
Modifications on Event Streams for the Real-Time Analysis of Distributed
Fixed-Priority Systems

Steffen Kollmann, Karsten Albers, Frank Bodmann, Frank Slomka
Department of Computer Science

University of Oldenburg
{steffen.kollmann,karsten.albers,frank.bodmann,frank.slomka}@informatik.uni-oldenburg.de

Abstract

In this paper we present a real-time analysis for complex
distributed systems. The event stream model describes the
occurrences of events within arbitrary time intervals. We
propose a method to explore the modification of these oc-
currences as the events are processed within a complex task
system. By observing the effects of several tasks competing
for the same resource, additional insight can be won on the
density of the events generated by the individual tasks.

1. Introduction

In this paper we will show how to adopt the real time
analysis for distributed systems to the event stream model.
In figure 1 a small example is presented where several task
are connected to each other. The edges in the picture rep-
resent the dependencies within the system. Each edge is
weighted by an event stream, which describes the occur-
rence of events. By means of the event stream model to-
gether with [2] we can make a real-time analysis for each
task. The main contribution of this paper is the calculation
of internal and outgoing event streams regarding their de-
pendency on the scheduling and on the incoming streams.

2. Model

The model is one of the central points in real time anal-
ysis. The analysis can only be as accurate as the model
allows. Most of the work in this area is based on the peri-
odic task model with jitter like it is used in [5]. However the
simplicity of the model leads to a loss of accuracy. For this
reason we use the event stream model, because it is more
accurate and still allows an efficient analysis.

Event streams were first defined in [3]. The purpose was
to give a generalised description for every kind of stimuli.
The idea is to notate for each number of events the minimum

interval which can include this number of events. The result
is a sequence of intervals which shows a non-decreasing be-
haviour. The reason for this behaviour is, that the minimum
interval for n events cannot be smaller than the minimum
interval for n-1 events since the first interval also includes
n-1 events which therefore would be a contradiction. Each
of the single intervals is called event stream element.
Definition 1: An event stream is a set of event stream ele-
ments ψ:

ES = {ψ1, ψ2, ..., ψn}

Each event stream element ψ =
(

p

a

)

consists of an offset-
interval a and a period p. With a period of infinite it is
possible to model aperiodic behaviour. The whole event
stream model is described in [3] and [1].

3. Competing Tasks and Event Streams

In this paper solutions will be presented for the scenar-
ios shown in figure 1. All tasks in the system are scheduled

ES0 ES1

ES1

ES2

ES3

ES3

ES4

ES5

ES6

ES7

ES1

Stimulation by Event Streams (ES)

Processing Element (PE)

Tasks

PE 1 PE 2 PE 4

PE 5

PE 3

PSfrag replacements

τ1 τ2

τ3

τ4

τ5

τ6

τ7
(τ)

Figure 1. An Example of a Distributed System

by any fixed priority schedule and have no additional de-
pendency, each task generates only an event at the end of
its execution and the utilisation of each processing element
must be less than or equal to one. Event streams allowed in

the system are characterized as follows.

ESk=

„

∞
ak,1

«

,...,

„

∞
ak,m−1

«

,

„

pk
ak,m

«

,...,

„

pk
ak,n

«ff

:1≤m≤n∧ai≤aj⇔i≤j

The idea of the approach which is presented here is that the
first execution of a task which is analysed calculates as long
as possible and all instances following it run as short as pos-
sible. This leads to the fact that the generated events occur
in their highest density. Consequently we get the worst case
of utilisation, which can be generated. To reach that goal,
we need a modification of the response time analysis from
[4]. This modified analysis is presented in the next formu-
las. By means of these formulas we get the response time
(RT (τ)) of the first execution.

