
Chapter 3

HIERARCHICAL SYNTHESIS OF
EMBEDDED SYSTEMS USING
EVOLUTIONARY ALGORITHMS

A Multi-Objective Approach

C. Haubelt, S. Mostaghim, F. Slomka, J. Teich, and A. Tyagi

Computer Engineering Laboratory (DATE)
Department of Electrical Engineering and Information Technology
University of Paderborn
D-33098 Paderborn, Germany

{haubelt, mostaghim, slomka, teich, tyagi}@date.upb.de

In Evolutionary Algorithms for Embedded System Design.
by Rolf Drechsler and Nicol Drechsler (Eds.).

In Genetic Algorithms and Evolutionary Computation (GENA).
c© Kluwer Academic Publishers, Boston, Dordrecht, London, 2003.

Abstract In this chapter, we propose an approach for the synthesis of heterogenousem-
bedded systems, including allocation and binding problems. For solving these
in general NP-complete problems, Evolutionary Algorithms have been proven
to provide good solutions for search spaces of moderate size. For realistic em-
bedded system applications, however, two more challenges must be considered:
a) the complexity of the search space, and b) the multi-objective nature of the
optimization problem to solve. I.e., the desired result of system synthesis is a de-
sign space exploration that provides the set of so-called Pareto-optimal solutions
or an approximation thereof instead of just a single solution. Here, we propose
a solution based on aMulti-Objective Evolutionary Algorithm (MOEA)which
denotes a class of Evolutionary Algorithms that have recently proposed forde-
sign space explorationproblems. Secondly, in order to reduce the complexity of
typical search spaces, we propose a hierarchical problem and solution structure.

Keywords: Embedded System Design, Hierarchical Modeling, Multi-Objective Optimiza-
tion, System Synthesis

63

64 EVOLUTIONARY ALGORITHMS FOR EMBEDDED SYSTEM DESIGN

1. Introduction

1.1 Motivation

New methodologies and tools are needed for the development of embedded
systems as the market for such systems is steadily growing and the development
cycles become shorter and shorter. Today, the spectrum of embedded systems
covers devices for the control of all kinds of vehicles, the control of power plants,
end user devices for telecommunication and devices for the infrastructure of
telecommunication networks. One of the most popular embedded systems is
the cellular telephone. In contrast to desktop computers, the functionality of
an embedded system is restricted. Non-functional requirements like real-time
constraints, data throughput and power consumption are important factors when
designing an embedded system. Additionally, it is possible to implement dif-
ferent functions of the system on different hardware components. For example,
a cellular telephone may be implemented using a single microprocessor. All
functions will be performed in software on this processor. Such a system will be
very expensive and the power consumption will be too high for a small portable
device. On the other hand, a special hardware implementation is too inflexi-
ble to react to changes of requirements due to the dynamic market for cellular
phones. The question which function to map to which hardware component
on the discussed conditions is an optimization problem: This problem is called
hardware/software partitioningor, more generally,system synthesis[3].

Previously, different kinds of processors such as signal processors and appli-
cation specific hardware components had to be chosen by the designer. After
the selection of components, the designer also had to define which function
should be implemented on which of the selected components. If more then one
function has to run on one hardware component, the schedule of the functions
has to be defined, too. More formally, the resulting optimization problems turn
out to be of combinatorial nature includingallocationof components and as-
signment problems, i.e.,binding functions to components and scheduling the
functions according to multiple design constraints. Generally, the resulting
search space of feasible allocation and binding solutions is a) complex and b)
multi-objective. For example, speed, area, and power consumption are often
similarly important, yet conflicting optimization goals.

1.2 Related Work

Due to the large complexity of the design space, heuristic optimization tech-
niques are required to solve the optimization problem. Different heuristic
optimization techniques are discussed in the literature for hardware/software
partitioning or system synthesis. One of the first design tools for mixed hard-
ware/software systems called COSYMA [9] is based on Simulated Annealing

Hierarchical Synthesis of Embedded Systems 65

[13]. Tabu-Search as an optimization technique for hardware/software parti-
tioning is described in [8]. A more general approach for system-level synthesis
can be found in [3] and [6]. In both papers, Genetic Algorithms are used to
explore the complete set of optimal system architectures. While the focus of
[3] is on data-dominated systems, the approach in [6] is targeted to periodic
real-time systems.

A comparison of Simulated Annealing, Tabu-Search and Genetic Algorithms
as approaches for system synthesis can be found in [2] and [7]. The synthesis
approach in [2] is based on a new real-time response time analysis technique
while in [7] only scheduling of tasks on a given transputer architecture is dis-
cussed and the latency of the application is minimized.

1.3 Contribution

In this chapter, we focus on two extensions to previous approaches to system
synthesis: a)hierarchical problem decompositionand, based on this extension,
b) hierarchical design space exploration. In previous approaches such as [3],
[6], and others, both the application specification and the system architecture are
modeled non-hierarchically. E.g., the application is modeled by a task graph
with a relatively few number of coarse grain tasks. The hardware architec-
ture is also modeled coarse grain, describing allocatable objects such as buses,
processors and hardware co-processors.

Here, we introduce a new hierarchical approach to model embedded systems
for synthesis which allows the specification of design alternatives of the ap-
plication algorithm as well as alternatives of different hardware architectures.
For example, the error correction of transmitted data of a mobile telephone
can be performed by modern coding algorithms or in a more classical way by
implementing complex protocol functions like data retransmission.

The modeling of alternatives at both the algorithm as the architecture level
extends the search space as compared to fixed problems. The hierarchical
variety leads to an explosion of the search space for feasible allocations and
bindings. During a design space exploration, one is also not interested in just
a single optimal solution, but in the set ofall optimal solutions, the so-called
Pareto-set.

Here, we therefore propose two means to deal with the increased complexity
of the problem:Pareto-Front Arithmeticsand aHierarchical Multi-Objective
Evolutionary Algorithm. The idea of Pareto-front arithmetics is to first explore
all the Pareto-fronts resulting from mapping each leave node of a given hier-
archical specification and later to combine these Pareto-fronts to generate an
approximation of the Pareto-front on higher hierarchical levels iteratively. We
will show that, depending on the conditions of feasible allocations and bind-

66 EVOLUTIONARY ALGORITHMS FOR EMBEDDED SYSTEM DESIGN

ings as well as on the objective functions to be optimized, the constructed front
might not be the true Pareto-front, but an approximation thereof.

In the second approach, a Hierarchical Multi-Objective Evolutionary Algo-
rithm is proposed, introducing a chromosome structure that reflects the hierar-
chical nature of the specification, and special techniques for avoiding infeasible
solutions are presented to reduce the search space.

In both presented approaches, a special Evolutionary Algorithm adapted to
multi-objective optimization problems is used, a so-calledMOEA (Multi-Ob-
jective Evolutionary Algorithm). We capture the results of both approaches for
the example of an MPEG4 coder which is the running example of this chapter.
The objectives to be optimized are cost, power, and theflexibility of a design.
The flexibility is defined here as the richness of different functions a system
implements.

2. A Model for Embedded System Synthesis

This section introduces the required mathematical background, i.e., a graph-
theoretic model is introduced in order to establish a formal definition of system
synthesis.

2.1 The Specification Graph Model

Blickle et al. propose a graph-based approach for embedded system optimiza-
tion and synthesis [3]. We introduce this model as a starting point and derive
our enhanced hierarchical model subsequently based on this basic model.

The specification model [3] consists of two main components:

A given functional specification that should be mapped onto a suitable
architecture of hardware components as well as the class of possible archi-
tectures are described each by means of a universal directeddependence
graphg(V,E).

The user-defined mapping constraints between tasks and architecture
components are specified in a specification graphgs(Vs, Es). Additional
parameters which are used for formulating the objective functions and
further functional constraints may be assigned to either vertices or edges
of gs.

At first, the (well known) concept of a dependence graph is used to describe the
functional specification as well as the target architecture variety.

Definition 3.1 (Dependence Graph)Adependence graphg is a directed graph
g(V,E). V is a finite set of vertices andE ⊆ (V × V) is a set of edges.

For example, the dependence graph to model the data flow dependencies of a
given specification will be termedproblem graphgp = (Vp, Ep) in the follow-

Hierarchical Synthesis of Embedded Systems 67

Network

Decomposition
Layer

Layer
Composition

Scene

Scene’

C 1 C 2 C 3 C 4 C 5

(a)

(b)

FLALCLDL

Layer Layer
Decoding Access Unit FlexMux

Layer

Layer Layer
FlexMuxCoding Access Unit
Layer

Figure 3.1. (a) Behavioral specification of an MPEG4 coder and (b) corresponding problem
graph.

ing. Here,Vp is the set of vertices which model either functional operations or
communication operations. The edges inEp model dependence relations, i.e.,
define a partial order among the operations.

Example 3.1 The example introduced here and used throughout this chapter
is an MPEG4 coder. Due to its complexity and its clear decomposition into
subsystems, the MPEG4 coder seems to be a reasonable case study for our
new approach. Its block diagram is shown in Figure 3.1(a). We start with
a given scene, where the scene is either natural, synthesized or both. This
scene is decomposed into audio/visual objects like images, video, animated
2D meshes, speech, synthesized sounds, etc. Each audio/visual object (AVO)
is coded by an appropriate coding algorithm (indicated by the coding layer).
In the next step (Access Unit Layer), the data are provided with time stamps,
data type (audio, video), clock references, etc. The FlexMux Layer (Flexible
Multiplexer) allows to group streams with the same QoS (quality of service)
requirements. The upper part of Figure 3.1(a) shows the MPEG4 decoder which
should be able to reconstruct the coded scene as good as possible. Since we are
only interested in the MPEG4 coder, we omit the explanation of the decoder
part.

The behavioral specification of the coder (lower part of Figure 3.1(a)) is
refined to the problem graph shown in Figure 3.1(b). Between two data flow
dependent operations, we insert an additional vertex in order to model the
required communication.

The architecture including functional resources and buses can also be modeled
by a dependence graph termedarchitecture graphga = (Va, Ea). Va may
consist of two subsets containing functional resources (hardware units like an

68 EVOLUTIONARY ALGORITHMS FOR EMBEDDED SYSTEM DESIGN

(a) FPGA1

FPGA2 RISC2

RISC1
FPGA1

FPGA2 RISC2

RISC1
(b)

SB

Figure 3.2. (a) Architecture template to implement the problem graph of Figure 3.1 and (b)
corresponding architecture graph.

adder, a multiplier, a RISC processor, a dedicated processor, or an ASIC) and
communication resources (resources that handle the communication like shared
buses or point-to-point connections). An edgee ∈ Ea models a directed link
between two resources. All the resources are viewed aspotentially allocatable
components.

