
An application-based EDF scheduler for OSEK/VDX

Claas Diederichs

INCHRON GmbH

14482 Potsdam, Germany

claas.diederichs@inchron.de

Ulrich Margull

1 mal 1 Software GmbH

90762 Fürth, Germany

margull@1mal1.com

Frank Slomka

University of Ulm

89069 Ulm, Germany

frank.slomka@uni-ulm.de

Gerhard Wirrer

SiemensVDO AG

93055 Regensburg

gerhard.wirrer@siemens.com

Abstract

Earliest deadline first scheduling performs processor

utilization up to 100 percent and improved robustness in

overload situations. However, most automotive applica-

tions are running under static priority policy. Because of

this, the standard operating system in the automotive in-

dustry, OSEK/VDX, just supports priority scheduling. This

paper describes an EDF scheduler plug-in for OSEK/VDX.

The plug-in provides EDF scheduling without changes to

the operating system by delaying task activations.

The add-on was tested for an engine management system

developed by SiemensVDO. Results of this experiment are

presented and discussed, showing that the EDF scheduling

techniques can improve the system in aspects of robustness

and resource utilization.

1. Introduction

Because most commercial real-time operating systems

(RTOS) are based on a limited set of fixed priority levels[1],

commercial embedded systems using an RTOS mostly use

static priority based scheduling. Static scheduling such as

rate monotonic scheduling (RMS) or deadline monotonic

scheduling (DMS) is known not to be optimal in all cases

while dynamic scheduling techniques such as earlies dead-

line first (EDF) can utilize systems with 100% CPU-load

[4],[1]. [1] compares the RMS scheduling with EDF in as-

pects of implementation complexity, runtime overhead and

robustness during overload, as well as jitter and latency. The

conclusion states that the advantage of RMS is a simpler im-

plementation for kernels that do not provide support for tim-

ing constrains. EDF on the other hand allows full processor

utilization and better responsiveness for aperiodic activities.

This paper introduces an EDF plug-in which can extend

every priority based scheduled operating system. It will be

shown that it is easy to extend a commercial operating sys-

tem kernel such as the OSEK/VDX implementation RTA-

OSEK. It is shown by a case study how the new scheduling

algorithm performs in an industrial car environment. An

engine management system (EMS) is adapted to the EDF

plug-in running in its legacy environment. First, the system

is tested by using a new embedded simulation tool. The re-

sults of the simulation are then verified by a HIL (Hardware

In the Loop) execution.

2 EDF plug-in for RTOS with static priorities

The real-time operating system OSEK/VDX does not

support dynamic priority assignment. All priorities are as-

signed at design time. Therefore, EDF implementations that

use dynamic priority assignments such as the CLOCK al-

gorithm ([6]) cannot be used. One possibility to implement

EDF scheduling is to change the RTOS core. This is not

always feasible as the used RTOS might be closed-source.

The described algorithm allows EDF scheduling on sys-

tems with static priorities such as OSEK/VDX without ma-

nipulation of the RTOS source code. It uses OS features

such as task switching and resource handling of the orig-

inal priority-based system, implementing the EDF behav-

ior by delaying activations of tasks. The algorithm only

works with basic tasks with the states inactive, ready and

running (Figure 1). Active waiting cannot be used, there-

fore OSEK/VDX Extended tasks are not supported by this

approach, only conformance classes BCC1 and BCC2 can

be used.

978-3-9810801-3-1/DATE08 © 2008 EDAA 

 



running

suspendedready

terminate

start

preempt

activate

Figure 1. Basic task state model

2.1 Architecture of the plug-in

The EDF plugin requires that the task priorities are as-

signed Deadline Monotonic (DM). The plug-in is build on

top of the RTOS API. All task activations are invoked using

the plug-ins API, the plug-in itself uses the RTOS API (Fig-

ure 3). The EDF-module organizes tasks in a list sorted by

absolute deadlines. Furthermore, a delayed state is added to

the state model (see Figure 2). The algorithm implements

EDF behavior by selectively delaying activations of tasks.

