
Internal Report

Dependencies Aware Event-Driven Real-Time Analysis for
Distributed Fixed-Priority Systems

Steffen Kollmann, Karsten Albers, and Frank Slomka

Department for Embedded Systems/Real-Time Systems, Ulm University
{forename}.{surname}@uni-ulm.de
http://www.uni-ulm.de/in/esys

Abstract. In this paper we present an approach to calculate the max-
imum density of events in a distributed hard real-time system having
tree-shaped dependencies. Thereby we will present how it is possible to
relax the density of events in such a system by including scheduling de-
pendencies. This relaxation has a direct impact of successive tasks and
leads to more realistic real-time analysis. In this paper we distinguish be-
tween the task model and the model for the stimulation with the result
that we can describe a major range of stimulation. In the end we will
show how it is possible to make a real-time analysis with the presented
approach.

Key words: Distributed System, Fixed Priority, Real-Time Analysis, Event
Streams, Tree-Shaped Dependencies, Embedded System

1 Introduction

Many approaches have been developed to analyze hard real-time systems but
most of them assume that the tasks in the system are independent. This means,
for example, that no influences between tasks caused by scheduling or com-
munication are considered. But these dependencies can lead to a more relaxed
stimulation in the system which therefore leads to a higher utilization of the
processor and communication elements in the system. So it is necessary to have
methods which are able to analyze such complex systems in an appropriate time
and are not too pessimistic during the calculation at the same time. First we
introduce an architecture serving as motivation and as example for the whole
paper. In figure 1 a heterogeneous distributed system is presented which is part
of an overall context and consists of two processing elements (PE1 and PE2), a
bus (BUS1) and their tasks (τ1, ..., τ8). Note that between τ1 and τ6 is a direct
connection. We assume that the subsystem has to fulfill time constraints and
therefore a real-time analysis is required. So it is necessary to compute the max-
imum density of events which can occur in the system. The arrival of data in the

1



system is specified by the environment and the tasks on the processing elements
are scheduled by a fixed priority schedule. The edges represent the triggering
between the tasks when new data are available. Event streams (ES1, ..., ES11)
describing the maximum density of events are assigned to these edges. Since only
the stimulation for τ1, τ2 and τ3 are available from the environment, the aim is
to calculate the event streams of the remaining system.

Our con-

Fig. 1. Example of a distributed system

tribution in
this paper is
to present an
approach to
determine the
maximum den-
sity of events
occurring in
heterogeneous
distributed sys-
tems like in the example. Thereby dependencies caused by the scheduling on a
resource are taken into account which leads to more relaxed event streams. One
special predicate of the analysis is that tasks stimulated by the same events
present a special case during the analysis. Such a case is presented via τ2 and
τ3 in figure 1. It is obvious that if the outgoing event stream of a task is more
relaxed by the implication of dependencies that successive tasks have a more
relaxed input event stream. In the figure 1, if τ3 produces a more relaxed output
τ5 will get a more relaxed input. In turn the output of τ5 is more relaxed and
therefore the input of τ7 as well. The propagation of the relaxed event streams
ends in a pattern of tree-shaped dependencies.

The rest of the paper is organized as follows. Chapter 2 gives an overview
about related work in this area. In chapter 3 we will introduce our model based
on the event stream model by K. Gresser [1]. On basis of the model we will
show how to calculate the event streams in a heterogeneous distributed system.
Subsequently, we give an example and how it is possible to achieve a real-time
analysis with this result. The conclusion follows at the end.

2 Related Work

In order to conduct a real-time analyses it is necessary to choose an appropriate
model. Most of the work in this area is based on the periodic task model with
jitter as it is used in Tindell and Clark [2], for example. Many approaches have
been developed based on this model but the simplicity of the model leads to a loss
of accuracy. Another disadvantage is that no dependencies have been considered.
Hence, in [3] the transaction model has been developed where it is possible to
group dependent tasks in transaction groups and describe dependencies with
fixed offsets. This approach has been integrated in [4] the Holistic Scheduling
Analysis. Redell generalized this approach in [5] and allows more sophisticated

2



task chains. In his approach it is possible that a task can trigger more than one
task what is in our opinion a more realistic case. The idea was used in [6] by
Henia et al.. This paper explores time-correlation between tasks via tree-shaped-
dependencies. This allows to describe additionally relative dependencies to the
last common predecessor of tasks. Henia et al. have been improved this idea
in [7]. But dependencies caused by the scheduling on a processor has not been
considered the same also applies for all the other papers.