Example 3.2 The problem graph given in Example 3.1 is mapped onto a target
architecture shown in Figure 3.2(a). The architecture consists of four func-
tional resources, two programmable RISC processors, two field programmable
gate arrays (FPGAs), and a single shared bus (SB). Additionally, the proces-
sor RISC1 is equipped with two special ports. The corresponding architecture
graph is given in Figure 3.2(b).

Next, it is shown how user-defined mapping constraints can be specified in a
graph based model. Moreover, thespecification graphwill also be used to
definebindingandallocation formally.

Definition 3.2 (Specification Graph) A specification graphgs(Vs, Es) con-
sisting of a problem graphgp(Vp, Ep), an architecture graphga(Va, Ea), and
a set ofmapping edgesEm. In particular,Vs = Vp ∪Va, Es = Ep ∪Ea ∪Em,
whereEm ⊆ Vp × Va.

Consequently, mapping edges relate the vertices of the problem graph to vertices
of the architecture graph. The edges represent user-defined mapping constraints
in the form of a relation: “can be implemented by”.

Example 3.3 Figure 3.3 shows an example of a specification graph including
the problem graph of Example 3.1 and the architecture graph of Example 3.2.
The dashed edges between the two graphs are the additional mapping edges
Em that describe all possible mappings. For example, operation DL can be
executed only on RISC1. Note that it can be useful to map communication

Hierarchical Synthesis of Embedded Systems 69

C 1 C 2 C 3 C 4 C 5

FPGA2
p=700
c=500

SB
p=50
c=50

C 5

C 1 Scene

Network

CL

CL

CL

p = 0

p = 0

p = 200

p = 400

p = 350
RISC2

FPGA1

FPGA2

FPGA1
p=600
c=1000

RISC2
p=400
c=800

FLALCLDL

Scene

Network

RISC1
p=450
c=750

p=0
c=0

p=0
c=0

p=0 p=100p=300p=10p=10p=100

SB

Figure 3.3. Specification graph for the MPEG4 coder.

nodes of the problem graph to functional resources: If both predecessor and
successor node of a communication node are mapped to the same functional
resource, no communication is necessary and the communication isinternal.
In this case, the communication can be viewed to be handled by the functional
resource. For the purpose of better visibility, additional mapping edges are
depicted in the lower right corner of Figure 3.3.

Only the coding layer (CL) can be executed on the alternative resources
RISC2, FPGA1, and FPGA2. The mapping edgese(vp, va) ∈ Em are anno-
tated with additional power consumptions which arise when operationvp is
executed on resourceva. Furthermore, all resources in Figure 3.3 are annotated
with allocation cost and power consumptions. These values have to be taken
into account if the corresponding resource is used in an implementation of the
problem.

In the above way, the model of a specification graph allows a flexible expression
of the expert knowledge about useful architectures and mappings.

2.2 Hierarchical Modeling

By looking at the MPEG4 standard, one can see that the coding layer consists
of several different coding schemes. Although the specification graph allows
the modeling of alternative mappings, it cannot express the knowledge about
possible refinements of a given task. Also, vertices of the architecture graph
can be decomposed into several submodules, e.g., an FPGA can be configured
with various designs or the coarse grain RISC processor represents a full class
of processors.

70 EVOLUTIONARY ALGORITHMS FOR EMBEDDED SYSTEM DESIGN

In order to model these refinements, we propose a hierarchical extension to
the previously introduced model of a specification graph. The followinghierar-
chical specification graphis thus based on the (non-hierarchical) specification
graph described in the previous section and the concept ofhierarchical graphs.

Definition 3.3 (Hierarchical Graph) A hierarchical graphg(V,E) is a pair
(V,E), where

V denotes the set of vertices as defined in Definition 3.4, and

E ⊆
{⋃

v∈V v.O
}
×

{⋃
v∈V v.I

}
denotes the set of edges, wherev.O

andv.I denote the set of outputs and inputs of vertexv ∈ V , respectively.

As mentioned above, a vertex can be refined by a set of subgraphs.

Definition 3.4 (Hierarchical Vertex) A hierarchical vertexv ∈ V is a 4-tuple
(I,O,G,m), where

I = {i1, i2, . . . , in} is a finite set of inputs, also denotedv.I,

O = {o1, o2, . . . , om} is a finite set of outputs, also denotedv.O,

G = {g1, g2, . . . , gl} is a finite set of subgraphs, also denotedv.G, and

m : {IG ∪OG} → {I ∪O} =
{

m(i) if i ∈ IG

m(o) if o ∈ OG
, where

– m(i) : IG → I with IG =
{⋃

g∈G

⋃
ṽ∈g.V ṽ.I

}
is a function which

uniquely maps the inputsi ∈ ṽ.I of each vertex̃v ∈ g.V of each
subgraphg ∈ G to an inputi ∈ v.I of v, and

– m(o) : OG → O with OG =
{⋃

g∈G

⋃
ṽ∈g.V ṽ.O

}
is a function

which uniquely maps the outputso ∈ ṽ.O of each vertex̃v ∈ g.V
of each subgraphg ∈ G to an outputo ∈ v.O of v.

In the following we use the termP = I ∪ O to denote the set of portsp ∈ P
associated with the vertexv. Also, the termsgraphandvertexare used for their
hierarchical counterparts, respectively.

If a set of subgraphsG′ ⊆ v.G is selected as a refinement of a vertexv, we are
able to flatten our model, i.e., to replace the vertexv by the selected subgraphs
g ∈ G′.

Example 3.4 Figure 3.4 shows possible refinements of the coding layer of the
MPEG4 coder shown in Figure 3.1. There are two types of codings: audio

Hierarchical Synthesis of Embedded Systems 71

CL
i cl

ocl

dup

CM

CELPCoder

LPCanalyze

LPCcoeff

IN DIFF

LF

DCT Q

Q−1
REC DCT−1

SF

BMRF

MTC VM

SC

MPEG4VideoCoder

SynthesizedSoundNaturalSound

acvi ac oac

AudioCoder

SyntheticObjects

vi ovcvc vc

VisualCoder

Image&Video

Figure 3.4. Refinements of the coding layer of the MPEG4 coder shown in Figure 3.1.

and visual coding, i.e.,CL.G = {AudioCoder,VisualCoder}. The input and
output set ofCL contains only one element (CL.I = {icl},CL.O = {ocl}).

The audio coder subgraph consists of a single vertexAudioCoder.V =
{vac} and no edges (AudioCoder.E = {}). In the next level of the hierarchy,
we can refinevac by vac.G = {NaturalSound,SynthesizedSound, . . .}. The
set of inputs and outputs for vertexvac is given byvac.I = {iac} andvac.O =
{oac}.

One of the coding schemes for natural sounds is the CELP algorithm (Code
Excited Linear Prediction) depicted in the upper left corner of Figure 3.4. An
incoming speech signal is filtered by a Linear Prediction Coding (LPC) to
produce a noise-like residual. After determining the filter coefficient on a frame
of 80 speech samples, these samples are filtered one by one. Blocks of 40 filter
outputs are compared with a codebook of 1024 reference blocks. All vertices in
the CELP leaf subgraph are leaf vertices, sincedup.G = . . . = CM.G = {}.

The visual coding consisting of a single vertexvvc can be divided into image
and video coding, synthetic objects coding, compression of 2D and 3D meshes,
. . . The compression algorithm for images and videos is part of the MPEG4
standard and is depicted in the upper right corner of Figure 3.4. Motion estima-
tion is done by the block matching operation (BM) and the block subtraction
is named DIFF (difference). Other blocks in Figure 3.4 are: quantization (Q),
shape coding (SC), motion texture coding (MTC), and video multiplex (VM).

72 EVOLUTIONARY ALGORITHMS FOR EMBEDDED SYSTEM DESIGN

Again, all vertices in the MPEG4 leaf subgraph are leaf vertices, i.e., the set of
associated subgraphs is empty.

With the inputs (vvc.I = {ivc}) and outputs (vvc.O = {ovc}) of vertexvvc,
we determine the port sets of the subgraphs associated with the coding layer
vertexCL:

CL.IG = {iac, ivc}
CL.OG = {oac, ovc}

The mapping function of the coding layer isCL.m(iac) = icl,CL.m(ivc) =
icl,CL.m(oac) = ocl andCL.m(ovc) = ocl.

Definition 3.5 (Hierarchical Specification Graph) A hierarchical specifica-
tion graphis a graphgs(Vs, Es) consisting of a hierarchical problem graph
gp(Vp, Ep), an hierarchical architecture graphga(Va, Ea), and a set ofmap-
ping edgesEm, where both, the problem as well as the architecture graph are
hierarchical graphs according to Definition 3.3.

The problem and architecture graph are given as hierarchical graphs. The
mapping edgese ∈ Em map leaf vertices of the problem graph to leaf vertices
of the architecture graph. An example of a hierarchical specification graph can
be found in Figure 3.8 on page 80.

3. System Synthesis

In this section, we formalize the notion of animplementation. An imple-
mentation, being the result of a system synthesis, consists of two parts:

1 theallocationthat indicates which elements of the problem and architec-
ture graph are used in the implementation and

2 thebinding, i.e., the set of mapping edges which define the binding of
vertices in the problem graph to components of the architecture graph.

The term implementation will be used in the same sense as formally defined in
[3] but extended here to hierarchical specifications.

3.1 Implementation

An implementation consists of anallocationand abinding.

Definition 3.6 (Allocation) An allocationα of a given specification graphgs

is the subset of all vertices and edges of the problem graphgs.gp and the
architecture graphgs.ga that are used in the implementation, i.e.,

α = αv ∪ αe,

Hierarchical Synthesis of Embedded Systems 73

where
αv ⊆ V(gs.gp) ∪V(gs.ga)
αe ⊆ E(gs.gp) ∪ E(gs.ga)

Here,αv denotes the set of allocated vertices andαe denotes the set of allocated
edges.

Definition 3.7 (Binding) A bindingβ of a given specification graphgs is the
subset of mapping edgesgs.Em used in the implementation, i.e.,

β ⊆ gs.Em

In order to restrict the combinatorial search space, it is useful to determine the
set of feasible allocations and feasible bindings.

Definition 3.8 (Feasible Binding) Given a specification graphgs and an allo-
cationα, a feasible bindingis a bindingβ that satisfies the following require-
ments:

1 Each mapping edgee ∈ β starts and ends at an allocated vertex, i.e.,

∀e = (vp, va) ∈ β : vp, va ∈ α.