A task in the delayed state is in the EDF-list, but its activa-

tion is not propagated to the operating system. Therefore, a

delayed task cannot interrupt a running one.

running

suspendedready

terminate

start

preempt

activate

delayed

edfActivate

Figure 2. Task state model with extension

2.1.1 Task activation

If a task is activated, its absolute deadline is calculated. It is

then inserted into the list and thus in the state delayed. This

activation is called edfActivate, for a better differentiation

from the activation of the RTOS. If the newly activated task

is the first in the list, it is activated (Figure 3). Otherwise, it

remains delayed to prevent interruption of the current run-

ning task.

task-list

EDF plug-in

user code

edfActivate task 

is at first position?

activate task

RTOS with DM priorities

add to list

yes no

Figure 3. EDF module behavior at task activa-

tion

If a newly edfActivated task has a longer absolute dead-

line than the current running one, it remains in the state de-

layed and cannot interrupt the running task even if it has a

higher priority. If a newly edfActivated task has shorter ab-

solute deadline, its relative deadline is also shorter. Because

of the DM priority assignment, its priority is higher and it

interrupts the current running task.

2.1.2 Task termination

If a task terminates, it is removed from the EDF-list. The

new first task in the list is activated if it is in the delayed

state (Figure 4).

2.2 Verification of the plug-ins behavior

A basic task is described through the following parame-

ters:

τ = (r, ∆e, d)

A task consists of a ready time r, an execution time ∆e and

an absolute deadline d. D is the relative deadline.

ri + Di = di (1)

To describe the algorithm, additional parameters are

used:

τ = (r, ∆e, d, pr, st, lp)

The parameters are the task priority pr, the task state st

and the EDF-list position lp in the EDF task-list L.



task-list

EDF plug-in

delayed?

activate task

RTOS with DM priorities

get new first task

yes no

terminate task

remove from list

Figure 4. EDF module behavior at task termi-

nation

It is assumed:

∀(τi ∈ L) : ri, di, Di ∈ R
+ (2)

The absolute deadline of a task is always greater than the

ready time:

∀(τi ∈ L) : di > ri (3)

The priority scheme of the RTOS must be deadline

monotonic:

∀(τi, τj ∈ L) : (Di < Dj) ⇒ (pri > prj) (4)

The EDF-list is sorted by absolute deadlines (di). The

first position of the list is position zero.

∀(τi, τj ∈ L) : (di < dj) ⇒ (lpi < lpj) (5)

To proof that the EDF-module behaves like an EDF

scheduled system, it must be shown that at any time the task

with the shortest absolute deadline is executed. The tasks in

the task list are ordered by absolute deadlines. Therefore, it

must be proven that the task at the beginning of the list is

running. In this Section, an active task is in the state ready

or running. A task in the task list is either active or delayed.

At system start, the task list is empty. If a task τa is

edfActivated, it is positioned at the beginning of the list and

activated. It is immediately running because it is the only

task ready to execute.

If a second task τb is edfActivated, there are two cases:

• The new task is inserted behind the currently running

task into the list (db > da)

• The new task is inserted at the beginning of the list

(db < da)

If the newly arrived task is inserted behind the currently

running into the list, it is delayed. Therefore, it cannot in-

terrupt the currently running task.

If τb is inserted at the beginning of the list, it is activated.

To get executed, τb must interrupt the task τa and thus the

priority of τb must be higher than the priority of task τa

To guarantee that the task at the beginning of the list is

always executed, its priority must be higher than the priority

of every other task in the list that is active:

(lpi = 0)⇒ ∀(τj ∈ L|τi 6= τj ∧ stj 6= delayed) : pri > prj

(6)

Delayed tasks in front of active tasks are activated when

reaching the start of the list. To fulfill requirement (6), every

task in front of an active task must have a higher priority:

∀(τi, τj ∈ L|stj 6= delayed) :

(lpi < lpj) ⇒ (pri > prj) (7)

Equation (7) implies (6).

To proof that the system behaves correctly, it must be

shown that equation (7) is satisfied.

A task can only be active, if it has been at the start of the

list. Otherwise, it would not have been activated.

