
Relaxing Event Densities by Exploiting Infeasible Paths
in Control Flow Graphs

Kilian Kempf, Steffen Kollmann, Victor Pollex, Frank Slomka∗

Institute of Embedded Systems/Real-Time Systems
Ulm University

{firstname}.{lastname}@uni-ulm.de

Abstract

Common real-time analysis techniques for embedded
systems mainly concentrate on a task model where ev-
ery single activation of a task leads to a single outgo-
ing event that is emitted at the end of the task’s compu-
tation. An extension has been introduced that allows for
multiple events to occur during a single job by respect-
ing the control flow inside a task in order to recalculate
the worst-case density for outgoing events. This previous
work does however not consider the effect that data de-
pendencies have on the calculation, which leads to pes-
simistic results caused by infeasible paths inherent in the
control flow. In this paper we propose a method involving
a flow graph transformation that reduces this pessimism
when using the existing analysis and show its integration
into a reasonable workflow.

1 Introduction

The process of developing embedded systems involves
a variety of steps. One of them is the mapping of software
components onto the hardware resources of the system in
development. An integral part of this mapping process is
the analysis of the timing behavior of the multitude of in-
cluded software components. This is of great importance
in order to verify the compliance with the time constraints
of the systems imposed by the context.

The various software components and functions of an
embedded system are usually modeled and implemented
as software tasks. They are activated by external events
originating from the system context and are able to gener-
ate events themselves in order to activate each other. This
leads to the concept of a task chain, where several tasks
are depending on events from their predecessors. In order
to analyze such a scenario, the general approach is to de-
termine the maximal (and minimal) amount of time that
would be needed to complete the task if it had the en-
tire resource it is to be mapped on for itself. According
to common models, an event is generated when the task

∗This work was supported by the German Research Foundation.

is completed. This event is then used to activate other de-
pendent tasks or to interact with the system’s context.

Different types of real-time analyses now consider the
fact that current systems have multiple tasks mapped onto
the same resource and perform preemptive multitasking.
There are many possibilities of scheduling that all lead
to the time-sharing of pseudo-concurrent tasks that are
frequently interrupting each other. The real-time analy-
sis tries to consider the high dynamics inherent in such
systems and is able to give guarantees for the timed ex-
ecution of the tasks which generate the next event in the
task chain. The analysis of a complete system determines
the time requirements for all tasks involved. These time
requirements in turn directly dictate the requirements on
the resources. Therefore, minimizing the pessimism of the
analysis also minimizes the necessary resources in terms
of space, energy and ultimately costs.

Still, the common analysis models and techniques re-
gard a task as a unit that may be interrupted and therefore
delayed, but which starts with the consumption and ends
with the generation of an event. A technique called event
dependency analysis has been developed by Bodmann et
al. [5] which considers the internal structure of a task and
extends the common model by the possibility to generate
an event before the task has finished its execution. This is
closer to reality and allows to relax the estimated tempo-
ral density of the resulting events which in turn enables to
make less pessimistic assumptions. The technique bases
on the control flow graph which consists of basic blocks
and already is fundamental for the worst-case execution-
time (WCET) analysis, a method that estimates bounds for
the execution time of a task.

The graph is extended by blocks that generate events so
that for every number of events, the minimal time interval
in which they may occur can be extracted. After taking
steps to integrate the effects of recurring jobs it allows to
calculate for a given spectrum of incoming events an as-
sociated spectrum of outgoing events that is usually less
pessimistic than the ones calculated by the common mod-
els. This is well desired because as explained above less
pessimism leads to a reduction of resource requirements
and therefore costs.

The aim of this paper is to extend the task-based anal-
ysis method mentioned above and to integrate the consid-
eration of data dependencies inherent in the tasks under
analysis. While the existing analysis considers all possi-
ble paths in the control flow of a task, we now attempt to
determine the relevant ones more precisely. This allows
to restrict the pessimism by eliminating paths that are not
feasible.

We propose a transformation of the flow graphs that al-
lows for a simplified way of eliminating those infeasible
paths so that the existing analysis can be kept. The iden-
tification of the paths itself is handled by a WCET analy-
sis tool, as these tools generally need to detect infeasible
paths in order to tighten their estimations. The determined
flow facts (also called flow constraints) describe depen-
dencies inside the control flow.

Our approach consists of three steps. First, we split up
execution paths in the flow graph. The flow graph is then
processed by a WCET analyzer which detects the infea-
sible paths. Afterwards we are able to eliminate the paths
by pruning the graph. The modified graphs then are free
of the inherent pessimism. This leads to a relaxation of
the event densities which in turn results in a more accu-
rate analysis. Once again, helping the analysis to deter-
mine better estimates of the timing requirements causes
less overestimation of the required resources.

This paper is organized as follows: after giving an
overview on the related work in Section 2, the model we
use for the system level and the task level is described in
Section 3. The general workflow presented in Section 4
gives an overview of our approach. Section 5 introduces
the current state of the event dependency analysis we aim
to improve. Afterwards, our proposed transformation is
presented in detail (Section 6). The benefit of the approach
is then demonstrated by a small example in Section 7 be-
fore the paper ends with a short conclusion.

