
Relaxing Event Densities by Lower Bounds on
Event Streams

Steffen Kollmann, Karsten Albers and Frank Slomka
Embedded Systems / Real-Time Systems

University Ulm
{first name.second name}@uni-ulm.de

Abstract—The regular execution of tasks - e.g. sensor data
acquisition - is common in embedded systems. So it is possible
to determine not only a minimal distance in which events can
occur, but also a maximum distance between events. In this paper
we will show for fixed-priority systems how it is possible to use
a lower bound of stimulation to improve the minimal distance
between events. Taking this into account will relax the worst case
response times of tasks in distributed real-time systems, leading
to a more accurate schedulability analysis.

I. INTRODUCTION

For some embedded systems it is necessary to interact
with its environment in specific time intervals. Sensor data
acquisition or control circuits are examples for such cases. So
it is possible to determine not only a maximum density of
stimulation in such systems, but also a minimal density.

In figure 1 it can be seen that the consideration of minimal
distances can lead to an improvement of the density of
outgoing events. The CPU has got the tasks τx and τy . We
assume that τx has a strict periodic execution. In the right part
of the figure the improvement of the distance of two events of
τy can be observed. In the upper part the minimal stimulation
is not considered, as usual in real-time analysis. In the lower
part the minimal stimulation is considered. This leads to a
relaxed outgoing event stream.

Cpu

τ
x

τ
y

b
x,3

c
x,2

C
y,1

c
x,1

c
x,1

c
x,2

c
y,1

c
y,1

b
y,2

not considered

considered

c
y,1CPU

priority=high

Θ
1

τ
x

τ
y

τ
x

τ
y

improvement

priority=low

Θ
2

Θ
3

b
x,4

b
x,3

b
y,2

b
x,4

b
y,2

b
y,2

Θ
4

Fig. 1. Improvement of the event density by considering minimal event
streams

The rest of the paper is organized as follows: In section
II we give a short overview about related work in this area.
The model is explained in section III. Section IV explains
the calculation of event streams in distributed systems by
considering minimal stimulation. An example is given in
section V. Finally a conclusion follows.

II. RELATED WORK

Some models consider lower bounds of event sequences that
can occur in a system. Such models are for example the real-
time calculus [7] or the periodic task model with jitter [5].
But only a very few contributions make use of these bounds.
The transaction model [6], for example, does not use the lower
bounds.

The real-time calculus defines no possibility to consider the
best case execution time of the task under analysis in order to
calculate the upper request curve. Only the lower service curve
includes the minimal occurrence of the higher priority tasks.
This lack is founded by the fact, that the real-time calculus
can not distinct between best case and worst case execution
times.

Redell, for example, shows in [4] how the calculation of a
best case response time can be obtained when lower bounds
of stimulations are considered. In this paper we also exploit
the lower bound of the stimulations in order to improve the
maximum density of events in a system. For this, we will
adapt Redell’s approach to the event stream model [2] and
extend it in order to improve the calculation of event streams
in distributed systems.

III. MODEL

In this section we introduce our models. We differentiate
between the task model and the model for the stimulation.

A. Task Model
Γ is the set of tasks on one resource Γ = {τ1, ..., τn}. A

task τ = (c, b, d, ρ,Θ,Θ). Where c is the worst case execution
time, b is the best case execution time, d is the deadline, ρ is
the priority for the scheduling (the lower the number the higher
the priority), Θ defines the maximum stimulation (maximum
density of events) and Θ the minimum stimulation (minimum
density of events). Let τij be the j-th job/execution of task τi.

In our model we assume that a task can only generate
an event at the end of its execution to notify other tasks.
Furthermore we assume a fixed-priority scheduling.