We use the event stream model to describe the stimulation. The advantage
of this model is, that we are able to describe any kind of stimulation. Due to
the simplicity we use the event streams, although the approach is extendible on
hierarchical events streams [8] which are more expressive.

3 Model

In this section we introduce our models. We differentiate between the task model
and the model for the stimulation. The reason for this can be observed, for
example, in the periodic task model with jitter [2] where we have got on the one
hand the task model with the best case and worst execution times, and on the
other hand the model for the stimulation with jitter and period. But this is not
enough to describe a major range of stimulations. Therefore we use the more
generalized event stream model to describe the stimulation.

3.1 Task Model

Definition 1. Γ is the set of tasks of one resource Γ = {τ1, ..., τn}. A task is a
4-tuple with τ = (c, b, d, ρ). c is the worst case execution time, b is the best case
execution time and d is the relative deadline. ρ defines the priority of the task
for the scheduling. Let τij be the j-th job/execution of task i.

In our model we assume that a task can only generate an event at the end of
its execution to notify other tasks. Furthermore we assume that the tasks are
scheduled by fixed-priority schedules. We also consider only systems where the
load is lower 100% (U < 100%). The load of 100 % is a special case and is not
discussed here.

3.2 Event Streams

Event streams has been first defined in [1]. The purpose was to give a generalized
description for every kind of stimuli. The basic idea is to define an event function
E(I) which can calculate for every interval I the maximum amount of events
which can occur within I. For this purpose only the length of I is relevant. In
the following, when speaking of intervals we mean the length of the interval.
An interval with a specific begin and end point we will call specific interval.
The event function needs a properly described model behind it which makes it
easy to extract the information. The idea is to notate for each number of events

3



the minimum interval which can include this number of events. Therefore we
get an interval for one event (which is infinite small and therefore considered
to be zero), two events and so on. The result is a sequence of intervals showing
a non-decreasing behavior. The reason for this behavior is, that the minimum
interval for n events cannot be smaller than the minimum interval for n-1 events
since the first interval also includes n-1 events. This sequence of intervals shows
a periodic behavior and is called event stream. Each of the single intervals is
called event stream element.

Definition 2. An event stream is a set of event stream elements ψ:ES={ψ1,ψ2,...,ψn}

and each event stream element ψ = (p a)T consists of an offset-interval a and a
period p.

Each event stream element describes a set of elements of the sequence. For
the event stream element ψ the element a+ k · p is part of the sequence and all
the elements with k ∈ N . An event stream models a given sequence if all the
elements and only the elements of the sequence can be generated using the event
stream elements. Therefore it is possible to calculate for each possible interval
the maximum amount of events that can occur within this interval:

Definition 3. Event Stream Function

E(I)=
Pn
i=1 Ei(I) ; Ei(I)=

8>>>><>>>>:
0 I<aij
I−ai
pi

+1
k

I≥ai∧pi<∞

1 I≥ai∧pi=∞

Furthermore the event stream model complies the characteristic E(I1+I2)≤

E(I1)+E(I2). This characteristic is called sub-additivity. It means that the max-
imum number of events of an interval cannot exceed the cumulated maximum
number of events of its subintervals.

Events can occur in a greater distance than it is described in the event stream
which describes only the minimum distance between a number of events.

An event stream in which all elements have either the same or infinite period
is called homogeneous and every event stream can be made homogeneous using
the least common multiplier of its periods as new period of all elements and
complete its set of event stream elements. With a period of infinite (∞) it is
possible to model irregular behavior.

Note that the order of the elements is of no concern for the evaluation. For
the purpose of evaluation it is not necessary to find the exact minimum intervals.
It is sufficient to find for all intervals a lower bound. This can allow to simplify
the event stream (also might mean to accept an overly pessimistic description).
A detailed definition of the concept and the mathematical foundation can be
found in [9].

4



3.3 Subset of Event Streams

For our calculations in chapter 4 we need an order relation for the event streams.
We introduce the identifier ψi denoting the i-th element in the event stream.

