
Limiting Event Streams: A General Model to Describe Dependencies in
Distributed Hard Real-Time Systems

Steffen Kollmann, Karsten Albers and Frank Slomka
Ulm University

Institute of Embedded Systems/Real-Time Systems
{firstname.lastname}@uni-ulm.de

Internal Report

Abstract

This paper introduces a common approach to de-
scribe dependencies in distributed hard real-time sys-
tems. Taking dependencies into account will improve
schedulability analysis. Thereby, we identify a new
kind of dependency not considered in related work.
The new model can be also applied to different kinds
of dependencies including task offsets allowing an
abstract and generalized analysis. Finally, we show
how this approach leads to tighter bounds of this
analysis.

1. Introduction

Requirements of embedded systems increase from
generation to generation. A car, for example, gets more
software functionality in each generation which results
in more complex embedded systems. New cars have
up to 70 ECUs connected by several busses. Most
functions have real-time constraints such as the engine
management system and the ABS-system.

For a wide acceptance of real-time analysis by
industrial software developers tight bounds to the real
worst-case response times of tasks are important. A
successful approach is the consideration of depen-
dencies of chained task-sets. Previous work considers
different kinds of dependencies. Mutual exclusion of
tasks, offsets between task stimulation, task chains
or tasks competing for the same resource are some
examples for such dependencies. But the integration
of many other types of dependencies are still open.
Especially, missing is a holistic model for dependen-
cies as new abstraction layer. The idea is to separate
the calculation and the concrete type of dependencies

from the remaining real-time analysis. In other words
the calculation of the dependencies is orthogonal to the
real-time analysis.

This paper presents a new holistic model to integrate
different types of dependencies in real-time analysis.
We show how this general model can be integrated into
the schedulabilitiy analysis of fixed-priority systems.
We also outline the calculation of two totally different
kinds of dependencies in order to show the flexibility.

This paper is organized as follows: In chapter 2
an overview of the related work is given. Chapter 3
describes the problem which will be explored. The
model is defined in chapter 4. Chapter 5 defines the
limiting event stream model and how it can be used to
describe dependencies. The resulting real-time analysis
is presented in chapter 6. A case study in chapter 7
shows the significance of our approach. The work
closes with the conclusion.

2. Related Work

Most considered related work uses the periodic event
model with jitter. The analysis for distributed systems
was introduced by Tindell and Clark [15]. In this
holistic schedulability approach, tasks are considered
as independent and so for each task the worst-case
response time is calculated separately. This idea has
been improved by the transaction model [14] which
allows the describtion of static offsets between tasks.
Gutierrez et al. [4] extended this work to dynamic
offsets so that the offset can vary from one job of a
task to another. Furthermore they introduced an idea
about mutual exclusion of tasks [5] which is based
on offsets between tasks. Since Gutierrez et al. have
considered simple task chains, Redell has enhanced the

idea to tree-shaped dependencies [13] and Pellizoni et
al. applied the transaction model to earliest deadline
first scheduling in [12].

Henia et al. used the SymTA/S approach to extended
the idea of the transaction model in order to introduce
timing-correlations between tasks in parallel paths in
distributed systems [6]. This idea has then been im-
proved in [7]. Furthermore in [8] it has been shown
that maximum input jitter and worst-case response
time must not occur during the same job leading to
a relaxation of the response times in a system.

A scalable and modular approach to analyse real-
time systems is the real-time calculus (RTC) as de-
scribed by Wandeler in [16]. Using the RTC it is not
possible to describe dependencies like offsets, mutual
exclusion of tasks or competing-based dependencies.

Because of the lack of generality or exactness the
RTC and the SymTA/S approach are merged in [10]. In
this paper the authors do not consider types of depen-
dencies like mutual exclusion of tasks or competing-
based dependencies.

A further dependency considering the simultaneous
occurrence of events is considered by Kollmann et al.
in [9]. In this paper the dependency is directly included
into the real-time analysis and not calculated separately
as in this paper.

3. Contribution

In figure 1 a typical distributed system is depicted.
The system consists of two CPUs and one BUS. We
assume fixed priority scheduling on each resource. The
system has eight tasks executed on the processors and
the bus. The priorities are assigned as described in the
figure. The stimulation of the tasks is represented by
event streams Θ.