RT (τ)=min{RTm
n :RT m

n =RTm−1
n }

RT m
n =cn+

Pi∈HP
i

E(RT m−1
n)·ci:RT0

n=cn

The event streams within the system or the outgoing event
streams consist of an aperiodic part and a periodic part of
events. So formulas are required which calculate when the
aperiodic part ends and the periodic part starts. These for-
mulas are presented in the next lines.

ES∞={(P
a)|(P

a)∈ES∧p=∞}

ESP =ES\ES∞

N=|ES| ; N∞=|ES∞| ; NP =|ESP |

a(i)=

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

ai i ≤ N

b i−N∞

NP c·p
((i−N)mod NP +N∞)

i > N

+a
((i−N)mod NP +N∞)

j=min{∀i:EDA(i,τ,ES)≤a(i)}

The formula ES calculates the event stream for each task.
The formula divides itself into three parts. The first part
calculates the events, which are affected by the first execu-
tion. The other events which are not affected by the first
event, are calculated by the other parts. One part calculates
the aperiodic events and the other part calculates the events
which are repeated.

ES={
j
S

i=1
(∞

EDA(i,τ,ES)−RT (τ)),

N
S

i=j+1
p=∞

(∞
EDA(i,τ,ES)−RT (τ)),

N+j
S

i=j+1
p6=∞

„

pi
EDA(i,τ,ES)−RT (τ)

«

}

To get an exact calculation of the event streams and not only
a lower bound we have to consider two cases. The first
case is shown is figure 1. τ1 stimulates the two tasks on
the PE2. In this case we have a more relaxed event stream
than in the case when tasks are stimulated by different event
streams as the tasks on PE3. This is caused by the fact that
the events, which stimulate the tasks, occur simultaneously.

Consequently the distance between the generated events are
stretched by tasks with a higher priority. Hence we need dif-
ferent formulas for the cases. For the first case the formulas
are presented next. These functions regard the occurrence
of the higher priority tasks.

EDA(1,τ,ES)=RT (τ)

∀i≥2:EDA(i,τ,ES)=g(EDA(i−1,τ,ES),a(i),
Pj∈HP

j
bj ,b,RT(τ))

g(t,a,bg ,b,RT)=

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

a+bg+b t ≤ a,

t+b t > a ∧ a < RT ,

t+bg+b t > a ∧ a ≥ RT ,

The formulas for the other case are presented in the next
few lines. This case is stricter than all other cases. So we
can use this case as a lower bound for all cases which can
occur.

EDA(1,τ,ES)=RT (τ)

∀i≥2:EDA(i,τ,ES)=h(EDA(i−1,τ,ES),a(i),b)

h(t,a,b)=

8

>

>

>

<

>

>

>

:

a+b t ≤ a,

t+b t > a,

4. Conclusion

The purpose of this paper was to calculate more precise
inner event streams for the real-time analysis of fixed pri-
ority systems. This was possible by using the more general
event stream model. We have given the calculation of the
inner and outgoing event streams for the possible scenarios.
Although the used model is more powerful this does not
lead to an increase of analysis complexity. Together with
the results in [2] a complete real time analysis is possible.

References

[1] K. Albers and F. Slomka. An event stream driven approx-
imation for the analysis of real- time systems. In Proceed-
ings of the 16th Euromicro Conference on Real-Time Systems
(ECRTS 04), pages 187–195. IEEE, July 2004.

[2] S. K. Baruah. Dynamic- and static-priority scheduling of re-
curring real-time tasks. Real-Time Systems, 24(1):93–128,
2003.

[3] K. Gresser. An event model for deadline verification of hard
real-time systems. In Proceedings of the 5th Euromicro Work-
shop on Real-Time Systems, 1993.

[4] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic
scheduling algorithm: Exact characterization and average
case behavior. In Proceedings of the Real-Time Systems Sym-
posium, pages 166–171, 1989.

[5] K. Tindell and J. Clark. Holistic schedulability analysis for
distributed hard real-time systems. Microprocessing and Mi-
croprogramming, 40:117–134, April 1994.