2 For each problem graph vertexv ∈ {V(gp) ∩ α}, exactly one outgoing
mapping edgee ∈ Em is part of the bindingβ, i.e.,

|{e ∈ β | e = (vp, va), vp ∈ {V(gp) ∩ α} ∧ va ∈ V(ga)}| = 1.

3 For each allocated problem graph edgee ∈ (vi, vj) ∈ E(gp) ∩ α:

either both operations are mapped onto the same vertex, i.e.,

ṽi = ṽj with (vi, ṽi), (vj , ṽj) ∈ β,

or there exists an allocated edgẽe = (ṽi, ṽj) ∈ {E(ga) ∩ α} to
handle the communication associated with edgee, i.e.,

(ṽi, ṽj) ∈ {E(ga) ∩ α} with (vi, ṽi), (vj , ṽj) ∈ β.

Definition 3.9 (Feasible Allocation) A feasible allocationis an allocationα
that allows at least one feasible bindingβ.

Now, we can define an implementation by means of a feasible allocation and
feasible binding.

74 EVOLUTIONARY ALGORITHMS FOR EMBEDDED SYSTEM DESIGN

C 1 C 2 C 3 C 4 C 5

p=50
c=50

SB

RISC2
p=400
c=800

CL

CL
p = 400

p = 350
FPGA1

FPGA2FPGA1
p=600
c=1000

FPGA2
p=700
c=500

FLALCLDL

Scene

Network

RISC1
p=450
c=750

p=0
c=0

p=0
c=0

p = 0 p=100 p = 200p=10 p = 0p=300p=10 p=100p=0

SB

Figure 3.5. Implementation of the MPEG4 coder (see Figure 3.3). All vertices and edges drawn
solid describe an allocation. The binding is given by the dashed edges.

Definition 3.10 (Implementation) Given a hierarchical specification graph
gs as defined by Definition 3.5, a(valid) implementationis a pair (α, β) where
α is a feasible allocation andβ is a corresponding feasible binding.

Example 3.5 Consider the case that the operation CL in Figure 3.3 on page 69
is mapped onto the resource RISC2. Since all other vertices of the problem
graph are non-ambiguously bound onto other resources, the dashed mapping
edges shown in Figure 3.5 indicate a possible binding. The allocation of vertices
is given as:

αv = {C1,DL,C2,CL,C3,AL,C4,FL,C5,SB,
RISC1,RISC2,Network,Scene}

A feasible binding is given by:

β = {(C1,Scene), (DL,RISC1), (C2,SB), (CL,RISC2), (C3,SB),
((AL,RISC1), (C4,RISC1), (FL,RISC1), (C5,Network)}

Given this allocation and binding, one can see that our implementation is indeed
feasible, i.e.,α andβ are feasible.

3.2 The Task of System Synthesis

With the model introduced previously, the task of system synthesis can be
formulated as an optimization problem.

Hierarchical Synthesis of Embedded Systems 75

Definition 3.11 (System Synthesis)The task ofsystem synthesisis the fol-
lowing multi-objective optimization problem:

minimize o(α, β),
subject to:

α is a feasible allocation,
β is a feasible binding,
ci(α, β) ≥ 0, ∀i ∈ {1, . . . , q}.

The constraints onαandβ define the set of valid implementations. Additionally,
there are functionsci, i = 1, . . . , q, that determine the set of feasible solutions.

Normally, theobjective functiono is n-dimensional, i.e., we optimizen
objectives simultaneously. Furthermore, there areq constraintsci, i = 1, . . . , q.
All possible allocationsα and bindingsβ span the design spaceX. Only those
design pointsx = (α, β) ∈ X that represent a feasible allocation and binding
and that satisfy all constraintsci, are in the set of feasible solutions, or for short
in thefeasible setcalledXf ⊆ X.

The image ofX is defined asY = o(X) ⊂ Rn, where the objective function
o on the setX is given byo(X) = {o(x) | x ∈ X}. Analogously, theobjective
spaceis denoted byYf = o(Xf) = {o(x) | x ∈ Xf}.

Since we are dealing with multi-objective optimization problems, there is
generally not only one global optimum, but a set of so-calledPareto-points
[15]. A Pareto-optimal implementation is a design point which is not worse
than any other feasible solution in the design space in all objectives. The
Pareto-setis the set of all Pareto-optimal solutions.

With this nomenclature, we formally define Pareto-optimality:

Definition 3.12 (Pareto-optimality) Letα andβ be a feasible allocation and
a corresponding feasible binding, respectively. A feasible implementationi =
(α, β) ∈ Xf is said to bePareto-optimal, if there is no other design point
ĩ = (α̃, β̃) ∈ Xf which dominates it, i.e.,

@̃i ∈ Xf : ĩ � i,

where1

i � ĩ (i dominates̃i) iff o(i) < o(̃i)
i � ĩ (i weakly dominates̃i) iff o(i) ≤ o(̃i)

i ∼ ĩ (i is indifferent tõi) iff o(i) � o(̃i) ∧ o(i) � o(̃i).2

The set of all Pareto-optimal solutions is called thePareto-optimal set, or the
Pareto-setXp for short. An approximation of the Pareto-setXp will be termed
quality setXq in the following.

Example 3.6 An example of a two-dimensional objective space is given in
Figure 3.6. Assume that the objectiveso1 ando2 are both to be minimized.

76 EVOLUTIONARY ALGORITHMS FOR EMBEDDED SYSTEM DESIGN

o2

o1

1p

p4

p3

p2

Figure 3.6. Sample objective space of an optimization problem with 2 objectiveso1, o2 (n = 2).

There are four Pareto-optimal points, namelyp1,p2,p3, andp4. All other
points are dominated at least by one Pareto-point. The Pareto-set is given by
{p1,p2,p3,p4}. The remaining points are all dominated by at least one Pareto-
optimal solution.

In the following we introduce the notation(gs, g) to denote apartial specifica-
tionwhereg is any subgraph in the problem graphgs.gp of the given specification
gs.

Definition 3.13 (Partial Specification) Let gs = (Vs, Es) be a specification
graph as defined in Definition 3.5 and letg be any subgraph in the corresponding
problem graphgs.gp. Apartial specification(gs, g) is obtained by removing all
vertices and subgraphs from the problem graphgs.gp of the specification graph
gs leaving onlyg and all its associated subgraphs. To guarantee a meaningful
specification, all mapping edges incident to deleted nodes are removed from the
specification graph, too. Furthermore, vertices in the architecture graphgs.ga

of the specification graphgs which are not incident to any mapping edge, will
also be deleted.

Example 3.7 Given the problem graph shown in Figure 3.4 on page 71. The
problem graph of the partial specification(gs, Image&Video) is highlighted in
Figure 3.7. As described above, all vertices and subgraphs are removed from the
problem graph except the subgraphImage&Video and its associated subgraphs
(dark shaded subgraphs). In this example, we omitted the architecture graph
and mapping edges.

Hierarchical Synthesis of Embedded Systems 77

CL

AudioCoder VisualCoder

Image&VideoSynthesizedSoundNaturalSound

dup

CM

CELPCoder

LPCanalyze

LPCcoeff

IN DIFF

LF

DCT Q

Q−1
REC DCT−1

SF

BMRF

MTC VM

SC

MPEG4VideoCoder

SyntheticObjects

Figure 3.7. Problem graph of a partial specification.

Obviously, the partial specification(gs, gs.gp) corresponds to the original spec-
ification gs. In the following, we denote this particular partial specification as
top-level specification.

Definition 3.14 (Decomposition)A decompositionΘ(gs, gs.gp) of a top-level
specificationgs is a partition ofgs into partial specifications given by:

Θ(gs, gp) =
⊗

∀v∈gp.V :g∈v.G

(gs, g),

where⊗ denotes the composition operator which depends on the structure of
the problem graph.

Example 3.8 For example, one possible decomposition of the MPEG4 coder
shown in Figure 3.7 is given by:

Θ(gs, gs.gp) = (gs,AudioCoder)
⊗ (gs,SyntheticObjects)
⊗ (gs, Image&Video)

With the definitions given above, we use the notationX(gs, g) to denote the par-
tial design space regarding the partial specification(gs, g). The respective ob-
jective space is given byY (gs, gp). Furthermore, letXp(gs, gp) andXf(gs, gp)

78 EVOLUTIONARY ALGORITHMS FOR EMBEDDED SYSTEM DESIGN

denote the Pareto-set and the feasible set of specification graphgs, respectively,
while meeting the imposed constraintsc = (c1, c2, . . . , cq). Yf(gs, gp) is the
objective space regardingXf(gs, gp).

Hierarchical Design Space Up to now, we only defined optimality and feasi-
bility given the top-level specification. Now, we consider the case of composing
a system by solutions of its subsystems preparing the idea of a hierarchical de-
sign space exploration. Abraham et al. name three advantages for hierarchical
design space exploration techniques [1]:

1 The size of each subsystem’s design space is smaller than the top-level
design space, i.e.,

∀v∈gp.V : ∀g∈v.G : |X(gs, g)| ≤ |X(gs, gp)| .

2 The evaluation effort for each subsystem design is low because of the
smaller complexity of the subsystem. It is easier to determineXf(gs, gp)
for small systems, see also [3].

3 The number of top-level design points to be evaluated is a small fraction
of the size of the original search space. In our case, this is due to the fact
that a valid implementation is only composable of valid solutions of its
subsystems (see also item 2), i.e.,

Xf(gs, gp) ⊇
⊗

∀v∈gp.V :g∈v.G

Xf(gs, g).

Here,⊗ denotes the design space composition operator, which depends
on the structure of the problem graph as well as on the chosen objectives.
A vertex v whose set of subgraphs is empty (v.G = ∅), will result in
a partial design space composed of all possible bindingsβ of v and
corresponding allocationsα.

It seems to be clear that a feasible top-level implementation must be composed
of feasible subsystem implementations. Thus, we are able to restrict our search
space dramatically. Unfortunately, however, we cannot generally assume that
a Pareto-optimal top-level design is composed of Pareto-optimal subsystem
implementations. Abraham et al. define necessary and sufficient conditions of
the composition function of the objectives which guarantee Pareto-optimality
for the top-level system depending on the Pareto-optimality of its subsystems
[1]. Applied to our problem of system synthesis, a decompositionΘ(gs, gp) of a
given top-level specification(gs, gp) is calledmonotonicif the top-level Pareto-
setXp(gs, gp) is given by the composition⊗ of the Pareto-setsXp(gs, gi) for all
subsystems(gs, gi) ∈ Θ(gs, gp). This is true if the composition function of each

Hierarchical Synthesis of Embedded Systems 79

objective is a monotonic function. In that case, we would be able to construct
the true Pareto-front from the Pareto-optimal solutions of its subsystems.