τ
1

τ
2

τ
3

τ
4

τ
5

τ
6

τ
7

τ
8

CPU1 BUS1 CPU2

priority=high

priority=middle

priority=low

Θ
A

priority=high

priority=low

priority=middle

priority=highpriority=low

Θ
E

Θ
F

Θ
D

Θ
G

Θ
H

Θ
J

Θ
K

Θ
I

Θ
B

Θ
C

offset based dependency competing based dependency

Θ
1

- Θ
2

-

Figure 1. Example of a distributed system having several
different dependencies

In order to analyse the system from figure 1 it is
necessary to calculate the worst-case response time for

each task. The common way to do this is to assume that
all tasks and event streams describing the stimulation
in a system are independent. This means that events
can occur during a worst-case response time analysis
in their maximal density, because the context of the
system is not considered. The result of a real-time
analysis is that the interference between tasks is always
maximal and leads to very pessimistic results.

To get tighter response time bounds, we introduce
two kinds of dependencies: The first dependency is the
competing based dependency describing the situation
that tasks executed by the same component compete
for this component. Such a competition has the effect
that certain events can not occur in the same density
when the tasks are assumed not to be independent as
it is the case. For example, ΘG and ΘH in figure 1.

The second one is an offset based dependency
describing that events from different event streams
must occur time-shifted to each other. Consider, for
example, the event streams ΘB and ΘC in figure 1. It
is assumed that a correlation between the event streams
exists. This has a direct impact on the successive
tasks and event streams shown in [13]. The purpose of
introducing this dependency is to show the generality
of our approach.

These two introduced dependencies lead to tighter
bounds for the real-time analysis, It is desirable to
include both dependencies into it. In previous work
no holistic model as general approach to describe
dependencies between tasks is existing.

4. Task and Event Model

In this section we introduce the model necessary for
the real-time analysis discussed in section 6.

Task Model: Γ is a set of tasks on one resource Γ =
{τ1, ...,τn}. A task is a 4-tuple with τ = (c+,c−,φ ,Θ).
c+ is the worst-case execution time, c− is the best-case
execution time, φ is the priority for the scheduling (the
lower the number the higher the priority) and Θ defines
the stimulation of the task by an event stream. Let τi j
be the j-th job/execution of task τi.

We assume that each job of a task generates an event
at the end of its execution to notify other tasks.

Event Stream Model: The event stream model
gives an efficient general notation for the event bound
function.

Definition 1: ([1],[2],[3]) The event bound func-
tion η(∆t,Θ) gives for every interval ∆t an upper
bound on the number of events occurring from the
event stream Θ in any interval of the length ∆t.
So we can set up the following lemma:

Lemma 1: ([3]) The event bound function is a
subadditive function, that means for each interval
∆t,∆t ′ :

η(∆t +∆t ′,Θ)≤ η(∆t,Θ)+η(∆t ′,Θ) (1)

Proof: η(∆t,Θ), η(∆t ′,Θ) return the maximum
number of events possible within any ∆t or ∆t ′. The
events in ∆t+∆t ′ have to occur either in ∆t or in ∆t ′.
Therefore the condition holds.

Definition 2: An event stream Θ is a set of event
elements θ . Each event element is given by a period
p and an offset a (θ = (p,a)).

In cases where the worst-case density of events is
unknown for a concrete system an upper bound of the
densities can be used to describe the event stream. It is
possible to model any event sequence. Only those event
sequences for which the condition of subadditivity
holds are valid event streams.

Corollary 1: ([3]) The event bound function for an
event sequence Θ and an interval ∆t is given by:

η(∆t,Θ) = ∑
θ∈Θ

∆t≥aθ

⌈
∆t−aθ

pθ

⌉
(2)

As the inverse function we define the following
interval function which gives to a number of events
and an event stream the minimum interval in which
these events can occur:

Corollary 2: ([3]) The interval function for a num-
ber of events and a Θ is given by:

∆t+(n,Θ) = min{∆t|η(∆t,Θ) = n} (3)

Some examples of event streams can be found in
[1].

5. Limiting Event Streams with Dependen-
cies

To extend the previous discussed model of embed-
ded real-time systems we will introduce the limiting
event streams in this section.

Definition 3: The limiting event stream is an event
stream which defines the maximum occurrence of
events for a set of event streams. The limiting event
stream is defined as Θ = (Θ,~Θ). Θ describes the
limiting event stream and ~Θ represents the set of event
streams for which the limiting event stream holds. The
limiting event stream fulfills the condition:

η(∆t,Θ)≤ ∑
Θi∈~Θ

η(∆t,Θi)

Example 1: If no correlations between event
streams are defined then Θ = (∪

Θi∈~ΘΘi,~Θ).