2 Related work

Analyzing distributed real-time systems is still a chal-
lenge for scientists. The problem is not the calculation of
guaranteed bounds for the worst-case timing behavior of
tasks in a system but the calculation bounds that are tight.
For simple systems the approach of Tindell and Clark [24]
delivers good results, but if the complexity of the sys-
tem increases the bounds get worse. The consequence was
that more sophisticated approaches like the SymTA/S ap-
proach [17] or the Real-Time Calculus [6] have been de-
veloped. These approaches are able to classify more sys-
tems as feasible. But even if the system is feasible, mean-
ing that the deadlines in the system are not violated, the
bounds have a direct impact on the design flow. In today’s
embedded systems, e.g. in the automotive or avionic in-
dustry, a common problem is the mapping of tasks to the
processor units so that an optimal system architecture con-
cerning costs, speed and power is designed. This results in
tight bounds for the worst-case behavior being needed in

the design flow so that an optimal system solution can be
found. One problem leading to bad bounds is that during
a real-time analysis the interference between the tasks is
always maximal.

Many approaches have been developed in the past
to improve the worst-case response time analysis by in-
cluding task dependencies. For example, to consider off-
set dependencies between task stimulation the transac-
tion model introduced in [23] and improved in [13] has
been developed. To consider precedence correlations be-
tween tasks in a distributed system methods in [16] and [9]
have been developed. Another idea is to consider the de-
pendency caused by a non-preemptive scheduling as pre-
sented in [19]. The concept is that the tasks cannot be pre-
empted and therefore the events for successive task must
occur time-shifted. The common purpose of all these ap-
proaches is bounding the occurrence of given events.

Another layer which is orthogonal to the approaches
mentioned above is the consideration of event types. Here
the idea is that different types of events result in different
execution times of the tasks. The the assumption that each
job of a task is executed in its worst-case execution time
is relaxed. A general model for this has been developed
by Baruah in [3] which is based on [12] and has recently
been extended in [21]. Approaches to consider the propa-
gation of different event types through a system have been
introduced in [18] by a hierarchical event model and in
[14] by so-called event count curves. The result of these
papers is that tighter end-to-end delays in a system can be
calculated when the different event types are considered.
The common idea of these approaches is to bound the in-
terference of the assumed execution times.

The lack of all the techniques described above is that
the task execution itself and the resulting events are not
connected. The control flow of the task is not considered
by the real-time analysis techniques although this is very
important for bounding the events produced by a task. In
order to overcome this issue we introduce a common ap-
proach considering data dependencies on the task level
which can be connected to any real-time analysis method.
We will cover a topic missing in the literature where we
consider event dependencies caused by the control flow of
a task.

3 Model

In this chapter we present the task model and the event
model used in the paper. There are two different levels or
views to be distinguished. One is the system level, where
the different tasks, their activations and their interdepen-
dencies are examined. This is the level where real-time
analysis is performed. The other view is the task level.
Here, the focus is on the tasks themselves. This is the
level where the worst-case execution time analysis usually
takes place.

The following part describes the system level model we
use. Generally speaking, all the tasks to be modeled for a

specific system form the task set which consists of several
individual tasks.

Definition 1 Task: A task τ is a tuple τ = (c+, c−, d),
where c+ is the worst-case execution time, c− the best-
case execution time and d a relative deadline. Individual
instances of a task are called jobs, where τi,j denotes the
j-th job of task τi.

Definition 2 Task set: A task set Γ is the set that includes
all tasks τ of a system.

Inside a system, several tasks may be associated with each
other. Their dependencies form a task graph where the ver-
tices are the tasks while the directed edges describe the
communication dependencies between the tasks.

Definition 3 Task graph: A task graph is a directed graph
G = (Γ, E) with E ⊆ Γ × Γ. (τ1, τ2) ∈ E ⇔
τ1 activates τ2.

In this paper we use a general and abstract event model.
We define an event function η that describes for every time
interval the number of events that can occur in this inter-
val.

Definition 4 Event function: The event function η([s, t)) :
R+ 7→ N+ denotes for any time interval [s, t) the number
of events that occur in that interval.

Now we are able to extend the task graph to include the
stimulations between the tasks. This is done by weighting
the edges of the task graph to form an event dependency
graph [5]:

Definition 5 Event dependency graph: An Event depen-
dency graph D is a task graph D = (Γ, E) in which ev-
ery edge is weighted with an event function η. η1,2 :=
τ1 stimulates τ2 with η.

After the definition of the model we use for the system
level, we now present the model for the task level. The
following definitions closely resemble the ones introduced
by Allen in [2]. The tasks themselves may be modeled by
a control flow graph, which is a directed possibly cyclic
block-graph. The vertices are the blocks while the edges
form a possible path for the flow of control.

Definition 6 Basic block: A basic block (BB) is a se-
quence of instructions in a task that can be processed un-
conditionally, i.e. it contains no conditional jumps. The
whole basic block can be the target of a jump. At the end
of a basic block there may be a conditional jump to an-
other basic block. All blocks are annotated with an execu-
tion time c which denotes the time needed for the uninter-
rupted execution of the block on a specific resource.

Variation of those times caused by variable resources’
properties depending on state or history like caches of pro-
cessing elements are not considered here. As for this paper
we are interested in the highest density of events, we use
the best-case execution time of a basic block if its execu-
tion times may differ.