Although this observation is important and interesting, the optimization goals
in embedded system design unfortunately do not possess these monotonicity
properties. In fact, they depend on the system composition operator⊗ as will
be shown in the next section. The major question therefore is whether we
have to combine all feasible implementations of all subsystems or whether
it is possible to find the Pareto-optimal solutions (or a good approximation
thereof) by exploring a reduced design space. This directly leads to two different
optimization approaches proposed in this chapter (Section 5). Before we present
these ideas, we formally define the most important objectives for embedded
system design and used throughout this chapter.

3.3 Objective Space

In this section, we consider a three-dimensional objective space which is
defined by thecost, the overallpower consumptionand theflexibility of an
implementation.

Definition 3.15 (Implementation Cost (Objective 1)) Theimplementation
costcost(i) for a given implementationi = (α, β) is given by the sum of cost
of all allocated resourcesv ∈ α ∩ V (ga), i.e.,

cost(i) =
∑

v∈α∩V (ga)

cost(v)

Example 3.9 Again, we look at Example 3.5 on page 74. In order to calcu-
late the implementation costcost(i), we have to compute the set of allocated
resources, i.e.,

αv ∩ V (ga) = {RISC1,SB,RISC2,Network,Scene}

Now, we calculate the implementation cost of this implementationi:

cost(i) = cost(RISC1) + cost(RISC2) + cost(SB) +
cost(Network) + cost(Scene)

= 750 + 800 + 50 + 0 + 0 = 1600

With this definition, we are able to show that unfortunately, the composition
function of the implementation cost is a non-monotonic function.

Theorem 3.1 The composition function for the cost objective of an embedded
system is non-monotonic.

Proof 3.1 We prove this theorem by contradiction using an example.

80 EVOLUTIONARY ALGORITHMS FOR EMBEDDED SYSTEM DESIGN

g1g11v

gp ga

g22v 1r
2r g2

Figure 3.8. Sample specification.

Given the specification graphgs depicted in Figure 3.8. Let the allocation
cost forr1 andr2 be 200 and 100, respectively. The cost objective for the Pareto-
optimal design regarding the cost of allocated resources of the subsystems
are given bycost(Xp(gs, g1)) = {(100)} and cost(Xp(gs, g2)) = {(200)}.
When considering subsystem(gs, g1) alone, we would allocate resourcer1 as a
cost-minimal implementation. When considering subsystem(gs, g2) alone, the
resourcer2 would determine its cost-optimal implementation. By combining
both implementations, we obtain an implementation of the top-level design
(gs, gp). Due to the allocation of both resources, we get implementation cost of
cost(Xp(gs, g1))⊗ cost(Xp(gs, g2)) = 300 for the combined implementation
which is obviously suboptimal ascost(Xp(gs, gp)) = 200.

�

If each subsystem is bound onto a dedicated resource, we could sum up the cost
of each subsystem in order to calculate the overall cost. Then, if we could find a
single resource with smaller cost, we could also optimize our top-level design.
The most meaningful computation of the overall implementation cost of a top-
level design while sharing resources among its subsystems is given by the sum
of all usedresources. Hence, the definition of cost optimal implementations of
subsystems will not provide cost optimal solutions at higher hierarchical levels.

Our second objective, the overall power consumption is the sum of the power
consumptions of all allocated resources and the additional power consumptions
originating by binding processes to resources.

Definition 3.16 (Power Consumption (Objective 2))The overallpower con-
sumptionpower(i) of a given implementationi = (α, β) is given by the sum of
power consumption of all allocated resourcesv ∈ α∩V (ga) plus the additional
power consumption annotated at the mapping edgese ∈ β, i.e.,

power(i) =
∑

v∈α∩V (ga)

power(v) +
∑
e∈β

power(e)

Hierarchical Synthesis of Embedded Systems 81

Example 3.10 The implementation described in Example 3.5 possesses the
following overall power consumption:

power(i) = power(RISC1) + power(RISC2) + power(SB) +
power(Network) + power(Scene) +
power((C1,Scene)) + power((DL,RISC1)) +
power((C2,SB)) + power((CL,RISC2)) +
power((C3,SB)) + power((AL,RISC1)) +
power((C4,RISC1)) + power((FL,RISC1)) +
power((C5,Network))

= 450 + 400 + 50 + 0 + 0 + 0 + 100 + 10 + 200 +
10 + 300 + 0 + 100 + 0 = 1620

The third objective, the reciprocal of a system’s flexibility, is defined as follows:

Definition 3.17 (Flexibility (Objective 3)) Theflexibility f(g) of a given
problem (sub)graphg is expressed as:

f(g) = α(g)·

[∑

v∈g.V

∑
ĝ∈v.G f(ĝ)

]
− |{v | v ∈ g.V ∧ |v.G| ≥ 1}|+ 1
for {v | v ∈ g.V ∧ |v.G| ≥ 1} 6= ∅

1 otherwise

where the termα(g) describes the utilization (α(g) = 1) of the subgraphg in
the implementation, otherwiseα(g) = 0.

In other words: The flexibility of a subgraphg, if element of the allocation, is
calculated by the sum of the flexibilities of all its vertices minus the number of
hierarchical vertices less 1, and 1 if there is no hierarchical vertex in the given
subgraph. The flexibility of a hierarchical vertex is the sum of flexibilities of
all its associated subgraphs. If a subgraph is not in the implementation, its
flexibility is 0.

For a comprehensive illustration of a system’s flexibility, see [12]. Without
loss of generality, we only treat system specifications throughout this chapter
where the maximal flexibility equals the number of leaf graphs.

4. System Synthesis Using Evolutionary Algorithms

An Evolutionary Algorithm (EA) is characterized by the fact that a number
N of potential solutions (calledindividualsj ∈ X, whereX represents the
space of all possible individuals) of the optimization problem simultaneously
sample the search space. ThispopulationP = {j1, j2, · · · , jN} is modified
according to the natural evolutionary process: after initialization, selection and
recombination are executed in a loop for a fixed number of iterations. Each run
of the loop is called agenerationandPt denotes the population at generationt.

82 EVOLUTIONARY ALGORITHMS FOR EMBEDDED SYSTEM DESIGN

The selection operator is intended to improve the average quality of the pop-
ulation by giving individuals of higher quality a higher probability of survival.
Selection thereby focuses the search on promising regions in the search space.
The quality of an individual is measured by a fitness function. Recombination
changes the genetic material in the population either by crossover or by mu-
tation in order to explore new points in the search space. Depending on the
problem to be solved, various codings for EAs exist, e.g., the individuals are
represented by bit strings, vectors of integers or reals, trees, graphs. The choice
of coding determines also the recombination operator.

4.1 Multi-Objective Evolutionary Algorithms

Evolutionary Algorithms in multi-objective optimization (MOEAs) are in-
vestigated by many research groups. We can divide these methods in two
groups, Elitist MOEA and Non-elitist MOEA. In Elitist MOEA, the best solu-
tions of each population are kept in an archive. In fact, the presence of elites
enhances the probability of creating better offsprings and it has been proven [16]
that a class of Evolutionary Algorithms converge to the global optimal solution
of some functions in the presence of elitism. Elitist MOEAs are investigated in
algorithms like NSGA2, PAES, Rudolph and Agapie’s Elitist, SPEA2, etc. [5].
In the following we shortly review some of these algorithms, then we will intro-
duce SPEA2 [19] that serves as the basis of both of our optimization approaches
to system synthesis.

Rudolph and Agapie’s Elitist Genetic Algorithm (AR1). Rudolph and
Agapie suggested a Multi-Objective Evolutionary Algorithm (MOEA) which
uses elitism [17]. In its general format,µ parents are used to createλ (λ ≥
µ) offsprings using genetic operators. So in each generation, there are two
populations, the parent populationPt and the offspring populationQt. The
algorithm works in three phases. In the first phase, non-dominated solutions of
Qt are identified, deleted fromQt, and placed into an elite populationP t. In the
second phase, each solutionq of P t is compared with each solution of the parent
populationPt. If q dominates a solution inPt, that solution is deleted fromPt

andq is moved into a setP ′
t . On the other hand, ifq is indifferent to the solutions

in Pt, we remove it fromP t and put it into another setQ′
t. In the third phase,

all the above sets are arranged in a special order of performance. First,Pt and
P ′

t are combined. If they together do not fill up the whole population, we take
solutions from the the sets in following order:Q′

t, P t andQt. This algorithm
guarantees convergence to the true Pareto-optimal front. A disadvantage of this
algorithm is that it doesn’t guarantee a good distribution of diverse solutions on
the Pareto-optimal front.

Hierarchical Synthesis of Embedded Systems 83

Elitist Non-dominated Sorting Genetic Algorithm (NSGA2). In this
algorithm [4], the offspring populationQt of sizeN is created from the parent
populationPt of sizeN . First, these two populations are combined to form a
populationRt of size2N . Then, a non-dominated sorting procedure is used
to classify the entire populationRt as follows: Non-dominated individuals are
calculated fromRt and are called non-dominated solutions of front 1. Then,
these are temporarily disregarded fromRt and the non-dominated solutions of
the remaining elements ofRt are then determined and called non-dominated
solutions of front 2. This procedure is continued until all the members ofRt

are classified into a non-dominated front. After this sorting process, the new
population is filled by solutions of different non-dominated fronts, one at a time.
The filling starts with the best non-dominated front and so on. SinceRt has2N
solutions and the new population must haveN solutions, justN best solutions
appear in the new population (N solutions from the best fronts). In the case of
inadequate available space in the new population to accommodate all solutions
of a non-dominated set, a crowding strategy is used to identify solutions which
reside in less crowded areas.

Pareto-Archived Evolution Strategy (PAES). In this algorithm, each child
is compared with its parents. If the child dominates a parent, the child is
accepted as a parent in the next generation [14]. If a parent dominates the
child, the child is discarded and a new child must be created. In the case that
both are indifferent, the child will be compared with an archive of so far best
solutions. If it dominates any member in the archive, it will be a parent in the
next generation. But if the child does not dominate any member in the archive,
both parent and child are compared for their nearness (distance) to members of
the archive. If the child resides in a least crowded region, it is accepted as a
parent and will be added to the archive. In the case that child and parent have
the same nearness (distance) to the archive, one of them is selected at random.