ES=

8<:
0@∞
a1

1A,...,
0@ ∞

am−1

1A,
0@ pk

am

1A,...,
0@ pk

an

1A9=;: 1≤m≤n ∧ ai≤aj⇔i≤j (1)

The order relation means that all aperiodic events are described first in the
stream. All other events have the same period and follow directly after the
aperiodic events. This subset is no restriction, because every event stream can
be transformed into this pattern. To achieve this we take all periods being not
infinit and find the least common multiplier and use it as new period. Second we
take all periodic events which does not fulfill the equation above and shift the
offset until the equation is fulfilled. The shift operation is performed as follows:
(p a)T = (∞ a)T , (p (a + p))T . Furthermore it is necessary that the aperiodic
part is sorted by its offset as well as the periodic part.

It is useful to define names for certain properties of the event stream. N
is the number of tuple in the event stream. N∞ is the number of tuples with
a period of infinity and Np is the number of tuples with a period unequal infinity.

4 Competing Tasks

In this chapter we present a technique to calculate the event streams in a dis-
tributed system. Thereby the assumptions made in chapter 3 are used.

4.1 The Maximum Density of Events

In order to calculate the outgoing event stream of a task we have to determine
the worst case. Or in other words, the maximum density of events that a task
can produce. The next lemma gives the worst case. We assume that the task
is triggered by the maximum density of events which is described by the event
stream. The event stream stimulating a task is called incoming event stream and
the event stream produced by a task is called outgoing event stream.

Lemma 1. A number of outgoing events occur in the maximum density when
the first event is delayed as much as possible and all further events occur as early
as possible.

Proof. We assume that two outgoing events exist having a higher density than
the events fulfilling the assumption. If the first outgoing event and second outgo-
ing event are closer together than in the assumption, this would mean either the
first outgoing event arrives later than allowed by the assumption or the second
event arrives earlier than allowed by the assumption. This is a contradiction,
because we assume already the maximum or minimum values for both arrival

5



times. So there must be two other events later in the outgoing event stream hav-
ing a shorter distance to each other. Assume that two events are occurring closer
than in the assumption and the first event is delayed as much as possible and
the second arrives as early as possible, this would mean that the corresponding
incoming events also have a shorter distance to each other than the first two
incoming events. But this is in contradiction to the event stream definition. The
proof for another number of events is analog. ut

From this lemma we can follow the required information to calculate the
outgoing event stream of a task. Since the first execution of the task is maximum
delayed and the stimulations of tasks triggered by the same event stream as the
task itself are considered as well, the following information are necessary:

1. The incoming event stream of the task itself and the incoming event streams
of the higher priority tasks on the same processing element.

2. The properties of the task itself and of the higher priority tasks on the same
processing element.

For Example τ3 on PE1 in figure 1 needs ES1, ES2 and ES3 and the prop-
erties of τ1, τ2 and τ3. In this case we assume that τ1 has got a higher priority
than τ2 and that τ2 has got a higher priority than τ3.

Fig. 2. Scheduling example of τ1, τ2 and τ3

The figure 2 is a cut-out of a gantt-chart showing the described scenario
above. The first execution of τ3 is stretched as much as possible by its worst
case response time. This means that the outgoing event is delayed as much as
possible.

The remaining executions of τ3 run only with their best case execution time
to ensure that the next events come as early as possible. As mentioned in chapter
1 only one task can be processed on a resource. This means that the executions
of τ2 has to be considered for the analysis of τ3, because this task is triggered
by the same event stream. τ1 must only be considered during the worst case

6



response time to ensure that the first event of τ3 delayed as much as possible.
Since the incoming event stream describes only the worst case, events can occur
in a greater distance than that one specified by the event stream. In order to
ensure that the remaining events of τ3 occur as early as possible we can assume -
according to the event stream model - that the executions of τ1 have no influence
after the first execution of τ3.

4.2 Calculation of the Maximum Density

In order to calculate the outgoing event stream of a task, we will introduce the
necessary equation.