Definition 7 Control flow graph: A control flow graph
(CFG) is a directed graph G = (V,E, s, x), where V is
a set of basic blocks and E ⊆ V × V the set of edges
between them that model the transfer of control. s ∈ V
denotes the single start node (∀v ∈ V : (v, s) /∈ E) and
x ∈ V denotes the single exit node (∀v ∈ V : (x, v) /∈ E).
We demand that for every block v ∈ V there are at most
two edges to other blocks:

∀v ∈ V,O = {v} × V : |E ∩O| ≤ 2

Definition 8 Predecessors and successors: For each node
v ∈ V of a CFG G = (V,E, s, x) there is a set of prede-
cessors pred(n) and successors succ(n):

k ∈ pred(n) ⇔ (k, n) ∈ E
k ∈ succ(n) ⇔ (n, k) ∈ E

Definition 9 Control blocks: A basic block v ∈ V of a
CFG G = (V,E, s, x) with |succ(v)| = 2 is called a con-
trol block. Every control block has an associated predi-
cate expressionA that can be evaluated to either TRUE or
FALSE during the execution of the task. To indicate which
successor will be taken for the control flow it also has the
attributes true and false that are each set to a basic block
w ∈ succ(v) and indicate the successor to be taken in case
expression A is evaluated to TRUE or FALSE respectively.

The control flow during the execution of a task is modeled
as a walk through the CFG of that task that starts at the
start block and ends at the exit block.

Definition 10 Control flow: The control flow through a
CFG G = (V,E, s, x) is a sequence S of nodes from the
start block to the exit block

S = (s, n1, ..., nn, x) with s, x, n1..n ∈ V.

Definition 11 Dominance: Let G = (V,E, s, x) be a
CFG. A node n ∈ V of that graph is dominated by a
node k ∈ V when every path from the start node s to
n passes through k, that is if all of those paths are of the
form (s, ..., k, ..., n). We then write k dom n. Every node
dominates itself: ∀n ∈ V : n dom n.

We now extend the model of a control flow graph for
the generation of events during the execution of a task. As
mentioned above, the common approach is to model all
events that are generated during the execution of a task as
if they occurred at the very end of the task’s execution.
The introduction of event blocks allows us to model the
events at the times they actually occur. Event blocks are
basic blocks that generate an event at the end of their exe-
cution. The event blocks trigger task-global events, which
means that all subsequent dependent tasks are activated by
the event.

Definition 12 Event block: An event block n is a basic
block inside a task τi for which event(n) = true, meaning
that it generates an event which activates another task τj .

2
c=5

1
c=2

Basic block Event block

Identifier

Execution
time

Figure 1. Graphical representation of basic
block and event block

The graphical representation for an event block we use
in this paper is a block arrow that points to the right and
resembles the output symbol of the Specification and De-
scription Language (SDL). Figure 1 depicts such an event
block along a normal basic block.

Definition 13 Event flow graph: An event flow graph
(EFG) is a modified control flow graph G = (V,E, s, x)
with ∃n ∈ V : event(n) = true.

We are now able to model a system with tasks and the
stimuli between them as well as the tasks themselves and
the positions inside the structure of the tasks that generate
events activating other tasks.

4 Workflow

As previously mentioned, we harness the power of an
established worst-case execution time analysis tool as we
focus on the events in and between tasks. The follow-
ing workflow therefore contains a tight coupling between
our approach and a WCET tool. An important element
are the flow facts that are generated during the WCET
analysis. Analyzers using a technique called implicit path
enumeration (IPET) [11] determine flow facts that de-
scribe dependencies in the control flow of a task. We use
these flow facts as an interface to the WCET tool. An
overview of currently used approaches for WCET analysis
has been presented in [15] and [25]. Our idea is to provide
a pre-processed flow graph for the analysis that facilitates
the post-processing which removes the detected infeasible
paths before performing the event dependency analysis [5]
as described in section 5.

The anticipated workflow is depicted in Figure 2. It
starts with the task graph, which identifies all relevant
tasks and their relationship to each other and can either be
extracted automatically or be generated by hand. We be-
lieve that the manual approach might be more common as
it allows for greater flexibility. In that case, the analysis of
a system starts with the modeling of the tasks in the anal-
ysis tool after which their program code is imported. All
aspects of this first step are outside the scope of this paper.
The next steps are the ones relevant for our approach and
they have to be performed for every task that is going to
be analyzed.

First the basis blocks are extracted and the control flow
graph is constructed. This may be the work of a compiler
or a dedicated analysis tool. Program code in the form

Task
Graph

Basic
Block

Extraction

Control
Flow

Graph

Inf. Path
Detection
(Flow Facts)

Infeasible
Path

Elimination

Event
Dependency

Analysis

Event Flow
Graph

EFG Pre-
processing

BB Timing
Estimation

Timing
Annotation

Our Approach

WCET Tool

Compiler or WCET Tool

Figure 2. Suggested workflow

of a high(er) level language (i.e. C code) might better be
treated by a compiler framework while machine code has
to be processed by a specialized tool. This might be done
by a WCET analyzer.

The control flow graph then has to be extended into
the event flow graph. A mapping of all program calls that
generate events for other tasks has to be supplied. If the
task graph has been extracted automatically, the necessary
information should already be present as it was already
needed to determine the tasks’ interdependencies. If more
than one task is activated, the event flow graph needs ad-
ditional information for the grouping of event blocks.

Afterwards, the resulting event flow graph is pre-
processed. This involves mainly the transformation intro-
duced in Section 6.1. The resulting modified event flow
graph contains a significant number of split-up paths that
are connected to a single exit node.

The modified flow graph is then processed by a WCET
analyzer. In this step, the detection of the infeasible paths
(see Section 6.2) takes place. What we are really interested
in is the annotation of the flow graph with flow facts, from
which we are able to infer the infeasible paths.