B. Maximum Event Streams
Event streams have been first defined in [2]. The purpose

was to give a generalized description for every kind of stimuli.
The basic idea is to define an event function E(I,Θ) which
can calculate for every interval I the maximum amount of
events occurring within I . In the following, when speaking
of intervals we mean the length of the interval. The event
function needs a properly described model behind it which

makes it easy to extract the information. The idea is to notate
for each number of events the minimum interval which can
include this number of events. Therefore we get an interval for
one event (which is infinitely small and therefore considered
to be zero), two events and so on. The result is a sequence
of intervals showing a non-decreasing behaviour. The reason
for this behaviour is, that the minimum interval for n events
cannot be smaller than the minimum interval for n-1 events
since the first interval also includes n-1 events. This sequence
of intervals shows a periodic behaviour and is called event
stream. Each of the single intervals is called event stream
element.

Definition 1: A maximum event stream is a set of event
stream elements θ:Θ={θ1,θ2,...,θn} and each event stream ele-
ment θ = (p, a) consists of an offset-interval a and a period
p. The maximum event stream complies the characteristic
E(I1+I2,Θ)≤E(I1,Θ)+E(I2,Θ).

The characteristic of the maximum event stream is called
sub-additivity. This means that the maximum number of events
of an interval cannot exceed the cumulated maximum number
of events of its subintervals.

Each event stream element describes a set of intervals of the
sequence. For the event stream element θ the interval a+k ·p
is part of the sequence and all the intervals with k ∈ N. An
event stream models a given sequence if all the elements and
only the elements of the sequence can be generated using the
event stream elements. Therefore it is possible to calculate for
each interval the maximum amount of events that can occur
within this interval:

Event Stream Function:

E(I,Θ)=
P
θ∈Θ

E(I,θ) ; E(I,θ)=

8>>><>>>:
0 I<aθj
I−aθ
pθ

+1
k

I≥aθ∧pθ<∞

1 I≥aθ∧pθ=∞

(1)

As inverse function we define the following function which
gives to a number of events the minimum interval in which
these events can occur:

Request Time Function:

RT (n,Θ)=min{I|E(I,Θ)=n} (2)

With an infinite (∞) period it is possible to model irregular
behaviour. A detailed definition of the concept and the
mathematical foundation can be found in [1].

!

"

#

$

%!& %

%

!

!

!

Fig. 2. This figure shows three different event sequences

In figure 2 some examples for event streams can be found.
The first one Θ1 = (p,0) has a strictly periodic stimulus with

a period p. The second example Θ2 = (∞,0), (p,p-j) shows a
periodic stimulus in which the single events can jitter within a
jitter interval of size j. In the third example Θ3 = (p,0), (p,0) ,
(p,0), (p,t) three events occur at the same time and the fourth
occurs after a time t. This pattern is repeated with a period of
p. Event streams can describe all these examples in an easy
and intuitive way.

C. Minimal Event Streams
Analog we define the minimal event streams which describe

for every Interval I the minimum stimulation in such an
interval.

Definition 2: A minimum event stream is a set of event
stream elements θ:Θ={θ1,θ2,...,θn} and each event stream ele-
ment θ = (p, a) consists of an offset-interval a and a period
p. The minimum event stream complies the characteristic
E(I1+I2,Θ)≥E(I1,Θ)+E(I2,Θ).

The characteristic of the minimum event stream is called
super-additivity. This means that the maximum number of
events of an interval can exceed the cumulated maximum
number of events of its subintervals.

Anymore, for the minimal event stream applies the follow-
ing lemma.

Lemma 1: For a minimum event stream aperiodic events
occurring independently of the remaining event stream can be
ignored.

Proof: Let us assume that an aperiodic event (∞, a) exists
in a minimal event stream Θ and this event is the last aperiodic
event:

(∃Θ);(∃θ=(∞,a))|(θ∈Θ∧¬θ
′
∈Θ:aθ<aθ′∧pθ′=∞)

⇒ (∃I1∈R);(∃I2∈R)|(I1>aθ∧I2=I1+I1)

⇒ E(I1)>E(I2)−E(I1)

⇔ E(I1+I1)<E(I1)+E(I1)

Which is a contradiction to the assumption. Since there is no
last aperiodic event in a minimal event stream, it follows that
no aperiodic event exist in a minimal event stream. �

The examples in figure 2 can be described by the following
minimal event streams: The first one Θ1 = (p,p). The second
example Θ2 = (p,p+j). In the third example Θ3 = (p,p-t), (p,p),
(p,p), (p,p) .