ESout =
{

jS
i=1

0@ ∞

RET (i,τ,ESin)−WCRT1(τ)

1A,NP+jS
i=j+1

0@ pi

RET (i,τ,ESin)−WCRT1(τ)

1A} (2)

Equation 2 defines how the incoming event stream is processed in order to
calculate the outgoing event stream. The equation consists of two parts. The first
part gives all event stream elements having an aperiodic behavior and the second
part all event stream elements having a periodic behaviour. The offset for the
i-th element of both parts is the distance between that point in time when the
i-th event of the incoming event event stream has been processed (Request End
Time; RET) and that point in time when the first event of the incoming event
stream has been processed (Worst Case Response Time; WCRT). The following
incoming events have no influence on the offset of the i-th event, because these
events can occur time-shifted according to the event stream definition.

The division of periodic and aperiodic outgoing events is determined by a
gap of time. A gap occurs when the processing of the i-th event finishes before
the arrival of the (i+1)-th event. We need the time of the first gap after the
finishing of all aperiodic incoming events. At this point it can be assumed that
the aperiodic behavior is finished, because the remaining events have a constant
execution time and occur periodically. Equation 3 shows how to calculate this
point in time. As we only explore systems with a load lower 100%, the gap exists.

j=min{∀i:RET (i,τ,ESin)≤RT (i+1,ESin)∧RT (i+1,ESin)≥min{al|pl 6=∞}} (3)

The equation RT (i, ES) (Request Time) delivers for the i-th event of an
event stream the time when it is requested. By means of the modulo calculation in
the second case it is possible to ensure that aperiodic events are to be considered
only once.

RT (i,ES)=

8><>:ai i≤Nj
i−N∞
NP

k
·p((i−N)mod NP+N∞)+a((i−N)mod NP+N∞) i>N

(4)

The worst case response time has been introduced in [10]. We have adjusted
the equation here so that we can use the event stream model with it. Equation

7



5 gives the length I with k requests of a task processed in the worst case. The
calculation of I can be done by a fixpoint iteration.

WCRTk(τ)=min{I|I=k·cτ+
P
τ′∈HP Eτ′ (I)·cτ′} (5)

Finally we introduce the equation RET which makes it possible to determine
when the i-th request has been processed. The first parameter describes the i-
th request, τ the task which is actually explored and ESin the incoming event
stream of the task.

RET (1,τ,ESin)=WCRT1(τ) (6)

According to the lemma the first event occurs at the end of the worst case
response time. So RET (1, τ, ESin) is the worst case response time of one execu-
tion.

∀i≥2:RET (i,τ,ESin)=h(RET (i−1,τ,ESin),RT (i,ESin),
P

τ′∈HP ∧ ESτ=ES
τ′

bτ′ ,bτ ,WCRT1(τ))

(7)

h(t,a,ba,b,WCRT )=

8>>>><>>>>:
a+ba+b t≤a,
t+b t>a∧a<WCRT ,
t+ba+b t>a∧a≥WCRT ,

(8)

Equation 7 applies for the remaining events using their best case execution
times. This formula is recursively defined. This is necessary, because it has to
be considered whether the previous execution is finished before the new request
occurs. Equation 8 has got the time as parameter when the previous execution is
finished (RET (i−1, τ, ESin)), the time of the current request (RT (i, ESin)), the
sum of the best case executions of the higher priority tasks which are triggered
by the same event stream (

∑
τ′∈HP ∧ ESτ=ES

τ′
bτ ′), the best case execution time

of the task (bτ ) and the worst case response time of the task (WCRT1(τ)).
Equation 8 consists of

Fig. 3. Example of τx and τy

three cases which have to
be considered separately.
In the first case the pre-
vious execution is finished
before the current execu-
tion is requested. The re-
sult is the sum of the re-
quest time and the best
case executions of the higher
priority tasks and the best
case execution of the task
itself. In figure 2 we can see this behavior of τ3 during its third request.

In the second case the previous execution is finished later than the current
request and this request occurs during the first job of the task (τi1). In this case
we do not have to consider the best case executions of the higher priority tasks,
because the executions of those requests have already been taken into account

8



by the worst case response time calculation. Figure 2 illustrates this case for τ3.
The second execution of task τ2 doesn’t belong to the second execution of τ3.

The third case is similar to the second case with the exception that the
request does not occur within the worst case response time of the task’s first
job (τi1). Therefore, we need to sum the executions of the corresponding higher
priority tasks. The result is the finishing time of the previous execution plus the
best case executions of the higher priority tasks plus the best case execution of
the task which is analyzed. This case is shown in figure 3 where the third request
of τy occurs earlier than the second request has been processed (τx and τy are
triggered by the same ES).