∀(τi ∈ L|sti 6= delayed) : lpi
′ = 0

If a task is in front of an active task, it was inserted at a

later time:

∀(τi, τj ∈ L|stj 6= delayed) :

(lpi < lpj) ⇒ (ri > rj) (8)

Using sort criteria (5), the following is true:

∀(τi, τj ∈ L|stj 6= delayed) :

(lpi < lpj) ⇒ (di ≤ dj) (9)

Combining (9) with (8) results in:

∀(τi, τj ∈ L|stj 6= delayed) :

(lpi < lpj) ⇒ (di ≤ dj) ∧ (ri > rj) (10)

Ready times and deadlines of tasks are always ≥ 0 (2)

and the deadline of a task is always greater than the ready

time (3).



Therefore, the following equation is true:

(di ≤ dj) ∧ (ri > rj) ⇒ (di − ri < dj − rj) (11)

The ready times and absolute deadlines can now be re-

placed by the relative deadlines using (1):

(di ≤ dj) ∧ (ri > rj) ⇒ (Di < Dj) (12)

Equation (12) can be inserted into (10):

∀(τi, τj ∈ L|stj 6= delayed) :

(lpi < lpj) ⇒ (Di < Dj) (13)

Using the DMS criteria (4), the requirement (7) is satis-

fied:

∀(τi, τj ∈ L|stj 6= delayed) :

(lpi < lpj) ⇒ (Di < Dj) ⇒ (pri > prj) (14)

2.3 Complexity and runtime overhead

2.3.1 List operations

For a list, the time effort for inserting a new task is O(n),
where n is the size of the task-list. Using a heap, the time ef-

fort is O(log n). However, tasks that are inserted in the back

part of the list have longer deadlines and therefore longer

periods. Tasks that are scheduled often have a short dead-

line – they are inserted in the front part of the list. Therefore,

a list might be the best option to implement the algorithm.

2.3.2 Runtime overhead

The runtime overhead of the algorithm at task activation is

created by three actions:

• Guard the action to prevent interruptions during the

scheduling, that can be done by disabling interrupts

that have access to RTOS features (e.g. level 2 inter-

rupts of OSEK/VDX)

• Retrieve timestamp from RTOS and calculate the ab-

solute deadline from the current time and the relative

deadline

• Insert the newly activated task into the sorted list (see

Section 2.3.1)

The timing overhead when finishing a task is created by

two actions:

• Guard the action

• Remove task from the list

Manipulation of the task list must be guarded by a crit-

ical Section. In OSEK/VDX, this can be done by using

SuspendOSInterrupts() and ResumeOSInterrupts(), to deac-

tivate level 2 interrupts. The guarding of the list is one part

of the runtime overhead of this EDF algorithm.

The relative deadline of a task must be known by the

EDF-module. To create the absolute deadline, a timestamp

has to be retrieved by the system. The time effort depends

on the underlying RTOS and is another part of the runtime

overhead of this EDF implementation.

Removing the task from the list is mostly very fast: in

full-preemptive systems the task is at the beginning of the

list. Only with cooperative tasks or resource sharing it is

possible that another task is at the first position of the list,

activated but waiting for a resource to be released.

2.3.3 Memory overhead

The memory overhead is linearly dependant on the list size.

Using a linked list, every item in the list consists of four

parts:

• Pointer to task function

• Absolute deadline

• Task state, if the task is active or delayed

• Pointer to next list entry

For systems with 32 bit pointers, counting the deadlines

in µs using 64 bit and using 1 bit for the task state, the space

overhead would be 129 bit per list item. The list size can be

deduced from the number of tasks and multi-activations. If

multi-activation is used in the operation system, it can be

removed to save space, because the EDF-module does not

activate the same task twice.

In [2], an efficient algorithm for time representation for

small embedded systems, using smarter time representa-

tions with 32 bit or 16 bit is discussed. Using time represen-

tation with smaller sizes does not only save space, but also

speeds up deadline calculation and task list management,

because adding and comparing 64bit numbers on 32bit or

16bit microcontrollers is time-expensive.