IV. IMPROVED DENSITY BY MINIMAL EVENT STREAMS

We have introduced a task model and a model for the
stimulation. With these models we will show how it is possible
to determine the stimulation density in the whole system. For
this we have to determine when the worst case occurs.

Lemma 2: A number of outgoing events occur in the
maximum density when the first event is delayed as much as
possible and all further events occur as early as possible.

Proof: We assume that two outgoing events e1 and e2

exist having a higher density than the events fulfilling the
assumption. If e1 and e2 are closer together than in the
assumption, this would mean either e1 arrives later than
allowed by the assumption or e2 arrives earlier than allowed
by the assumption. This is a contradiction, because we assume
already the maximum or minimum values for both arrival
times. So there must be two other events later in the outgoing
event stream having a shorter distance to each other. Assume

that two events are occurring closer than in the assumption
and the first event is delayed as much as possible and the
second arrives as early as possible, this would mean that the
corresponding incoming events also have a shorter distance
to each other than the first two incoming events. But this is
in contradiction to the event stream definition. The proof for
another number of events is analog. �

For the calculation we need the worst case response time
which determines the maximum delay of an event. Since we
have minimal event streams it is also possible to determine a
best case response time. So we first define the methodology
in order to determine these two response times.

A. Worst Case Response Time
The most usual way to do a real-time analysis is to perform

a response time analysis as introduced by Lehoczky et. al.
[3]. The condition ∀τ ∈ Γ : WCRTk(τ) ≤ dτ holds when
the real-time analysis is successful. In order to calculate the
worst case response time we have adapted the approach from
[3].

WCRTk(τ)=min{I|I=k·cτ+
P
τ′∈HP E(I,Θτ′)·cτ′} (3)

The equation is similar to the common definition of the worst
case response time. Only the calculation of the influence
of higher priority events has been changed. The amount of
execution produced by higher priority tasks can be calculated
by the event function multiplied by the worst case execution
time. By means of a fixed point iteration the worst case
response time can be calculated for every k.

B. Best Case Response Time
Additionally to the worst case response time it is possible

to determine a best case response time, since we have minimal
event streams. For this we have adapted the best case response
time from Redell [4].

BCRT (τ)=min{I|I=bτ+
P
τ′∈HP E(I,Θτ′)·bτ′} (4)

The equation adds to the best case execution time of task τ
the best case execution time of the higher priority tasks. How
many execution times are added depends on the minimal event
streams of the higher priority tasks. As well as the worst case
response time, it is possible to find the best case response time
by a fix-point iteration. For a detailed description see [4].

C. Calculation of Outgoing Event Streams
For the calculation of the density of the outgoing events we

define an interval function. This function gives for an amount
of events the minimum interval in which they can occur. We
call it interval function and define it as follows:

I(n,τ)=

8<:0 n=1

RET (n,τ)−RET (1,τ) n>1
(5)

RET (n,τ)=

8>>><>>>:
WCRT1(τ) n=1

BC(τ,RT (n,τ),RET (n−1,τ),WCRT1(τ),BCRT (τ),ΓτHP)) n>1

(6)
According to the event stream definition one event occurs

always in the interval zero. Hence, we distinguish in the
equation 5 between two cases. The first case describes the

1 BC(τ, RTn,RETn−1,WCRTτ ,BCRTτ ,ΓHP) {
2 CSTART = max(RTn,RETn−1);
3 RETnew = CSTART + BCRTτ ;
4 whi le (t r u e) {
5 B = bτ ;
6 f o r (∀τ′ ∈ ΓHP) {
7 ∆I = RETnew − (WCRTτ − cτ′);
8 B = B + E(∆I,Θ

τ′) · bτ′ ;
9 }

10 ∆J = RETnew −WCRTτ ;
11 I f (B > ∆J) {
12 RETnew = WCRTτ + B ;
13 }
14 e l s e {
15 re turn RETnew ;
16 } } }

Fig. 3. Calculation of the improved Best Case Response Time

interval for one event which is always zero according to the
event stream definition. All other events are covered by the
second case via the Request End Times.