With the help of the flow facts we may then eliminate
the infeasible paths of the event flow graph. This is possi-
ble because we had already modified it in a way that every
infeasible path leads into a separate subtree that may be
deleted from the event flow graph without affecting other
paths. Section 6.3 shows how.

Independently we use the WCET analysis tool to esti-
mate the timing for every basic block. This is done for the
earlier extracted set of basic blocks that formed the initial
control flow graph, because the modified event flow graph
we obtained in the last step contains many duplicated
blocks that would unnecessarily slow down the WCET
tool. As we eventually are interested in the greatest possi-
ble density of events, we need the best case execution time
of the basic blocks. The result of this step is an annotated
control flow graph.

In the final step we annotate the modified event flow
graph with the estimated execution times. The neces-
sary mapping between the already annotated control flow
graph and the modified event flow graph is possible be-
cause our workflow did not alter the basic blocks them-

selves. The resulting flow graph can then be processed by
the regular event dependency analysis as introduced by
Bodmann et al. [5] which is described in the following
section.

5 Event dependency analysis

We already mentioned in the introduction as well as in
the section on the related work that the general approaches
used in real-time analysis do not consider the effects that
the internal structure of tasks has on the density of events.
The models described in Section 2 usually assume that
only one event is generated during the execution of a job
and this event is emitted when the job finishes its compu-
tation.

The extension of this perception to allow for multiple
events to emerge during a single job is not trivial. Clearly
it is not acceptable to adhere to the established notion and
accumulate the events until the end. As this would result
in multiple events being emitted at the same time, the in-
herent pessimism will very likely consider many systems
infeasible that in reality would work well. The solution
can only be to enforce a certain minimal distance between
the events produced by a job, as in reality they will not
occur at the same time.

As noted before, a reasonable way to determine the
minimal distance between the events has to take a task’s
internal structure into consideration. The control flow
graph of a task offers a sensible way to do that. If the posi-
tions inside a task where the events are generated as well
as the possible flows of control are known, the time be-
tween the occurrence of events during the execution may
be concluded.

Bodmann et al. took this approach in [5]. They base
their work on a control flow graph that has been extended
by the possibility to describe the appearance of events
within the flow. This is the event flow graph. When the
execution times of all basic blocks in the event flow graph
are known, it is possible to determine the minimal amount
of time that passes between events during the execution of
the task.

Advanced models for real-time analysis like [6] de-
mand that not only the minimal distance between two
events but also that between three, four, five, etc. is known.
Bodmann et al. cover this condition by defining a set of
functions which denote for a given number of events the
minimal time interval in which they may occur. Hence
these functions are called interval functions.

The function inI does this for intervals that may reside
anywhere inside the event flow graph as long as they occur
during the execution of a valid control flow. If the number
of desired events is greater than the one which the task
is able to generate, inI becomes infinite. There are two
additional interval functions startI and endI. For them the
intervals are bound to the start and the end of the task,
respectively. These two functions are used for the formal
definition of inI and additionally become necessary when

0

2 31

1 2

321

6
c=3

1
c=1

2
c=2

8
c=1

5
c=2

2

8

∞ ∞

1

4
5

∞

3

4
c=1

3
c=2

7
c=1

endI

startI

inI

Figure 3. Elementary interval functions in
an event flow graph

the activation of the examined task with multiple external
events is considered. Again, for an infeasible number of
events the interval functions become infinite.

Example 1 An example of an event flow graph where the
interval functions are annotated is depicted in Figure 3.
Note that inI(1) = 0 because in this case the time interval
in which one event may occur is infinitesimal. The interval
could have also been annotated at the end of any other
event block.

In [5] Bodmann et al. have also presented an algorithm
allowing for an efficient calculation of the interval func-
tions. It traverses an event flow graph from top to bottom
while visiting any node exactly once. Bodmann et al. have
presented definitions of the interval functions that base on
the elementary graph operations concatenate and merge.
All flow graphs may be constructed and deconstructed
with these two operations. Accordingly, the analysis algo-
rithm is able to iteratively determine the interval functions
for any node it encounters during the traversal of a graph.

For a single activation of a task the density of outgoing
events is denoted by the inI function. In contrast, when
multiple activations of the task are taken into consider-
ation the time intervals may be compressed. If the exe-
cution of a job is delayed, its end time may be close to
the next activation of the task and therefore to the starting
time of the next job. In that case the minimal time inter-
val in which a given number of events occur may stretch
across both jobs.

This is also generally the case if the desired number of
events is greater than the one a single job is able to gener-
ate. The thought may be extended to an arbitrary number
of events. Any time interval that stretches over multiple
jobs may be arranged in a way that it reaches into the end
of the first job and into the start of the last job. At this point

minimal interval

t

endI startI

Job

Task Activation

Outgoing Events

Figure 4. Handling of multiple external
events

the interval functions startI and endI are applied. For the
inner jobs that are fully enclosed by the interval the max-
imal number of events they can generate is assumed. The
remaining events have to be divided between the first and
the last job using the functions endI and startI respectively
while minimizing the overall interval. Figure 4 shows an
example with an interval for seven outgoing events that
stretches across four jobs.

The event dependency analysis as presented in [5] re-
quires loops in the control flow of tasks to be unrolled be-
fore they are processed. Albers et al. have introduced an
extended event model in [1] that facilitates the handling of
loops for the event dependency analysis.

6 Considering infeasible paths

The previous section presented the current state of the
event dependency analysis. This section introduces an ex-
tension to that technique which results in a relaxation of
the event streams.