4.2 Strength Pareto Evolutionary Algorithm

SPEA2 in contrast to its predecessor SPEA (Strength Pareto Evolutionary
Algorithm, [21] and [19]) incorporates a fined-grained fitness assignment strat-
egy, a density estimation technique, and an enhanced truncation method that are
explained in the following. This method uses Pareto-dominance based selection
[10] and elitism where the policy is to always include theN best individuals
of the current generation into the next generation in order not to loose them
during exploration. TheseN best individuals are stored in an archiveP t. Fi-
nally, in order to maintain a high diversity within the population, it uses an
enhanced truncation method, which guarantees a high diversity of individuals
in the archive. Altogether, SPEA2 has shown to provide superior results com-
pared to existing approaches, see, e.g., [19] for many problems of interest. The

84 EVOLUTIONARY ALGORITHMS FOR EMBEDDED SYSTEM DESIGN

algorithm of SPEA2 as it will be used here for multi-objective optimization is
listed below:

SPEA2 ALGORITHM
IN: N : population size,N : Archive size

T : Maximum number of generations

OUT: P : Non-dominated set

Step1: Initialization: Initial populationPt and an empty archiveP t.

Sett as the current generation andt = 0.

Step2: Fitness Assignment:Calculate fitness values of individuals inPt

andP t.

Step3: Environmental Selection:Copy all non-dominated individuals inPt

andP t to P t+1. If size ofP t+1 exceedsN , then reduceP t+1 by

means of the truncation operator, otherwise if size ofP t+1 is less

thanN , then fill P t+1 with dominated individuals inP t andPt.

Step4: Termination:If t > T or another stopping criterion is satisfied,

then setP to the set of decision vectors represented byP t+1.

Step5: Mating Selection:Perform binary tournament selection with

replacement onP t+1 in order to fill the mating pool.

Step6: Variation: Apply recombination and mutation operators

to the mating pool and setPt+1 to the resulting population.

Increment generation counter (t = t + 1) and go to step 2.

Fitness Assignment. In SPEA2 [19], both dominating and dominated solu-
tions are taken into account for calculating the fitness value of each individual
(to avoid the situation that individuals dominated by the same archive members
get identical fitness values). In detail, to each individualj in the archiveP t and
the populationPt is assigned a strength valueS(j), representing the number of
solutions it dominates:

S(j) =
∣∣∣{j̃ | j̃ ∈ Pt + P t ∧ j � j̃

}∣∣∣ (3.1)

Here,+ stands for multi set union. On the basis of the strengthS, the raw
fitnessR(j) of an individualj is calculated:

R(j) =
∑

j̃∈Pt+P t ,̃j�j

S(j̃) (3.2)

For Example, Figure 3.9 shows the raw fitness values for a given population
and a minimization problem with two objectiveso1 ando2.

Additional density information is incorporated to discriminate between in-
dividuals having identical raw fitness values. The density estimation technique

Hierarchical Synthesis of Embedded Systems 85

o2

o1

0

0

12

0

3

non−dominated

23

14

0

7

16

23

12

0 0

dominated

26

29

Figure 3.9. Raw fitness values for a minimization problem with two objectiveso1 ando2 using
SPEA2.

used in SPEA2 is an adaptation of akth nearest neighbor method, where the
density at any objective vectorj is a functionD(j) of the distance to thekth
nearest objective vector. The final fitness value will beF (j) = R(j) + D(j).
In this case, the final fitness values of the non-dominated points are less than 1
and not zero anymore.

Truncation Method. In this step which is also called environmental se-
lection, the first step is to copy all non-dominated individuals, i.e., those which
have a fitness lower than one, from archive and population to the archive of the
next generation:

P t+1 =
∣∣{j | j ∈ Pt + P t ∧ F (j) < 1

}∣∣ (3.3)

whereF (j) is the fitness value ofj. If the non-dominated front fits exactly into
the archive, the environmental selection step is completed. Otherwise, there
can be two situations: Either the archive is too small or too large. In the first
case, the best dominated individuals in the previous archive and population are
copied to the new archive. In the second case, the archive must be truncated
and some of the individuals in the archive must be deleted. In SPEA2, the
individual which has the minimum objective distance to another individual is
chosen at each stage; if there are several individuals with minimum distance,
the tie is broken by considering the second smallest distance, and so forth.

4.3 Chromosome Structure for System Synthesis

First, we explain a suitable chromosome structure of an EA for non-hierar-
chical specification graphs. Later, we propose a hierarchical extension of this
structure. The explanation of the non-hierarchical chromosome structure, how-
ever, is needed first. Each individual consists of two components, anallocation
and abinding, as defined in Definition 3.6 and 3.7 (see Figure 3.10).

86 EVOLUTIONARY ALGORITHMS FOR EMBEDDED SYSTEM DESIGN

Binding

Individual
Decode Binding

Evolutionary

Decode AllocationAllocation

Fitness Fitness Evaluation

βImplementation α
Algorithm

Figure 3.10. The decoding of an individual to an implementation.

To obtain a meaningful coding for the task of system synthesis, one has
to address the question of how to handle infeasible allocations and infeasible
bindings suggested by the EA. Obviously, if allocations and bindings may be
randomly chosen, a lot of them can be infeasible. In general, there are two
different methods to handle these infeasible implementations: Punishing and
Repairing. Here, repairing is used. Because of the well known properties of
feasible allocations and bindings, one can “repair” infeasible individuals by
incorporating domain knowledge in these repair mechanisms easily. But as the
determination of a feasible allocation or binding is NP-complete [3], this would
result in solving an NP-complete task for each individual to be repaired.

These considerations have led to the following compromise: The randomly
generated allocations of the EA are partially repaired using a heuristic. Possible
complications detected later on during the calculation of the binding will be
considered by a penalty. Hence, the mapping task can be divided in three steps:

1 First, the allocation of resourcesv ∈ Va is decoded from the individual
and repaired with a simple heuristic (the functionallocation()),

2 Next the binding of the edgese ∈ Em is performed (the functionbind-
ing()), and

3 Finally, the allocation is updated in order to eliminate unnecessary ver-
ticesv ∈ Va from the allocation and all necessary edgese ∈ Ea are added
to the allocation (the functionupdateallocation()).

DECODING
IN: The individualj consisting of allocationalloc,

repair allocation priority listLR, binding order listLO,

and binding priority listLB(v).

OUT: The allocationα and the bindingβ if both are feasible,

({}, {}) if no feasible binding is represented by the individualj

Hierarchical Synthesis of Embedded Systems 87

α = {SB, FPGA2, Network}

Repairing

100 101 0
SB RISC1 RISC2 FPGA1 FPGA2 Scene Netw.

RISC1 RISC2 Netw. SB FPGA2 Scene FPGA1

alloc

LR

Allocation

Binding

Individual

α = {SB, RISC1, FPGA2, Scene, Network}

Figure 3.11. An example of the coding of an allocation.

BEGIN
ᾱ← allocation(alloc(j), LR(j))
β̄ ← binding(LB(j), LO(j), ᾱ)
IF β̄ = {}

RETURN ({}, {})
ENDIF
β ← β̄

α← update allocation(ᾱ, β̄)
RETURN (α, β)

END

One iteration of the loop results in a feasible allocation and binding of the
vertices and edges of the problem graphgp to the vertices and edges of the
architecture graphga. If no feasible binding could be found, the whole decoding
of the individual is aborted.

In the following the functionsallocation(),binding(), andupdate-allocation()
are explained in detail.

4.3.1 The Function allocation(). The allocation of vertices is directly
encoded in the chromosome, i.e., the elements in a vectoralloc encode for
each vertexv ∈ Va if it is activated or not, i.e.,a(v) = alloc[v]. This simple
coding might result in many infeasible allocations. Due to this fact, a simple
repair heuristic is applied. This heuristic only adds new verticesv ∈ Va to
the allocation and reflects the simplest case of infeasibility that may arise from
non-executable functional vertices: Consider the setVB ⊆ Vp that contains all
vertices that can not be executed, because not a single corresponding resource
vertex is allocated, i.e.,VB = {v ∈ Vp | ∀ṽ ∈ Va : (v, ṽ) ∈ Em ∧ a(ṽ) = 0}.
To make the allocation feasible (in this sense) for eachv ∈ VB, at most one
ṽ ∈ Va is added, until feasibility in the sense above is achieved.

88 EVOLUTIONARY ALGORITHMS FOR EMBEDDED SYSTEM DESIGN

ALLOCATION
IN: The allocationalloc and repair allocation

priority list LR of individual j

OUT: The allocationα

BEGIN
α← {}
FORALL ṽ ∈ Va DO

IF (alloc[ṽ] = 1)
α← α ∪ {ṽ}

ENDIF
ENDFOR
VB ← not bindable nodes(α)
ṽr ← first(LR)
WHILE (VB 6= {}) DO

IF (VB 6= not bindable nodes(α ∪ {ṽr})
α← α ∪ {ṽr}
VB ← not bindable nodes(α)

ENDIF
ṽr ← next(LR)

ENDWHILE
RETURN α

END

The order in which additional resources are added has a large influence on
the resulting allocation. For example, one could be interested in an additional
allocation with minimal cost. As this depends on the optimization goal ex-
pressed in the objective functiono, the order should automatically be adapted
(see also Figure 3.11). This will be achieved by introduction of arepair allo-
cation priority listLR coded in the individual. In this list, all resourcesv ∈ Va

are contained and the order in the list determines the order the vertices will be
added to the allocation. This list also undergoes genetic operators like crossover
and mutation and can therefore be optimized by the Evolutionary Algorithm.

Example 3.11 Consider the specification of Example 3.3 in Figure 3.3. In
Figure 3.11, the allocation information as stored in the individual is shown
on the left. The direct decoding of the allocation string yields the allocation
α = {SB,FPGA2,Network}. This allocation is not valid as there exists no
allocated resource for executingC1,DL,AL,C4,FL ∈ gp. This allocation is
then repaired using the repair allocation priority list.SB,FPGA2 andNetwork
are already in the allocation. SoRISC1 andScene are allocated. The rest of
the list is then ignored, as no node remains unmappable.

Hierarchical Synthesis of Embedded Systems 89

4.3.2 The Function binding(). A binding is obtained by activating
exactly one edgee ∈ Em adjacent to an allocated vertexv for eachv ∈ Vp.
The problem of coding the binding lies in the strong inter-dependence of the
binding and the current allocation. As crossover or mutation might change
the allocation, a directly encoded binding could be meaningless for a different
allocation. Hence, a coding of the binding is of interest that can be interpreted
independentlyof the allocation. This is achieved in the following way:

For each problem graph vertexv ∈ Vp, a list is coded as allele that contains all
adjacent edgese ∈ Em of v. This list is seen as a priority list and the first edge
ek with ek = (v, ṽ) that gives a feasible binding is included in the binding,
i.e., α(ek) := 1. The test of feasibility is directly related to the definition
of a feasible binding (see Definition 3.8). Details are given in the following
algorithms. Note that it is possible that no feasible binding is specified by the
individual. In this case,β is the empty set, and the individual will be given a
penalty value as its fitness value.