Assuming a list size of 32 maximum tasks, using 32 bit

time representation and a linked list, the space overhead of

the EDF algorithm is 32 ∗ 97 bit = 388 byte.

When space is a matter, choosing a heap instead of a

linked list would save 32 bit per list item: 32 ∗ 65 bit =
260 byte.



3 Case study engine control

An EMS currently under development by SiemensVDO

is adapted to the EDF plug-in running in its legacy environ-

ment.

3.1 Engine Management System

An Engine Management System (EMS), also known

as Engine Control Unit (ECU) or Engine Control Mod-

ule (ECM) is an embedded system which controls all ma-

jor aspects of a combustion engine. For example, an

EMS controls ignition timing, fuel quantity and other cylin-

der related aspects. An EMS has various sensors for ob-

serving the engine such as air sensors, pressure sensors,

crankshaft/camshaft position sensors or accelerator pedal

acquisition sensor. The EMS has communication links to

other electronic control units in the car such as the trans-

mission.

The investigated system is a single processor EMS con-

trolling an engine with eight cylinders. The system features

about 30 tasks, some time-triggered, some engine-position

triggered and some aperiodic triggered tasks. The EMS uses

the OSEK/VDX implementation RTA-OSEK. At the time

of this experiment, the EMS was under development.

3.2 OSEK/VDX

A proof-of-concept implementation is done for the

OSEK/VDX operating system. OSEK/VDX uses the fol-

lowing functions for task control:

ActivateTask(τx) can be called from tasks and level 2 ISRs

to activate the task τx.

TerminateTask() is the last statement of a Task τx, τx is

terminated.

ChainTask(τy) is the last statement of the Task τx, τx is

terminated and the task τy is activated.

These functions are used by the EDF-Module. The

user-code calls to those RTOS functions are replaced with

EDFActivateTask(), EDFTerminateTask() and EDFChain-

Task().

EDFActivateTask() inserts the new task into the task list.

It then calls ActivateTask() if needed.

EDFTerminateTask() removes the task from the task list.

It then calls ChainTask() if the next tasks needs to be

activated, TerminateTask() otherwise.

EDFChainTaks() removes the old task from the list and

inserts the new task. It then behaves like EDFTermi-

nateTask().

3.3 Experiment set-up

This Section describes the details of the implementation

used for the below described experiment.

System ticks (64 bit) are used for time representation in-

side the EDF algorithm and an 8 bit type is used for the

state. A linked list is used where each list item consumes

17 bytes. The macro for task activation requires the task

pointer and the relative task deadline (given in µs). The

macro for task termination requires the task pointer for de-

tecting the correct list item. EDFChainTask() is not used in

this implementation.

The prototype implementation includes deadline moni-

toring and support for switching the EDF scheduler on and

off. For each task, the amount of missed deadlines and the

maximum response time is monitored.

The implementation for the EMS is described in Section

3.1. The two fastest tasks with a period of 1ms are not

scheduled by the EDF algorithm. Those tasks are activated

by the rta-OSEK timetable and could not be transformed to

use the EDF activation macros in the short experiment time,

this is no limitation of the EDF algorithm. Both tasks have

a higher priority than all tasks scheduled by the EDF mod-

ule. Three tasks are background tasks, those tasks also are

not scheduled by the EDF scheduler. All background task

have a lower priority than the EDF tasks. The calls to the

OSEK/VDX ActivateTask and TerminateTask macros for

the EDF scheduled tasks are replaced with the EDF macros.

The task priorities are assigned deadline monotonic.

To manually increase the CPU-load, a dummy loop with

an arithmetic computation was inserted into one of the tasks

with 1ms period. During execution it can be manipulated,

how often the loop is iterated.

3.4 Simulation

Because the time of the test devices (hardware In the

Loop – HIL) is limited, the algorithm was tested and ver-

ified using a real-time simulation tool for embedded sys-

tems. The real-time simulation tool chronSim [3] was used

to test the implementation. ChronSim simulates the system

behavior offline and is capable of visualizing the preemp-

tion and displacement of tasks. The simulator works with

c-code and features an OSEK/VDX implementation.