The new scientific contribution of this approach is that the stimulations of
the higher priority tasks which are triggered by the same event stream are taken
into account which allows to relax the density of the events much more.

4.3 The Communication in the System

As presented in figure 1 we can consider the communication as tasks on a pro-
cessing element. Each connection over a bus can be considered as task which
have a worst case execution time (longest time to send a message) and a best
case execution time (shortest time to send a message) and the processing ele-
ment is the bus itself. During the communication we assume a static behavior.
This means either the communication is scheduled by fixed-priorities or by time
slices (e.g. static part of a FlexRay Bus). The later would mean that all commu-
nication tasks have got the same priority, since the influences of the other tasks
are included in the execution times. In the example (section 4.4) we will present
such a schedule. The communication over direct connections is trivial and is not
discussed here.

4.4 Example:

After the explanation of the equations we will give an example to illustrate the
whole concept. In the example we calculate the outgoing event stream ES9 for τ7
in figure 1. Thereby we start with the stimulation of τ3. The calculation consists
of three steps.

Outgoing event stream of τ3: We assume that we have given the event
stream ES1 = {(1000, 0)T } and ES2 = ES3 = {(200, 0)T , (200, 10)T , (200, 60)T )}.
Furthermore we need the properties of the tasks. τ1 = (10, 5, 30, 1), τ2 = (10, 5, 40, 2)
and τ3 = (20, 5, 70, 3). A cut-out of the gantt-chart of τ3 is presented in figure 2.
Now the outgoing event stream for τ3 can be computed. First of all the response
time will be computed.

WCRT 0
1 (τ)=cτ+

P
τ′∈HP Eτ′ (cτ )·cτ′=20+

P
τ′∈HP Eτ′ (20)·cτ′=20+20=40

WCRT 1
1 (τ)=cτ+

P
τ′∈HP Eτ′ (RT

0
1 )·cτ′=20+

P
τ′∈HP Eτ′ (30)·cτ′=20+30=50

9



WCRT 2
1 (τ)=cτ+

P
τ′∈HP Eτ′ (RT

1
1 )·cτ′=20+

P
τ′∈HP Eτ′ (40)·cτ′=20+20=50

The response time is WCRT1(τ3) = 50. Next, the event stream will be set up
gradually. Therefore, all tuple for the union function will be passed through.

Passing through the union:
Sj
i=1

0@ ∞

RET (i,τ,ESin)−WCRT1(τ)

1A
1.tuple:

0BB@ ∞

RET (1,τ3,ES3)−WCRT1(τ3)

1CCA =

0BB@ ∞

WCRT1(τ3)−50

1CCA =

0BB@ ∞

50−50

1CCA =

0BB@∞
0

1CCA
2.tuple:

0BB@ ∞

RET (2,τ3,ES3)−WCRT1(τ3)

1CCA =

0BB@ ∞

h(50,10,5,5,50)−50

1CCA =

0BB@ ∞

55−50

1CCA =

0BB@∞
5

1CCA
After the second event is the first gap to a periodic event (j = 2).

Passing through the union:
SNp+j
i=j+1

0@ pi

RET (i,τ,ESin)−WCRT1(τ)

1A
3.tuple:

0BB@ 200

RET (3,τ3,ES3)−WCRT1(τ3)

1CCA =

0BB@ 200

h(55,60,5,5,50)−50

1CCA =

0BB@ 200

70−50

1CCA =

0BB@ 200

20

1CCA
4.tuple:

0BB@ 200

RET (4,τ3,ES3)−WCRT1(τ3)

1CCA =

0BB@ 200

h(70,200,5,5,50)−50

1CCA =

0BB@ 200

210−50

1CCA =

0BB@ 200

160

1CCA
5.tuple:

0BB@ 200

RET (5,τ3,ES3)−WCRT1(τ3)

1CCA =

0BB@ 200

h(210,210,5,5,50)−50

1CCA =

0BB@ 200

220−50

1CCA =

0BB@ 200

170

1CCA

The resulting outgoing event stream of τ3 is : ES5=

8>><>>:
0BB@∞

0

1CCA,
0BB@∞

5

1CCA,
0BB@ 200

20

1CCA,
0BB@ 200

160

1CCA,
0BB@ 200

170

1CCA
9>>=>>;

Outgoing event stream of τ5: In this part we have to consider the commu-
nication of the bus. As mentioned in the last chapter we assume here a time slice
approach. The time slices on the bus are 5 time units. For both tasks applies
that the worst case execution time to send a message is 20 time units and the
best case execution time to send a message is 10 time units. The execution times
are the sum of the time slices which are needed to send a message. The execution
interval includes already the time slices of the other tasks. The result is that we
do not have to consider other tasks during the calculation of one outgoing event
stream. Since we have not enough space and the calculation includes only one
event stream we give the result directly.