BINDING
IN: The binding priority listsLB(v) ∀v ∈ Vp, the

binding order listLO, and the allocationα of an individualj.

OUT: The bindingβ, or {} if no feasible binding was decoded.

BEGIN
β ← {}
FORALL u ∈ LO ∩ α DO

e′ ←null

FORALL e ∈ LB(u) ∩ α do

IF (is feasible binding(e, β, α))
e′ ← e

BREAK
ENDIF

ENDFOR
IF (e′ = null)

RETURN {}
ELSE

β ← β ∪ {e′}
ENDIF

ENDFOR
RETURN β

END

Example 3.12 Figure 3.12 shows an example of a binding as it is coded in an
individual allocated in Example 3.3 (Figure 3.3). The binding order specified

90 EVOLUTIONARY ALGORITHMS FOR EMBEDDED SYSTEM DESIGN

(C 1)

(C)4

)5

Decode

Binding

(CL B

L B

L B

L B

(DL)L B

(C)L B

L B

(C)L B

L B

2

3

(CL)

(AL)

(FL)

Scene

RISC1

SB

SB

RISC1

RISC1

RISC1

Network

RISC2 FPGA1 FPGA2

DL CL AL FLL O C 1 C 2 C 3 C 4 C 5

Binding

Allocation

Individual

1= {(C , Scene), (DL, RISC1), (C

(C

(CL, FPGA2), (C3

α

, SB), (AL, RISC1),

, SB),2

, Network)}54 , RISC1), (FL, RISC1), (C

β

Figure 3.12. An example of the coding of a binding.

by the listLO is C1,DL,C2,CL,C3,AL,C4,FL,C5. The binding priority
lists for all nodes are also shown. For example, the priority list for nodeCL
implies to bindCL to the resource RISC2. If this is not possible, it should be
bound to FPGA1, and if this is also not possible, it should be bound to FPGA2.
As the allocation from Example 3.11 does not contain RISC2 and FPGA1, this
node is finally bound to FPGA2.

Finally, in the function update-allocation, vertices of the allocation that are
not used will be removed from the allocation. Furthermore, all edgese ∈ Ea in
the architecture graphga are added to the allocation that are necessary to obtain
a feasible binding.

5. Hierarchical Design Space Exploration

In the previous section, an EA coding for allocations and bindings of non-
hierarchical specification graphs was revised. Here, we want to present EA-
based techniques for hierarchical graphs. For this purpose, two novel ap-
proaches for design space exploration of hierarchically structured specifications
are proposed.

1 Pareto-Front Arithmetics

2 Hierarchical Chromosomes

Hierarchical Synthesis of Embedded Systems 91

Xq(g s , g1)

Xq(g s , g)2
Front
Pareto−

Xq(g s , g)n

Xq(g s , g)p
Arithmetics

Figure 3.13. Concept of Pareto-front arithmetics.

5.1 Pareto-Front Arithmetics

In this section, we introduce a hierarchical design space exploration scheme
calledPareto-front arithmeticsin the context of hierarchical system synthesis.
The main idea is to compute a quality set of a top-level design from the Pareto-
sets (or a quality set) of the subsystems. This hierarchical construction of the
quality set will be termedPareto-front arithmetics.

Figure 3.13 explains this concept of Pareto-front arithmetics. The inputs are
the quality sets of the mutual exclusive partial specifications(gs, g1), (gs, g2),
. . . , (gs, gn), where(gs, g1), (gs, g2) are mutual exclusive iffg1∩g2 = ∅. Here,
we can consider each partial specification as a non-hierarchical specification
associated with a leaf graph of the problem graph. In order to optimize such
a partial specification, we use the MOEA SPEA2 as described in the previous
section. The resulting quality sets are then used as inputs for Pareto-front arith-
metics (see Figure 3.13). The result is a quality set of the top-level specification
(gs, gs.gp).

Figure 3.14 shows three operations of how to possibly combine Pareto-fronts
of subsystems that may be used by Pareto-front arithmetics: The first operation
(Figure 3.14(a)) is the union of two or more Pareto-fronts, i.e., each Pareto-
optimal solution is added to the resulting set. All points not dominated in the
resulting set determine the Pareto-set of the next higher hierarchical level.

The second operation is to take the maximum of each objective in order to
combine two (or more) points (Figure 3.14(b)). Here, each Pareto-optimal
point p1 ∈ {p11,p12,p13,p14} is combined with each Pareto-optimal so-
lution p2 ∈ {p21, . . . ,p25}. The resulting objectives(o1, o2) of the com-
posed solutions are the maxima of the respective subsystems’ objectives, i.e.,
o1(p3x) = max(o1(p1i), o2(p2j)), ando2(p3x) = max(o2(p1i), o2(p2j)). The
composed solutions are filtered regarding Pareto-optimality. Figure 3.14(b)
shows six resulting Pareto-points.

Figure 3.14(c) outlines the addition of the objective of two or more Pareto-
points. Again, each Pareto-optimal solutionp1 ∈ {p11, . . . ,p14} is com-

92 EVOLUTIONARY ALGORITHMS FOR EMBEDDED SYSTEM DESIGN

o1

o2

o2

o1

o2

o1

o1

o2

o1

o2

p
25

p
35

p
34

p
33

p
32

p
31

p
11

p
12

13
p

p
14

p
21

p
22 p

23 p
24

p
31

p
32 p

33 p
34 p

35 p
36

p
38

37
pp

36
p
35

p
34

p
33

p
32

p
31

(b)

(a)

(c)

Figure 3.14. Example Pareto-front arithmetics operations (a) union, (b) maximum, and (c)
addition of objectives of Pareto-points.

bined with each pointp2 ∈ {p21, . . . ,p25}. Here, the resulting objectives
are calculated by the sum of the objectives of the subsystems, i.e.,ok(p3x) =
ok(p1i) + ok(p2j) for k = 1, 2. Since the presented operations are all mono-
tonic, the resulting optimality sets are indeed Pareto-sets, see [1].

The objectives used here for optimizing an embedded system, namely cost,
power, and flexibility, are more complex due to resource sharing, power con-
sumption being dependent on the binding, etc. Consequently, the operations
for Pareto-front arithmetics are more sophisticated as the operations shown in
Figure 3.14. Furthermore, these operations are non-monotonic as has been
shown for the objective implementation cost in Section 3. Hence, we cannot
claim Pareto-optimality for the implementations in the resulting optimality set
when using Pareto-front arithmetics in general.

More formally, Pareto-front arithmetics operates in the objective space, i.e.,

o = h(y1, y2, . . . , yn), whereyj = o(xj) ∀1 ≤ j ≤ n.

In Section 6.3 we will present a case-study where Pareto-front arithmetics is
applied to calculate an approximation of the Pareto-set. In order to compute the

Hierarchical Synthesis of Embedded Systems 93

objectives for the next hierarchical level, we use the following approximation
(addition of objectives). In particular, the performed operations are:

cost((gs, gi)), (gs, gj)) ≈ cost((gs, gi)) + cost((gs, gj))
power((gs, gi)), (gs, gj)) ≈ power((gs, gi)) + power((gs, gj))

f((gs, gi)), (gs, gj)) ≈ f((gs, gi)) + f((gs, gj))

5.2 Hierarchical Chromosomes

An alternative approach is to consider an EA that exploits the hierarchical
structure of the specification by encoding the structure in the chromosome itself.
In order to extend the presented approaches, we have to capture the hierarchical
structure of the specification in our chromosomes first. Figure 3.15 gives an
example for such a chromosome.

The depicted chromosome encodes an implementation of the problem graph
first introduced in Figure 3.4. The underlying architecture graph is the one
shown in Figure 3.2. The structure of the chromosome in Figure 3.15 resem-
bles the structure of the problem graph given in Figure 3.4. The leaves of the
chromosome are nearly identical to the non-hierarchical chromosome structure
described in Section 4 except for the lack of the allocation and allocation re-
pairing list. These have moved to the top-level node of the chromosome (see
Figure 3.15).

Furthermore, the chromosome is constructed by using hierarchical nodes.
Each hierarchical node resembles a subgraph of the underlying problem graph.
For each hierarchical vertexv in the corresponding subgraphg, the hierarchical
node contains a selection listLS. Each entry in this list describes the use of
subgraph̃g ∈ v.G associated withv in the implementation. Only leaves that are
selected all the way down from the top-level node are termedallocated leaves.
A leaf which is not selected is named anon-allocated leaf. If we encounter a
subgraph that does not include hierarchical vertices, we encode it by using a
non-hierarchical chromosome as described above.

Since each subgraph, if used in the implementation, has to be executed on the
same architecture, we store the global allocation string and a global allocation
repairing list in the top-level node. Despite the modified internal structure, our
hierarchical chromosome resembles exactly the non-hierarchical chromosome
by still encoding an allocation and a binding. The main difference lies in the
variable number of problem graph vertices allocated and bound in any given
individual.

We therefore still can use the same evolutionary operations, namely mutation
and crossover, as well as the functionallocation() that have been introduced
for the non-hierarchical structure (Section 4.3). However, we propose two
additional generic operators making use of the hierarchical structure of the
chromosome:

94 EVOLUTIONARY ALGORITHMS FOR EMBEDDED SYSTEM DESIGN

11 Top LevelSL

L B

L B

L B

L B

L B

L B

L B

L B

L B

Binding

RISC1

RISC1 FPGA1

RISC2

RISC2RISC1

Network

Scene

REC Q DCT RF IN

MPEG4VideoCoder

Binding

coeff analyze dupCM

Network

Scene

RISC2

FPGA1RISC1

RISC1

CELPCoder

0 1

NaturalSound

0

Synth.Sound

0 1 1

AudioCoder

0

Synth.Object

1 0

Image&Video

11 0

VisualCoder

Allocation

alloc 01 1 0 1

FPGA1RISC2RISC1 Scene NetworkFPGA2L R SB

L SL S

L S L S

L S L S

L OL O

(CM)

(analyze)

(coeff)

(dup)

(REC)

(Q)

(DCT)

(RF)

(IN)

11

Figure 3.15. Hierarchical chromosome structure for the problem graph given in Figure 3.4 and
the architecture graph given in Figure 3.2.

1 composite mutation

2 composite crossover

These operators are introduced in order to explore design points with different
flexibilities.