The current event dependency analysis assumes the
smallest interval between events when merging branches
which leads to the highest possible density of events. This
introduces unnecessary pessimism when some combina-
tion of branches may never be executed together during a
single run of the task, which means that infeasible paths
exist in the event flow graph. Our approach is to modify
the graph in a way that eliminates the infeasible paths so
that it may be used as an input to the existing event de-
pendency analysis. The reduction of pessimism leads to
an relaxation of the outgoing event density which in turn
will reduce the processing power or timing requirements
necessary to guarantee a reliable system.

Example 2 An example of infeasible paths is illustrated
in Figure 5. Given that A ⇔ B and the value of the cor-
responding variables are not changed in one of the sub-
sequent blocks, only two events will be generated during
the execution of the pictured program stub. The significant
interval functions startI, endI, inI will also differ if the the
infeasible paths are respected.

Although this might be regarded as overly simplified, the
implications are quite relevant. According to Stein and

1

2

4

7

6

A→ B

B → A
if(A)

if(B)

3

5

8

false true

Figure 5. An example of infeasible paths

Martin [20] the existence of such constructs in embedded
systems code is not uncommon as they can be the result
of automatically generated code. Suhendra et al. [22] refer
to code generated from a state chart that contains a lot of
repetitive checks leading to many infeasible paths.

We call this type of infeasible paths mutual exclusion
in the control flow of tasks. The term mutual exclusion is
used here to denote that the same condition that directs
the control flow into a certain direction is re-evaluated at a
subsequent control block in the flow graph while the vari-
ables relevant for a control flow decision are not adversely
affected by the intermediary blocks. This leads to a reduc-
tion of the feasible combinations of subpaths, therefore
eliminating certain otherwise possible paths through the
graph. The subpaths mutually exclude each other.

Definition 14 Infeasible Path:
A path P = (n1, ..., nn, c, b,m1, ...,mm) is said to be
infeasible if c is a control block containing the predicate
expression A which always evaluates to the same logical
value when reached through the path P ′ = (n1, ..., nn, c)
while b ∈ succ(c) is the node following the control block
that would be taken if A evaluated to the opposite value.

Inspired by the definition of an infeasible path that is irre-
ducible given by Bodı́k et al. in [4] we adopt:

Definition 15 Shortest Infeasible Path: An infeasible path
P = (n1, n2..., nn) is a shortest infeasible path if both
subpaths (n2, ..., nn) and (n1, ..., nn−1) are feasible.

We will now present our approach for the handling of
control flow graphs that make it possible to exploit inher-
ent infeasible paths. Our idea is to transform the graphs
in a way that makes them usable for the existing anal-
ysis presented in Section 5. The objective of this trans-
formation is to obtain graphs that allow an elimination of
infeasible paths through pruning. We concentrate on the
events in and between tasks, therefore we interface with
a worst-case execution time analyzer. Those tools include
the identification of infeasible execution paths in general
as an inherent feature. This is what we take advantage of.

1

2

4

7

6

7'

4'

7''

6'

7'''

A→ B

B → A
if(A)

if(B)if(B)

3

5

8

5'

Figure 6. Infeasible paths in the modified
event flow graph

The transformation we propose basically splits all pos-
sible execution paths in the control flow graph. If the graph
contained infeasible paths this will result in the existence
of infeasible subgraphs. We call this the pre-processing of
the event flow graph. In a second step, these subgraphs
have to be identified, which is done with a WCET ana-
lyzer. After their identification, the infeasible subgraphs
can be completely eliminated from the control flow graph.
This is the post-processing. The resulting reduced graph
is free of any detectable inherent static mutual exclusion
and can be handled with the exisiting event dependency
analysis.

6.1 Pre-processing the event flow graph
Our transformation traverses the complete event flow

graph (the source) and constructs a new event flow graph
(the target) by copying basic blocks to the new graph. For
every control block that is encountered while traversing
the source, both possible paths are followed separately.

The source graph may contain loops that may or may
not originate from back edges [10]:

Definition 16 Back edge:
A back edge is an edge whose head dominates its tail:
∀(k, n) ∈ E : (k, n) is a back edge ⇔ n dom k.

Back edges usually originate from higher-level control
structures like while and for, whereas the use of goto (or
generally jumps in assembler or machine code) may create
loops without back edges. Graphs containing such loops
are called irreducible graphs and may pose a significant
challenge for the program analysis. Otherwise the graph
is reducible [10]:

Definition 17 Reducible flow graph: A flow graph G =
(V,E, s, x) is called reducible if and only if its sub-
graph G′ = (V,E′, s, x) with E′ = E \ {(k, n) ∈
E|(k, n) is back edge} is acyclic and every node v ∈ V
can be reached from the start node s.

Various methods for the handling of irreducible control
flow graphs have been developed. Janssen and Corporaal
present one in [10] and reference several others.

Loops in the source graph are handled the following
way: A loop is detected whenever the successor of the
current node is already in the currently traversed path:
P = (n1, ..., ni, ..., nn, c, ni). Note that (c, ni) is not nec-
essarily a back edge.

A loop that does not contain any events itself (∀n ∈
{c, ni, ..., nn} : ¬event(n)) cannot add events if taken
repeatedly but may only stretch the time between events.
The edge (c, ni) is therefore not copied to the target. This
resembles the worst case. Another possibility would be to
keep the edge if a minimal number of loops is known. This
could be used to further relax the event density.