The outgoing event stream of τ5 is : ES7=

8>><>>:
0BB@∞

0

1CCA,
0BB@∞

10

1CCA,
0BB@ 200

20

1CCA,
0BB@ 200

150

1CCA,
0BB@ 200

160

1CCA
0BB@ 200

200

1CCA
9>>=>>;

Outgoing event stream of τ7: We give ES6 = {(1000, 0)T , (1000, 1995)T }
without calculation. The properties of the tasks are: τ6 = (10, 5, 30, 1) and τ7 =
(10, 5, 40, 2). First of all the response time will be computed.

WCRT 0
1 (τ)=cτ+

P
τ′∈HP Eτ′ (cτ )·cτ′=10+

P
τ′∈HP Eτ′ (10)·cτ′=10+10=20

WCRT 1
1 (τ)=cτ+

P
τ′∈HP Eτ′ (RT

0
1 )·cτ′=10+

P
τ′∈HP Eτ′ (20)·cτ′=10+10=20

The response time is WCRT1(τ7) = 20. Next, the event stream will be set up
gradually. Therefore, all tuple for the union function will be passed through.

10



Passing through the union:
Sj
i=1

0@ ∞

RET (i,τ,ESin)−WCRT1(τ)

1A
1.tuple:

0BB@ ∞

RET (1,τ7,ES7)−WCRT1(τ7)

1CCA =

0BB@ ∞

WCRT1(τ7)−20

1CCA =

0BB@ ∞

20−20

1CCA =

0BB@∞
0

1CCA
2.tuple:

0BB@ ∞

RET (2,τ7,ES7)−WCRT1(τ7)

1CCA =

0BB@ ∞

h(20,5,0,5,20)−20

1CCA =

0BB@ ∞

25−20

1CCA =

0BB@∞
5

1CCA
3.tuple:

0BB@ ∞

RET (3,τ7,ES7)−WCRT1(τ7)

1CCA =

0BB@ ∞

h(25,5,0,5,20)−20

1CCA =

0BB@ ∞

30−20

1CCA =

0BB@∞
10

1CCA
After the third event is the first gap to a periodic event (j = 3).

Passing through the union:
SNp+j
i=j+1

0@ pi

RET (i,τ,ESin)−WCRT1(τ)

1A
4.tuple:

0BB@ 200

RET (4,τ7,ES7)−WCRT1(τ7)

1CCA =

0BB@ 200

h(30,150,0,5,20)−20

1CCA =

0BB@ 200

155−20

1CCA =

0BB@ 200

135

1CCA
5.tuple:

0BB@ 200

RET (5,τ7,ES7)−WCRT1(τ7)

1CCA =

0BB@ 200

h(155,160,0,5,20)−20

1CCA =

0BB@ 200

165−20

1CCA =

0BB@ 200

145

1CCA
6.tuple:

0BB@ 200

RET (6,τ7,ES7)−WCRT1(τ7)

1CCA =

0BB@ 200

h(165,200,0,5,20)−20

1CCA =

0BB@ 200

205−20

1CCA =

0BB@ 200

185

1CCA

The outgoing event stream of τ7 is : ES9=

8>><>>:
0BB@∞

0

1CCA,
0BB@∞

5

1CCA,
0BB@∞

10

1CCA,
0BB@ 200

135

1CCA,
0BB@ 200

145

1CCA,
0BB@ 200

185

1CCA
9>>=>>;

5 Real-Time Analyses

A real-time analysis can be accomplished by analyzing each task individually
and perform a continued response time analysis. This means that all requests
within the busy period need to be examined. The busy period is the time interval
from the first request to the first idle-time of the processor. It can be calculated
as follows:

BP = min{I|I ≥
X
τinΓ

Eτ (I) · cτ} (9)

We have to test all WCRTk ≤ BP . If all executions meet their deadlines in
this interval, the system will always met its deadlines. This can be concluded by
the event stream model since the worst case occurs at the beginning. The result
is that all executions after the busy period must meet their deadlines, too. As
proposed in chapter 4 the calculation can be performed by a fixpoint iteration.