3.5 Hardware In The Loop test

The system was investigated at the HIL (Hardware In

the Loop) testing equipement, where the environment of

the embedded system is close to the real operation environ-

ment. The engine speed was simulated with 4160 rpm. The

pedal value (PVS) was set to 50%. At this engine speed, the

CPU-load is 81.7% with DMS. With higher engine speed,



the CPU-load decreases again because some functionality

is not executed anymore when the system exceeds a specific

engine speed.

HIL EMS
(DUT)

Debugger / Tracer

PC

monitor

generate inputs

observe outputs

Figure 5. Architecture of the HIL test of a De-

vice Under Test (DUT)

Basically, two things are monitored: the CPU-load that

can be reached with DM and EDF, and the CPU-load over-

head caused by the EDF module. The deadline monitoring

was observed for both EDF and DM.

To determine the overhead of the EDF-Module, dead-

line monitoring is disabled and the CPU-load is compared

to the CPU-load caused by DM (also without any deadline

monitoring). Enabling the EDF algorithm at the above de-

scribed engine speed and PVS value increased the CPU-

load from 81.7% (with DM) to 82.3% (EDF). Measure-

ments with other engine speed also showed an EDF-module

runtime overhead of 0.5% to 0.8% compared to DMS.

To determine the maximum CPU-load that can be

reached with both scheduling techniques the CPU-load is

increased by performing more iterations of the dummy loop

for the overhead generation.

This technique of increasing CPU-load is not optimal.

Inside the task with the highest priority and a period of 1ms

runtime is ”stolen” from the system. For smoother overhead

generation, an interrupt with smaller runtime and higher fre-

quency could be used to provide a better distribution of the

additional runtime.

The DM scheduling could be increased to a CPU-load

of 85.2% (using the above described technique). Tasks are

lost by the system if the CPU-load is increased further (ap-

prox. 1 task every 4 seconds). The OSEK/VDX variable

E OS LIMIT is increased every time a task is activated and

the maximum number of active instances of this task is al-

ready reached. The new activation is dropped.

The EDF scheduling could be increased to a CPU load

of 99.9% without loosing tasks or raising a system safety

event. The maximum size of the EDF task list at this load

is 30, while the maximum list size at 82.3% is 16. The

maximum list size describes the maximum number of tasks

that are active or delayed. The system was observed at this

CPU-load for over 15 minutes.

During the high load of 99.9%, some deadlines are

missed by a small amount, but no deadline is exceeded by

more the ten percent and the system safety monitoring is not

showing any critical state.

4 Conclusion

The paper presents a new method to improve the timing

behavior of automotive applications. By adding a new plug-

in controller to OSEK/VDX based systems it is shown by a

case study that it is possible to implement an EDF schedul-

ing policy on top of a legacy operating system to improve

the processor utilization of the final system. This leads to

easier manageable systems and a better performance of the

application, such as the car engine control system presented

in this paper.

References

[1] G. Buttazzo. Rate monotonic vs. EDF: Judgment day. Real-

Time Systems, 29(1), 2005.

[2] G. Buttazzo and P. Gai. Efficient implementation of an EDF

scheduler for small embedded systems. In 2nd Workshop on

Operating Systems Platforms for Embedded Real-Time appli-

cations, 2006.

[3] T. Komarek, M. Dörfel, and R. Münzenberger. Develop-

ing real-time constrained embedded software using task mod-

els. proceedings of the Advanced Automotiv Electronics (AAE

2007), 2007.

[4] C. L. Liu and J. W. Layland. Scheduling algorithms for mul-

tiprogramming in a hard-real-time environment. J. ACM,

20(1):46–61, 1973.

[5] OSEK-Group. OSEK/VDX Operation System Specification,

2005.

[6] M. Park, J. Hong, and S. Y. Shin. A priority assignment

method for earliest deadline scheduling. In ISCA 18th In-

ternational Conference - Computers and their Applications,

2003.

[7] P. Pedreiras and L. Almeida. Edf message scheduling on con-

troller area network. Computing & Control Engineering Jour-

nal, 13(4):163–170, 2002.


	Main
	DATE08
	Front Matter
	Table of Contents
	Author Index