A loop that contains at least one event (∃n ∈
{c, ni, ..., nn} : event(n)) has to be preserved. An edge
resembling (c, ni) is therefore added to the target graph.
This new edge is always a back edge. That way, the mod-
ified event flow graph is always reducible and the remain-
ing loops may then be handled by the event dependency
analysis.

The transformation creates a lot of leaves that are how-
ever all copies of the same basic block namely the former
single exit node. Therefore at the end of the transforma-
tion all leaves are merged into a single node that is the
new (and old) exit node. The resulting modified event flow
graph for the example in Figure 5 is shown in Figure 6.
A representation of the transformation in pseudo code is
given in Listing 1.

Listing 1. Pseudocode of transformation

copy s t a r t node t o t a r g e t
push ({} , s t a r t) t o s t a c k
WHILE n o t s t a c k empty

pop (pa th , c u r r e n t) from s t a c k
add c u r r e n t t o p a t h
IF succ (c u r r e n t) == 2

IF succ . f a l s e a l r e a d y i n p a t h
l i n k node . f a l s e t o c o r r e s p o n d i n g node

ELSE
copy succ . f a l s e t o t a r g e t

END IF
IF succ . t r u e a l r e a d y i n p a t h

l i n k node . t r u e t o c o r r e s p o n d i n g node
ELSE

copy succ . t r u e t o t a r g e t
END IF
push (pa th , succ . t r u e) t o s t a c k
push (pa th , succ . f a l s e) t o s t a c k

ELSE IF succ (c u r r e n t) == 1
IF succ (c u r r e n t) a l r e a d y i n p a t h

l i n k t o c o r r e s p o n d i n g node i n t a r g e t
ELSE

copy succ t o t a r g e t
push (pa th , succ) t o s t a c k

END IF
END IF

END WHILE
merge a l l nodes wi th (succ () == 0)

6.2 Detecting infeasible paths
We distinguish between two different kinds of detec-

tion possibilities for infeasible paths. The first one is the
more intuitive one and is based on value assignments to
variables. If in some node of a path there is an assignment
that influences the condition of a control block following
in that path in a way that completely evaluates its predi-
cate expression, one of the two nodes succeeding the con-
trol block will never be reached and is therefore part of an
infeasible path. The assignments can either be immediate
by assigning a constant to the variable, or they can be the
value of another variable which itself has been assigned a
constant value that can be determined by a static analysis.
Of course, along the path there may be a chain of assign-
ments between variables that lead to the final outcome.

Let P = (n1, ..., nn, c, b) be a path with a control block
c and b ∈ succ(c) the first node in one of the branches
of c. Let A(a1, ..., an) be the predicate expression which
c evaluates. If the basic blocks on the path (n1, ..., nn)
statically set the variables a1, ..., an into a state so that
node b is never taken, P is an infeasible path.

The second possibility to detect infeasible paths may
be applicable when the value of an expression cannot be
determined by a static value analysis. If the corresponding
control block is preceded in the path by one whose ex-
pression is evaluated beforehand this may allow to deduce
the value of the expression at hand. If at least one of the
two expressions (or their negation) implies the other one
(or their negation), one of the successors of the second
may not be reached in that path as long as the variables of
condition are not adversely affected in the basic blocks in
between.

Let P = (c1, n1, ..., nn, c2, f) be a path with control
blocks c1 and c2 and f ∈ succ(c2). Let A be the predicate
expression that c1 evaluates and B the one that c2 evalu-
ates. If A → B or A → ¬B or ¬A → B or ¬A → ¬B,
then P may be an infeasible path.

Let {a1, ..., an} be a set of variables on which A and
B depend. Let us assume that A → B and we examine
the path Q = (c1, t, ..., c2, f) where c1.true = t and
c2.false = f . If none of a1, ..., an are altered in the path
between c1 and c2,Q is infeasible because if expressionA
evaluated positively, expression B will also evaluate posi-
tively and the branch beginning with f is never taken.

But even if some of the variables are altered, an infea-
sible path may still exist. If the variables are redefined in a
way that they satisfy a new expression A′ for which it can
be shown that A′ → A it can be deduced A′ → B, which
again makes Q an infeasible path.

Example 3 Let A = x > 2 and B = x > 0 and path
Q as above. Obviously A → B. If node t redefined x :=
x+1 we gain a new expressionA′ = x > 3 withA′ → A.
As we can deduce A′ → B, the path Q is still infeasible.

Approaches for the detection and handling of infeasi-
ble paths have already been integrated into WECT analy-
sis tools. In [20] Stein and Martin of AbsInt, the company

behind the aiT WCET analyzer, presented their approach
to the detection and elimination of infeasible execution
paths. They show how program code on machine level
can be analyzed, which they describe as more challeng-
ing than the analysis of high-level language code because
of the added difficulty of determining the correct branch-
ing conditions. Stein and Martin propose a flow constraint
analysis that aims at gathering the flow facts which are
then solved using a theorem-prover framework. Another
approach has been described by Gustafsson et al., who
work on the SWEET WCET analyzer, in [7] and [8]. They
introduce abstract execution, a variant of symbolic execu-
tion in order to determine infeasible paths. Three different
algorithms are provided which result in the calculation of
infeasible nodes, infeasible pairs and infeasible paths.

6.3 Eliminating infeasible paths
After the modified event flow graph has been processed

by a worst-case execution time analysis tool, the infeasi-
ble paths should have been identified and annotated in the
form of flow facts. This should include the ones found by
a value analysis as well as those found by a comparison of
the branching expressions.