A second approach is described by S. Baruah [11]. In this paper an event-
driven real-time analysis with Recurring Real-Time Tasks is done. It is no prob-
lem to transform that analysis to our model. Baruah demands only two function
definitions. The first function is the request bound function delivering to a given
time interval the maximum time what a task need for its requested executions.
The function is defined as rbf = E(I) ·cτ . The second function is similar to the
first with the exception that the deadlines of the executions have to lie in the
time interval. This function is dbf = E(I − dτ ) · cτ . In order to perform a real
time analysis the equation ∀t : ∃t′ ≤ t :

[(
t′ −

∑
τ ′∈HP Tτ ′ .rbf(t′)

)
≥ Tτ .dbf(t)

]
must be fulfilled. In the referenced paper it is explained how to conduct this
analysis efficiently.

11



6 Conclusion

The purpose of this paper was to calculate more precise event streams for the
real-time analysis of fixed priority systems. This was possible by using the more
general event stream model. We have given the calculation of outgoing event
streams from tasks which are scheduled by fixed priorities. Thereby we have
considered the dependencies caused by the scheduling on a processor. Especially
the new consideration of the dependency that tasks can be triggered by the same
source leads to a further relaxation.

We have also shown how a real-time analysis can be achieved with the re-
sult. This enables us to do a real time analysis for appropriate heterogeneous
distributed systems. A further step is to use this approach in connection with
the hierarchical event stream model [8] which is more expressive.

References

1. Gresser, K.: An event model for deadline verification of hard real-time systems.
In: Proceedings of the 5th Euromicro Workshop on Real-Time Systems. (1993)

2. Tindell, K., Clark, J.: Holistic schedulability analysis for distributed hard real-time
systems. Microprocessing and Microprogramming 40 (April 1994) 117–134

3. Tindell, K.: Adding time-offsets to schedulability analysis. Internal report, Uni-
versity of York, Computer Science Dept, YCS-94-221. (1994)

4. Gutirrez, J., Garca, J., Harbour, M.: The schedulability analysis for distributed
hard real-time systems. In: Proceedings of the 9th Euromicro Workshop on Real-
Time Systems, Toledo, Spain. (June 1997) 136–143.

5. Redell, O.: Analysis of tree-shaped transactions in distributed real-time systems.
In: ECRTS ’04: Proceedings of the 16th Euromicro Conference on Real-Time Sys-
tems. (2004) 239–248

6. Henia, R., Ernst, R.: Context-aware scheduling analysis of distributed systems with
tree-shaped task-dependencies. In: DATE ’05: Proceedings of the conference on
Design, Automation and Test in Europe, Washington, DC, USA, IEEE Computer
Society (2005) 480–485

7. Henia, R., Ernst, R.: Improved offset-analysis using multiple timing-references.
In: DATE ’06: Proceedings of the conference on Design, automation and test in
Europe, 3001 Leuven, Belgium, Belgium, European Design and Automation Asso-
ciation (2006) 450–455

8. Albers, K., Bodmann, F., Slomka, F.: Hierarchical event streams and event depen-
dency graphs: A new computational model for embedded real-time systems. In:
ECRTS ’06: Proceedings of the 18th Euromicro Conference on Real-Time Systems,
Washington, DC, USA, IEEE Computer Society (2006) 97–106

9. Albers, K., Slomka, F.: An event stream driven approximation for the analysis of
real- time systems. In: Proceedings of the 16th Euromicro Conference on Real-Time
Systems (ECRTS 04), IEEE (July 2004) 187–195

10. Lehoczky, J., Sha, L., Ding, Y.: The rate monotonic scheduling algorithm: Exact
characterization and average case behavior. In: Proceedings of the Real-Time
Systems Symposium. (1989) 166–171

11. Baruah, S.K.: Dynamic- and static-priority scheduling of recurring real-time tasks.
Real-Time Systems 24(1) (2003) 93–128

12