In order to explain the calculation of the events greater than
one we use the figure 4.

c
x,3

c
y,1

c
y,1

I

I

1)

τ
x

τ
y

P
rio
rit
y

I

I

2)

τ
x

τ
y

P
rio
rit
y

I

I

3)

τ
x

τ
y

P
rio
rit
y

I

I

4)

τ
x

τ
y

P
rio
rit
y

c
x,1

c
x,2

c
y,1

c
y,1

WCRT

c
x,1

c
x,2

c
y,1

c
x,3

c
y,1

c
x,1

c
x,2

c
y,1

c
y,1

b
y,2

b
x,4

c
x,3

c
y,1

b
y,2

ΔI

c
x,1

c
x,2

c
y,1

c
y,1

b
y,2

b
x,4

c
x,3

c
y,1

b
y,2

b
x,5

ΔJc
x

b
x,4

b
y,2b

y,2

Fig. 4. Improvement of the event density considering minimal event streams

According to lemma 2 the first event is delayed as much
as possible. This delay can be determined by the worst case
response time of the first job. So the first calculation is the
WCRT of instance one like in figure 4 (part 1). So the case
for n=1 in equation 6 calculates the worst case response time.

The next events must occur as soon as possible. This
happens when the task runs with its best case execution time
and the job runs as soon as possible. For this calculation we
use the algorithm depicted in figure 3. In line 2 we determine
when the calculation can start. From this point in time we add
the best case response time determined by Redell’s approach
(line 3). This can be seen in figure 4 (part 2).

The next step is to determine, whether more interrupts can
occur from higher priority tasks or not. So we determine
for every higher priority task an interval (∆I) from the last
possible stimulation of the task in the worst case response time

up to the end of the best case response time (see figure 4 part
3). This is done in line 7.

Line 8 determines the absolute demand of execution of one
task within the interval. If the execution demand of all tasks is
greater than the interval ∆J , the best case response time will
be more relaxed (line 12). See figure 4 (part 4). Otherwise
the best case response time will be not changed (line 15).
This step must be repeated until the best case response time
is unchanged. This is done by the while-loop which is equal
to a fix-point iteration.

Is the request end time of the n-th event determined, the
minimal interval for n events can be determined by the request
end time of the n-th event minus the request end time of the
first event (see equation 5).

V. EXAMPLE

In order to show the significance of our approach we show
by a short example the improvement of the density of events
in a distributed system. Figure 5 shows this example. We
calculate the density of events for ΘF and show the impact
on the response time via task τ4.

τ
1

τ
2

τ
3

τ
5

τ
6

CPU1 CPU2

priority=high

priority=middle

priority=low

Θ
A

priority=low

priority=high

Θ
C

Θ
D

Θ
B

Θ
E

Θ
F

Θ
H

Θ
G

τ
4

priority=middle

Fig. 5. Example of a distributed system

The next table describes the properties of the distributed
system.

CPU1 τ1 τ2 τ3
c 4 4 14
b 4 4 13
d 40 50 50
ρ 1 2 3
Θ ΘA ΘB ΘC

Θ ΘA ΘB ΘC

CPU2 τ4 τ5 τ6
c 31 2 9
b 15 1 5
d 55 60 40
ρ 2 3 1
Θ ΘD ΘE ΘF

Θ ΘD ΘE ΘF

TABLE I
PARAMETERS OF THE DISTRIBUTED SYSTEM WHICH IS DEPICTED IN

FIGURE 5

The maximum event streams are: ΘA = {(12, 0)}, ΘB =
{(12, 0)}, ΘC = {(30, 0)} and ΘD = {(70, 0)}.