An additional post-processing step is necessary to pre-
pare the event flow graph for the event dependency analy-
sis. In this step the infeasible paths are removed from the
graph. Depending on the specific tool used for the anal-
ysis, the steps necessary for the actual extraction of the
infeasible paths might differ a bit.

We assume that every branch that may never be taken
is marked as infeasible. This may especially be the case
if the corresponding infeasible path has been identified
by a static value analysis. If the infeasibility has been de-
tected by comparing branching conditions we might have
to identify the branch by comparing the flow facts anno-
tated by the analysis tool. In any case, the first basic block
that is unreachable will be known. This is exactly the last
node of a shortest infeasible path as given in Definition 15.

We will now describe the elimination of the infeasible
paths. For every shortest infeasible path, the last node (the
first node that is unreachable) is identified and removed
from the modified event flow graph. All nodes that were
dominated by it are also removed. This will preserve the
common exit node while the back-edges of the loops that
may be still present in the graph pose no problem.

An algorithmic realization can exploit a property of the
modified event flow graphs that originates from the pre-
processing. Our transformation ensures that the graphs
contains only branching but not merging of control flow
with the exception of the exit node. The only nodes left
that have more than one predecessor are the ones that are
the target of one or more back-edges. Therefore they have
only exactly one predecessor they do not dominate:

∀n, |pred(n)| > 1 : |{k ∈ pred(n)|¬(n dom k)}| = 1

As a consequence, the identified infeasible paths can be
easily pruned from the modified event flow graph. For ev-

1

2

4

7

4'

6'

7'''

if(A)

if(B)if(B)

3

5

8

Figure 7. The pruned event flow graph

ery last node of a shortest infeasible path that was identi-
fied do the following:

• Store the set of nodes visited while traversing the
graph from the start to that node. This is exactly the
set of nodes that dominate the node at hand. Add the
common exit node to the set.

• Remove the node and every other node that can be
reached by following edges and that is not in the set
defined above.

• Discard all edges that were connecting the now ab-
sent nodes.

After the post-processing, the modified event flow graph is
free of any infeasible paths that were detected and can then
be handled by the event dependency analysis. Following
our example the result is depicted in Figure 7.

7 Example

We now provide a small and simple example to demon-
strate the benefit of our idea. In the following code of an
admittedly synthetic task example (Listing 2) every call
of the function send() is meant to generate an event that
triggers the next dependent task in the task graph. Exem-
plary execution times are annotated at the end of the code
lines.

The event flow graph corresponding to the task exam-
ple is depicted in Figure 8. In this case the branching con-
ditions A = x > 10 and B = x > 0 form the implication

Table 1. Event intervals of the example

Without respecting
infeasible paths:

Events 1 2 3
inI 0 6 14

startI 7 13 21
endI 2 10 16

Accounting for A→ B:

Events 1 2 3
inI 0 8 ∞

startI 7 18 ∞
endI 2 10 ∞

Listing 2. Source code of the example

i f (x > 10) { 1
a = x ∗ x ; 4
send (a) ; 2
a = x / 2 ; 2

} e l s e {
a = −(x ∗ x) ; 5

}
a = a + 1 ; 1
i f (x > 0) { 1

b = a ∗ (a + 1) ; 5
} e l s e {

send (a) ; 2
b = a ∗ a ; 4

}
b = b + x ; 2
send (b) ; 2
c l e a n u p () ; 2

1
c=1

2
c=5

5
c=2

8
c=5

9
c=4

3
c=6

4
c=2

6
c=2

7
c=4

10
c=2

if(x > 10)

if(x > 0)

Infeasible
path

Figure 8. Event flow graph of the example

A → B. There is no path between the two control block
on which the the value of x is altered. This leads to an
infeasible path in the control flow which is in this case
P = (1, 3, 4, 5, 6, 7, 9, 10). Table 1 contains the results of
the relevant interval functions inI, startI and endI. As can
be seen, the task generates one event less when the im-
plication between the branching expressions is respected.
Additionally, in the case of inI and startI, the density be-
tween two events has been relaxed.

8 Conclusion and future work

In this paper we have presented an approach that ac-
counts for the pessimism which results from infeasible
paths in the control flow of a task when performing an
event dependency analysis. The general circumstances of
infeasible paths have been defined and a method for their
handling has been introduced. This method makes use of

a worst-case execution time analysis tool in order to trans-
form the flow graph of a task in a way that eliminates in-
feasible paths. The modified graph may then be used as
the input for the event dependency analysis while reducing
the pessimism that would otherwise have led to a higher
event density at the output of the task. A small example
was provided to show the benefit of our approach.

In future work we will attempt to extend the event de-
pendency analysis in a way that will supersede the pre-
and post-processing of the event flow graph and there-
fore will overcome the increase of complexity. It should
be possible to use the annotated flow facts as a direct in-
put for the analysis. A specific worst-case execution time
analysis tool has to be chosen as we expect a rather tight
integration of the tool and the event dependency analysis
to be necessary. We will certainly have to work around
specific peculiarities of any tool we may choose.

References

[1] K. Albers, F. Bodmann, and F. Slomka. Hierarchical event
streams and event dependency graphs: A new computa-
tional model for embedded real-time systems. In 18th Eu-
romicro Conference on Real-Time Systems, pages 10–106.
IEEE, 2006.

[2] F. E. Allen. Control flow analysis. In Proceedings of a
symposium on Compiler optimization, pages 1–19, New
York, NY, USA, 1970. ACM.

