Control Engineering
Practice, 3(8): 1163-1169, August 1995.

[33] K.W. Tindell, H. Hansson, and A.J. Wellings. “Analysing real-time
communications: Controller Area Network (CAN)”. In Proceedings
of RTSS, pp. 259-263. IEEE Computer Society Press, December
1994.

[34] A. Zuhily and A. Burns, “Optimality of (D-J)-Monotonic Priority
Assignment”. Information Processing Letters, no. 103, pp. 247-250,
Apr. 2007.