The minimum event streams are: ΘA = {(12, 12)}, ΘB =
{(12, 12)}, ΘC = {(30, 30)} and ΘD = {(70, 70)}.

We have calculated the minimal intervals of the first five
events of ΘF to show the improvement of the approach. This
can be seen in table II where we have calculated the densities
with approach, without approach and with Redell’s approach.
The table III shows the three different event streams of ΘF .

n ΘF1 ΘF2 Impr. ΘF1 ΘF3 Impr.

1 0 0 0% 0 0 0%
2 29 21 27,58% 29 13 55,17%
3 50 42 16% 50 27 46%
4 71 65 8,45% 71 57 19,71%
5 95 95 0% 95 87 8,42%

TABLE II
SHOWS THE IMPROVEMENT OF THE APPROACH ON THE EVENT STREAMS.
ΘF1 SHOWS THE INTERVALS WITH THE NEW APPROACH, ΘF2 SHOWS THE

INTERVALS WITH REDELL’S APPROACH AND ΘF3 WITHOUT ANY
APPROACH. THE IMPROVEMENT IS GIVEN IN %

ΘF1 = {(∞,0),(∞,29),(∞,50),(∞,71),(30,95)}
ΘF2 = {(∞,0),(∞,21),(,42),(30,65)}
ΘF3 = {(∞,0),(∞,13),(30,27)}

TABLE III
RESULTS OF THE EVENT STREAMS WITH THE DIFFERENT APPROACHES.

So we are able to calculate the worst case response time of
tasks τ4. The response time without any approach is 67 t.u.,
with Redell’s approach 58 t.u. and with the new approach 49
t.u. This leads to an improvement of 15,51% against Redell’s
approach and to 26,86% against without any approach.

VI. CONCLUSION

In this paper we have shown how to use lower bounds
of stimulation in order to improve the real-time analysis of
distributed systems. We have shown how the approach of
Redell [4] can be adapted and extended in order to improve
the calculation of event sequences. Furthermore we have
shown that this leads directly to more realistic response times
in the system. In the future we would like to develop an
efficient approach to calculate the maximum and minimum
event streams in the systems. Additionally, we will extend the
introduced approach further so we obtain tighter bounds in the
analysis. Another approach is to determine the real occurrence
of the last events of the higher priority tasks during the worst
case execution time. This would lead to a greater interval ∆I .
An extension to dynamic scheduling is also an aim.

:
REFERENCES

[1] Karsten Albers and Frank Slomka. An event stream driven approximation
for the analysis of real- time systems. In ECRTS ’04: Proceedings of the
16th Euromicro Conference on Real-Time Systems, pages 187–195. IEEE,
July 2004.

[2] Klaus Gresser. An event model for deadline verification of hard real-time
systems. In Proceedings of the 5th Euromicro Workshop on Real-Time
Systems, 1993.

[3] John P Lehoczky. Fixed priority scheduling of periodic task sets with
arbitrary deadlines. In Proceedings of the 11th IEEE Real-Time Systems
Symposium, pages 201–209, December 1990.

[4] Ola Redell and Martin Sanfridson. Exact best-case response time analysis
of fixed priority scheduled tasks. In ECRTS ’02: Proceedings of the 14th
Euromicro Conference on Real-Time Systems, page 165, Washington, DC,
USA, 2002. IEEE Computer Society.

[5] Kai Richter. Compositional Scheduling Analysis Using Standard Event
Models - The SymTA/S Approach. PhD thesis, University of Braun-
schweig, 2005.

[6] Ken Tindell. Adding time-offsets to schedulability analysis. Technical
report, University of York, Computer Science Dept, YCS-94-221, 1994.

[7] Ernesto Wandeler. Modular Performance Analysis and Interface-Based
Design for Embedded Real-Time Systems. PhD thesis, ETH Zurich,
September 2006.