[3] S. K. Baruah. A general model for recurring real-time
tasks. In Real-Time Systems Symposium, pages 114–122,
1998.

[4] R. Bodı́k, R. Gupta, and M. Soffa. Refining data flow in-
formation using infeasible paths. In Software engineering-
ESEC/FSE’97: 6th European Software Engineering Con-
ference held jointly with the 5th ACM SIGSOFT Sympo-
sium on the Foundations of Software Engineering, volume
1301, page 361. Springer, September 1997.

[5] F. Bodmann, K. Albers, and F. Slomka. Analyzing the
timing characteristics of task activations. In Interna-
tional Symposium on Industrial Embedded Systems 2006,
IES’06, pages 1–8. IEEE, 2006.

[6] S. Chakraborty, S. Künzli, L. Thiele, A. Herkersdorf, and
P. Sagmeister. Performance evaluation of network proces-
sor architectures: combining simulation with analytical es-
timation. Comput. Netw., 41(5):641–665, 2003.

[7] J. Gustafsson, A. Ermedahl, and B. Lisper. Algo-
rithms for Infeasible Path Calculation. In Sixth Interna-
tional Workshop on Worst-Case Execution Time Analy-
sis,(WCET’2006), Dresden, Germany, 2006.

[8] J. Gustafsson, A. Ermedahl, C. Sandberg, and B. Lisper.
Automatic Derivation of Loop Bounds and Infeasible
Paths for WCET Analysis Using Abstract Execution. In
Real-Time Systems Symposium, 2006. RTSS’06. 27th IEEE
International, pages 57–66. IEEE, 2006.

[9] R. Henia and R. Ernst. Context-aware scheduling analysis
of distributed systems with tree-shaped task-dependencies.
In DATE ’05: Proceedings of the conference on Design,
Automation and Test in Europe, pages 480–485, Washing-
ton, DC, USA, 2005. IEEE Computer Society.

[10] J. Janssen and H. Corporaal. Making graphs reducible with
controlled node splitting. ACM Transactions on Program-
ming Languages and Systems (TOPLAS), 19(6):1031–
1052, 1997.

[11] Y.-T. S. Li and S. Malik. Performance analysis of em-
bedded software using implicit path enumeration. ACM
SIGPLAN Notices, 30(11):88–98, 1995.

[12] A. K. Mok and D. Chen. A multiframe model for real-
time tasks. IEEE Transactions on Software Engineering,
1(CS-TR-96-07), 1996.

[13] J. Palencia and M. González Harbour. Schedulability
Analysis for Tasks with Static and Dynamic Offsets. In
Proceedings of the IEEE Real-Time Systems Symposium,
page 26. IEEE Computer Society, 1998.

[14] S. Perathoner, T. Rein, L. Thiele, K. Lampka, and J. Rox.
Modeling structured event streams in system level per-
formance analysis. In LCTES ’10: Proceedings of the
ACM SIGPLAN/SIGBED 2010 conference on Languages,
compilers, and tools for embedded systems, pages 37–46,
2010.

[15] P. Puschner and A. Burns. A review of worst-case
execution-time analysis. Journal of Real-Time Systems,
18(2/3):115–128, May 2000.

[16] O. Redell. Analysis of tree-shaped transactions in dis-
tributed real-time systems. In ECRTS ’04: Proceed-
ings of the 16th Euromicro Conference on Real-Time Sys-
tems (ECRTS’04), pages 239–248, Washington, DC, USA,
2004. IEEE Computer Society.

[17] K. Richter. Compositional Scheduling Analysis Using
Standard Event Models - The SymTA/S Approach. PhD
thesis, University of Braunschweig, 2005.

[18] J. Rox and R. Ernst. Construction and deconstruction of
hierarchical event streams with multiple hierarchical lay-
ers. In ECRTS ’08: Proceedings of the 2008 Euromicro
Conference on Real-Time Systems, pages 201–210. IEEE
Computer Society, 2008.

[19] J. Rox and R. Ernst. Exploiting inter-event stream corre-
lations between output event streams of non-preemptively
scheduled tasks. In Proc. Design, Automation and Test in
Europe (DATE 2010), March 2010.

[20] I. Stein and F. Martin. Analysis of path exclusion at the
machine code level. In 7th Intl. Workshop on Worst-Case
Execution Time (WCET) Analysis, 2007.

[21] M. Stigge, P. Ekberg, N. Guan, and W. Yi. The digraph
real-time task model. In 17th IEEE Real-Time and Em-
bedded Technology and Applications Symposium (RTAS),
pages 71–80. IEEE, 2011.

[22] V. Suhendra, T. Mitra, A. Roychoudhury, and T. Chen. Ef-
ficient detection and exploitation of infeasible paths for
software timing analysis. In Proceedings of the 43rd
annual Design Automation Conference, pages 358–363.
ACM, 2006.

[23] K. Tindell. Adding time-offsets to schedulability analysis.
Technical report, University of York, Computer Science
Dept, YCS-94-221, 1994.

[24] K. Tindell and J. Clark. Holistic schedulability analysis
for distributed hard real-time systems. Microprocessing
and Microprogramming, 40:117–134, 1994.

[25] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti,
S. Thesing, D. Whalley, G. Bernat, C. Ferdinand, R. Heck-
mann, T. Mitra, et al. The worst-case execution-time
problemoverview of methods and survey of tools. ACM
Transactions on Embedded Computing Systems (TECS),
7(3):36, 2008.