5.2.1 Composite Mutation. The hierarchical nodes in a hierarchical
chromosome directly encode the use of associated subgraphs in the implementa-
tion. The composite mutation of a hierarchical chromosome changes a selection
bit in a selection listLS from selected to deselected, or vice versa. As a result,
leaves of the chromosome are selected or deselected. Figure 3.16 shows both
cases.

Hierarchical Synthesis of Embedded Systems 95

Composition &
Allocation Repair

Composite Mutation Composite Mutation

Repair Allocation

0 1
0 1LR

Allocation 1

Binding
leaf

0 1 0

LR

Allocation
01

(b)(a)

0 1
0 1LR

Allocation 1

Binding
leaf

Binding
leaf

Binding
leaf

Binding
leaf

Binding
leaf

Binding
leaf

Binding
leaf

0 1 0
0 1LR

Allocation

0 1 0
0LR

Allocation
0

Binding
leaf

Binding
leaf

Binding
leaf

Binding
leaf

Binding
leaf

Binding
leaf

Binding
leaf

Binding
leaf

Binding
leaf

Binding
leaf

Binding
leaf

Binding
leaf

Binding
leaf

Binding
leaf

Binding
leaf

Binding
leaf

Binding
leaf

Figure 3.16. Example of composite mutation in hierarchical chromosome (a) selection of a
leaf graph (b) deselection of a leaf graph.

The selection of an additional leaf is depicted in Figure 3.16(a). Since the se-
lection of a leaf in the chromosome corresponds to the allocation of a leaf graph
in the problem graph, we may produce infeasible results: A newly allocated
leaf graph may have an inconsistent binding regarding the global allocation of
the chromosome. Perhaps the leaf also contains unmappable operations under
the given allocation. Thus in a first step, we have to repair the allocation on the
provided information of not yet bound operations of the newly allocated leaf.
This has to be repeated until a feasible binding is found for all allocated leaf
graphs.

The case of deselection of a leaf is shown in Figure 3.16(b). In this case no leaf
graph remains allocated for one of the two hierarchical vertices. Consequently,
a repair of the allocation is necessary. Here, we select one associated subnode
randomly. This step is calledcomposition repair. The allocation of the new
selected leaf will be repaired subsequently.

96 EVOLUTIONARY ALGORITHMS FOR EMBEDDED SYSTEM DESIGN

Repair Composite &
Repair Allocation

0 1

1

1

0

Composite Crossover

Repair Allocation

Subchromosome 1 Subchromosome 2

Subchromosome 2 Subchromosome 1

0 1 0

0 1

0 1 0

0 1

0 1

0 1

1

1

01

00

0

1

0 101

00

1

0 1

0 10 1 0

0 10 1 0

0 1

Figure 3.17. Example of composite crossover applied to a hierarchical chromosome resulting
in one valid and one invalid composition.

In summary, composite mutation is used in order to explore the design space
of different allocations of leaf graphs of the problem graph (flexibility). The
second genetic operator, composite crossover, is used for the same purpose, al-
lowing, however larger changes as when using the composite mutation operator
only.

5.2.2 Composite Crossover. The second operator is called composite
crossover. An example of how composite crossover works is shown in Fig-
ure 3.17. Two individuals are cut at the same hierarchical node in the chromo-
some. After that we interchange these two subgraphs. This results in two new
chromosomes as depicted in Figure 3.17. This operation again may invalidate
one or both implementations represented by the chromosomes.

Since we store the allocation in the top-level node of an individual, we know
the allocation for both resulting chromosomes. Again, this operation could
invalidate the leaf graph allocation (at least one subnode has to be selected
for each selected hierarchical node in a chromosome, see lower left part in
Figure 3.17). Thus, we have to repair the composition of the implementation

Hierarchical Synthesis of Embedded Systems 97

CL

HILN

H.261VTC

NaturalSound

AudioCoder

SyntheticObjects

VisualCoder

Image&Video

MPEG2Coder

CELPCoder MPEG4VideoCoder

Figure 3.18. Complete functional problem graph specification of the MPEG4 coder.

first. This can be established by repairing the node in the next higher level,
i.e., deselecting the inserted node. But this, again, may lead to an invalid leaf
graph allocation. The better choice is to repair the inserted node by selecting an
appropriate subgraph. In a second step, we have to repair the global allocation
as described above.

6. Case Study

This section presents first results obtained by using our two new approaches.

6.1 Example

Figure 3.18 shows the complete functional specification for the MPEG4
coder used throughout the rest of this chapter. There are six leaf graphs, each
representing a different coding algorithm. Our goal is to implement at least one
of these algorithms with the goal to minimize cost, power, and to maximize the
flexibility.

As described in Section 2, we also need the architecture on which we can
execute the tasks given by the problem graph. Here, we use the same architecture
template for all subgraphs.

The underlying architecture is depicted in Figure 3.19. The architecture
consists of three shared buses (SBS, SBM, and SBF), two memory modules
(a single and a dual ported memory), two programmable RISC processors, a
signal processor (DSP), several predefined hardware modules (namely a block
matching module (BMM), a module for performing DCT/IDCT operations
(DCTM), an add/subtract module (SAM), a Huffman coder (HC)), and I/O
devices (INM and OUTM).

98 EVOLUTIONARY ALGORITHMS FOR EMBEDDED SYSTEM DESIGN

OUTMHCDCTMSAMRISC2

BMMPTPFMRISC1

SBM

INM

DSPDPFM

SBF SBS

Figure 3.19. Architecture graph for the implementation of the MPEG4 coder.

The RISC processors (RISC1 and RISC2) as well as the signal processor
(DSP) are capable of performing any functional operation. However, the DSP
executes the operations faster and is more expensive in acquisition. The other
hardware modules are dedicated to special groups of operations. For example,
the DCTM can only perform the operations discrete cosine transformation and
the inverse discrete cosine transformation.

A detailed description of this case study including possible mappings and
delays of all modules as well as the results can be found in [18]. The search
space for this example consists of more than2200 points.

6.2 Parameters of the Evolutionary Algorithm

In order to apply an Evolutionary Algorithm successfully to a specific op-
timization problem, several parameters have to be adjusted. Most important
are the coding mechanism and the fitness function that have been described in
Section 4.2. Here, we briefly outline the selection scheme and recombination
mechanism. The selection method should maintain a high diversity in the pop-
ulation, i.e., not only the particular fitness value of an individual is of interest
(as in standard selection schemes), but also its “uniqueness”. This means that
many copies of a good individual should be avoided but different individuals
with a good fitness value should be preserved. This is usually achieved by
replacing the most “similar” individual out of a randomly chosen crowd of the
population by the new individual if it has a better fitness. The “similarity”
introduces a new selection criterion and makes a metric necessary to define
similarity. Herein, this metric is the number of differently bound functional
nodes. The particular selection method used herein is calledrestricted tour-
nament selection[11]. The specific encoding of an individual makes special

Hierarchical Synthesis of Embedded Systems 99

crossover and mutation schemes necessary. In particular, for the allocationα
uniform crossover is used, that randomly swaps a bit between two parents with
a probability of 0.25. For the lists (repair allocation priority listsLR, binding
order listsLO and the binding priority listsLB(v)), order based crossover (also
names position-based crossover) is applied (see [5]). Order based crossover
ensures that only permutations of the elements in the chromosomes are created,
i.e., parts of the list of the parents are combined and repaired such that a le-
gal permutation is obtained. The construction of the individuals makes further
repairing methods unnecessary.

For the composite crossover in hierarchical chromosomes, single-point cross-
over with a probability of 0.25 is chosen. Single-point crossover is performed
on the selection list of each single node in the hierarchical chromosome by
randomly choosing a crossing site along the list and by exchanging all bits on
the right side of the crossing site.

A mutation of an allocationα consists in simply swapping each allocation
bit with a probability of 0.2. The mutation operator for the repair allocation lists
creates a new permutation of a list by swapping two randomly chosen elements
of the list. Composite mutation is done on the selection list of each node of the
hierarchical chromosome, and by swapping one element of the selection list
with a probability of 0.2.

In our experiments, we have chosen a population size of 300 and the archive
size in the SPEA2 method equal to 70.

6.3 Exploration Results

As due to complexity reasons, we do not know the true Pareto-set, we com-
pare the quality sets obtained by each approach against the quality set obtained
by combining all these results and taking the Pareto-set of this union of optimal
points. This set possesses 38 Pareto-optimal design points. A good measure of
comparing two quality setsA andB is then to compute the so-calledcoverage
C(A,B) as defined in [20]:

Definition 3.18 (Coverage)ThecoverageC(A,B) of two setsA andB is a
function that maps the ordered pair(A,B) to the interval[0, 1]:

C(A,B) =
|{b ∈ B | ∃a ∈ A : a � b}|

|B|

Obviously, a coverage ofC(A,B) = 1 corresponds to the fact that all elements
in B are weakly dominated by at least one element ofA. On the other hand,
a coverage ofC(A,B) = 0 means that none of the elements inB is weakly
dominated by the elements ofA.

100 EVOLUTIONARY ALGORITHMS FOR EMBEDDED SYSTEM DESIGN

C(o(Xq, t), o(Xfm
p))

C(o(Xpfa
q, t), o(Xp))

C(o(Xq, t), o(Xp))hc

100 200 300 400 500 600 700 800 900 1000 1100 1200

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C

t

Figure 3.20. Coverage of the Pareto-optimal implementations found after a given number of
generations compared to the Pareto-set.

6.3.1 Pareto-Front Arithmetics. When using Pareto-front arithmetics
to construct a quality set, we have to

1 Generate leaf graph Pareto-fronts for each leaf graph in Figure 3.18 using
one non-hierarchical EA each time.

2 Apply Pareto-front arithmetics to these fronts.

First, we present the results of the design space exploration of each leaf graph.
Using the SPEA2 algorithm, all Pareto-points of the leaf graphs were found.
For each leaf graph we have calculated 5 different sample runs. The average
calculation timeτ and number of generationst on a Sun-Blade 100 system
equipped with a 450 MHz Sparc-II processor and 2 GByte of main memory are
given below:

CELP AAC HILN VTC Image H.261 Total
τ 2 s 19.6 s 600.4 s 2 s 450.4 s 116.6 s 1191.0 s
t 1 3 99.4 1 62.4 18.4 185.2

The times given above show that the exploration of the design space of small
leaf graphs may already be very time consuming. Thus, we cannot expect to
explore the full flat design space within a reasonable amount of computation
time. As described in Section 5.1, we propose Pareto-front arithmetics for fast
design space exploration as follows:

With the results for each leaf graph, we can start a quick construction (< 1s

for the given example) of our quality setXpfa
q,t after each generationt. Since

this computation time is an order of magnitude smaller than the time needed for
exploring the top-level design space (as experiments have shown), this approach
seems to be a fast method of approximating the Pareto-setXp.

Hierarchical Synthesis of Embedded Systems 101

For our example, we obtained a coverage of≈ 78% of the Pareto-set (see
Figure 3.20). This is also the maximum coverage we can expect, since this
quality set was constructed from the Pareto-sets of the leaf graphs. Furthermore,
using Pareto-front arithmetics, our results converged fast (< 350 generations).

6.3.2 Hierarchical Chromosomes. By using hierarchical chromo-
somes, we could improve the coverage of the Pareto-set. Aftert = 1100
generations we achieved a coverage ofC(o(Xhc

q,t), o(Xp)) ≈ 0.83%. Again,
we averaged the results after 5 different runs.

As Figure 3.20 shows, the hierarchical EA produces only a few Pareto-
optimal points at the beginning. This is due to the fact, that now the EA is also
responsible for the exploration of allocations in the problem graph.

In contrast to the results when using Pareto-front arithmetics, the hierarchical
EA could reach a full coverage of the Pareto-set when run sufficiently long. As
we can see in Figure 3.20, the hierarchical EA produces a better quality set as
Pareto-front arithmetics already aftert ≈ 350 generations.

6.3.3 Non-Hierarchical EAs. In a last step, we compare our two
new approaches against a non-hierarchical approach. In this non-hierarchical
exploration algorithm, we explore the design spaces individually for all2k − 1
possible combinations wherek is the total number of leaf subgraphs in the
problem graph. Therefore, we perform six different exploration runs for each
individual leaf subgraph,

(
6
2

)
= 15 runs for combinations that select exactly two

leaf subgraphs, etc. All in all, there are26 − 1 = 63 combinations of leaf
subgraphs, where at least one leaf subgraph has to be chosen.3

For each of these 63 cases we apply the EA for a certain number of gen-
erations for each combinationk to obtain the quality set of the different leaf
graph selections. Since we use the same number of generations for each com-
bination, we simulate the case were each combination is selected with the same
probability. With the given archivesP t,k, we are able to construct the quality
set of the top-level design, denoted byX fm

q,t , by simply taking the union of all
archivesP t,k of the combinations and calculating the Pareto-optimal points in
the union. Figure 3.20 shows the result compared with the Pareto-set of our
particular problem.

For our particular problem, we see that both Pareto-front arithmetics as well
as hierarchical EAs are superior to the non-hierarchical exploration. By using
the flattened model, the coverage of the Pareto-front isC(X fm

q,1200, Xp) ≈ 52%.
However, as in the case of the hierarchical chromosomes, it should be possible
to find all Pareto-optimal solutions by using this non-hierarchical EA.

102 EVOLUTIONARY ALGORITHMS FOR EMBEDDED SYSTEM DESIGN

7. Conclusions

Two novel approaches, namelyPareto-front arithmeticsand Hierarchical
Chromosomesare proposed in this chapter and applied to the problem of syn-
thesis of embedded systems using Evolutionary Algorithms. We propose a
hierarchical graph-based model to describe algorithms, sets of architectures,
and mapping constraints in order to formalize the task of optimizing an imple-
mentation.

Since designing a system to best meet a set of requirements on cost, power,
and flexibility implies multi-objective optimization, special Evolutionary Algo-
rithms called MOEAs (Multi-Objective Evolutionary Algorithms) are applied
here to the complex task of system synthesis. MOEAs have been found valu-
able in systems synthesis due to the sophisticated repairing function of invalid
individuals. Contrary to the punishment of invalid individuals, this repairing
increases the effectiveness of the algorithm by producing many feasible imple-
mentations. Also, EAs seem to be good at exploring selection and assignment
problems that are dominant in the area of system synthesis.

Nevertheless, system complexity grows steadily leading to giant search spa-
ces demanding new hierarchical strategies in design space exploration. In this
chapter, we therefore proposed Pareto-front arithmetics for fast design space
exploration that performs arithmetics only on the Pareto-optimal points of sub-
systems to construct a quality set of the top-level specification. This approach
has proven to find a substantial number of Pareto-optimal and additional fea-
sible implementations while reducing the computation time dramatically. A
second approach encodes the hierarchical structure in the chromosome of the
MOEA. Although being slower in the convergence speed, this approach is able
to find better quality sets in the long term.

In the future, we will extend the dimension of the objective space further to
include timing analysis and scheduling issues.

Notes
1. The relations◦ ∈ {=,≤, <,≥, >} are defined as:o(i) ◦ o(̃i) iff ∀j = 1, . . . , n : oj(i) ◦ oj (̃i).
2. Without loss of generality, we assume that all objectives are to be minimized in the following.
3. Note that this method is in general not a feasible way to go as the number of EA runs grows

exponentially with the number of leaf graphs.

References

[1] Santosh G. Abraham, B. Ramakrishna Rau, and Robert Schreiber. Fast
Design Space Exploration Through Validity and Quality Filtering of Sub-
system Designs. Technical report, Hewlett Packard, Compiler and Archi-
tecture Research, HP Laboratories Palo Alto, July 2000.

Hierarchical Synthesis of Embedded Systems 103

[2] J. Axelsson. Architecture Synthesis and Partitioning of Real-Time Sys-
tems: A Comparision of Three Heuristic Search Strategies. In5th In-
ternational Workshop on Hardware/Software Codesign, pages 161–166,
Braunschweig, 1997. IEEE Computer Society Press.

[3] T. Blickle, J. Teich, and L. Thiele. System-Level Synthesis Using Evolu-
tionary Algorithms. In Rajesh Gupta, editor,Design Automation for Em-
bedded Systems, 3, pages 23–62. Kluwer Academic Publishers, Boston,
January 1998.

[4] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A Fast Elitist Non-
Dominated Sorting Genetic Algorithm for Multi-Objective Optimization:
NSGA-II. In Proc. of the Parallel Problem Solving from Nature VI (PPSN-
VI), pages 849 – 858, 2000.

[5] Kalyanmoy Deb.Multi-Objective Optimization Using Evolutionary Al-
gorithms. John Wiley & Sons, 2001.

[6] R.P. Dick and N.K. Jha. MOGAC: A Multiobjective Genetic Algorithm
for Hardware-Software Cosynthesis of Distributed Embedded Systems.
In IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 17(10), pages 920–935, 1998.

[7] K. Dussa-Zieger.Model-Based Scheduling and Configuration of Hetero-
geneous Parallel Systems. PhD thesis, University of Erlangen-Nürnberg,
1998. Arbeitsberichte des Instituts für Mathematische Maschinen und
Datenverarbeitung (IMMD), 31(12).

[8] P. Eles, Z. Peng, K. Kuchcinski, and A. Doboli. System Level Hard-
ware/Software Partitioning Based on Simulated Annealing and Tabu-
Search. InDesign Automation for Embedded Systems. Kluwer Academic
Publisher, Boston, 2(1), pages 5–32, 1997.

[9] R. Ernst, J. Henkel, T. Benner, W. Ye, U. Holtmann, D. Herrmann, and
M. Trawny. The COSYMA Environment for Hardware/Software Cosyn-
thesis of Small Embedded Systems. InMicroprocessors and Microsystems
20(3), pages 159–166. Elsevier Science B.V., 1996.

[10] David E. Goldberg.Genetic Algorithms in Search, Optimization and Ma-
chine Learning. Addison-Wesley Publishing Company, Inc., Reading,
Massachusetts, 1989.

[11] Georges R. Harik. Finding Multimodal Solutions Using Restricted Tour-
nament Selection. In Larry J. Eshelman, editor,Proceedings of the Sixth
International Conference on Genetic Algorithms (ICGA6). Morgan Kauf-
mann, 1995.

[12] Christian Haubelt, J̈urgen Teich, Kai Richter, and Rolf Ernst.
Flexibility/Cost-Tradeoffs in Platform-Based Design. In E.F. Deprettere,

104 EVOLUTIONARY ALGORITHMS FOR EMBEDDED SYSTEM DESIGN

J. Teich, and S. Vassiliadis, editors,Embedded Processor Design Chal-
lenges, volume 2268 ofLecture Notes in Computer Science (LNCS), pages
38–56, Berlin, Heidelberg, March 2002. Springer.

[13] J. Henkel and R. Ernst. An Approach to Automated Hardware/Software
Partitioning Using a Flexible Granularity that is Driven by High-Level
Estimation Techniques. InIEEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems, 9(2), pages 273–289, 2001.

[14] Joshua Knowles and David Corne. The Pareto Archived Evolution Strat-
egy: A New Baseline Algorithm for Pareto Multiobjective Optimisation.
In 1999 Congress on Evolutionary Computation, pages 98–105, Piscat-
away, NJ, 1999. IEEE Service Center.

[15] Vilfredo Pareto.Cours d’Économie Politique, volume 1. F. Rouge & Cie.,
Lausanne, Switzerland, 1896.

[16] Günter Rudolph. On a Multi-Objective Evolutionary Algorithm and Its
Convergence to the Pareto Set. InProceedings of the 5th IEEE Conference
on Evolutionary Computation, pages 511–516, Piscataway, New Jersey,
1998. IEEE Press.

[17] Günter Rudolph and Alexandru Agapie. Convergence Properties of Some
Multi-Objective Evolutionary Algorithms. InProc. of the 2000 Congress
on Evolutionary Computation, pages 1010–1016, Piscataway, NJ, 2000.
IEEE Service Center.

[18] Jürgen Teich, Christian Haubelt, Sanaz Mostaghim, Frank Slomka, and
Ambrish Tyagi. Techniques for Hierarchical Design Space Exploration
and their Application on System Synthesis. Technical Report 1/2002,
Institute Date, Department of EE and IT, University of Paderborn, Pader-
born, Germany, 2002.

[19] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the Strength
Pareto Evolutionary Algorithm. Technical report, Swiss Federal Insti-
tute of Technology (ETH) Zurich, 2001. TIK-Report 103. Department of
Electrical Engineering.

[20] Eckart Zitzler.Evolutionary Algorithms for Multiobjective Optimization:
Methods and Applications. PhD thesis, Department of Electrical Engi-
neering, Swiss Federal Institute of Technology (ETH) Zurich, December
1999.

[21] Eckart Zitzler and Lothar Thiele. An Evolutionary Algorithm for Multiob-
jective Optimization: The Strength Pareto Approach. Technical Report 43,
Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland,
1998.