Example 2: Figure 1 gives an example for a lim-
iting event stream. Assume ΘB = ΘC = {(20,0)}
and an offset of 10 t.u. between these two event
streams. The cumulated occurrence of events can
be described by the limiting event stream: Θ =
({(20,0),(20,10)},{ΘB,ΘC}). If we consider the
event streams as independent we get two events in an
interval ∆t = 5. But the limiting event stream describes
how many cumulated events can occur in an interval
∆t. With this dependency we get only one event in the
interval ∆t = 5.

Next we define how a limiting event stream can be
calculated.

Definition 4: Let ∆β : ∆t← n be a limiting interval
function which assigns a minimal time interval from a
given number of events in dependency from a given
relationship of event streams ~Θ := {Θ1, . . . ,Θn}, then
a limiting event stream Θ can be determined by:

Θ := ν(~Θ,∆β (n))

Note that ν(~Θ,∆β (n)) and ∆β (n) are abstract formu-
lations which must be concretely formulated for the
different types of dependencies.

5.1. Competing Based Dependencies

In this section we introduce a new kind of de-
pendency. We call it competing based dependency.
In figure 1 this kind of dependency between tasks is
exemplarily depicted. The tasks τ4 and τ5 are executed
by the same resource. Which means that they compete
for the resource. In related work during the analysis of
the tasks τ4 or τ5 the outgoing event streams ΘG and
ΘH are considered independently, for example in [15].

c
5,x+1

c
5,x

t

t

c
4,x

c
4,x+1

c
5,x+1

c
5,x

t

t

c
4,x

c
5,x

c
4,x+1

c
5,x

τ
4

τ
5

τ
4

τ
5

1)

2) Improvement

Δt1

Δt'1

t '1− t 1
 t 1

+

+

+

+

+

+

-

-

-

-

Figure 2. Example of a limiting event stream describing a
competing dependency

Let us consider the gantt-diagrams in figure 2.
Arrows above the time line represent incoming events.
Arrows under the time line represent events generated
by the task. In part one of the gantt-chart the case
is considered of non competing tasks. The first jobs
of the tasks are scheduled in the way that the two
outgoing events can occur almost simultaneously. The

next events are produced as soon as possible after the
first event of the first job. In the independent case the
next two events can occur also simultaneously. But this
is not possible, since the jobs must be executed task
after task, because τ4 and τ5 are executed by the same
processor. This is depicted in the lower gantt-chart
which describes the correct occurrence of the events.
Because of the task interference it is not sufficient
to consider the outgoing event streams independently
from each other. This interference can be modeled by
a limiting event stream.

As figure 2 illustrates two cumulated outgoing
events can be generated simultaneously. This is based
on the fact that the task with the higher priority inter-
rupts the second task just before it finishes. The result
is that the two events occur almost simultaneously.
This can also be applied on n tasks with the result
that n events can occur simultaneously.

For one task we can conclude that at least (n−1) ·
c− execution demands must be executed in order to
generate n events.

To calculate the limiting event stream we have to
determine the minimal distance between n events by
formulating the limiting interval function for compet-
ing based dependencies.

Lemma 2: Let ΓR be a subset of m tasks sharing
the same processor and N = {(n1, . . . ,nm) : ∑

m
i=1 = n}

the set of distributions of n events, where each task
τi ∈ ΓR produces ni events, then the limiting interval
function is given by:

∆β (n)= min
(n1 ,...,nm)∈N

(
max

(
max

i=1,...,m
(∆t+(ni ,Θτi)),

(
m
∑

i=1
(ni−1)·c−τi

)))
(4)

Proof: Assume that n events can occur in a
smaller distance than in the assumption. This would
mean that one of the combinations of the minimum
results in a shorter distance. Consequently, the inter-
val function ∆t+(ni,Θτi) or the sum ∑

m
i=1(ni− 1) · c−τi

delivers a shorter distance. Assume that the interval
function ∆t+(ni,Θτi) delivers a shorter distance and
therefore the events occur in a shorter distance than in
the event stream definition. But this is a contradiction
according to the event stream definition. Therefore the
sum over the best-case execution times must occur in
a shorter distance. This can only occur when one of
the considered execution times is smaller than the one
from the assumption which is a contradiction since we
already assume the best-case execution times for all
tasks.

We introduce an algorithm using lemma 2 which
delivers for n events the minimum interval in which
they occur. The algorithm in figure 3 can be used
in conjunction with the methods introduced in [9] to

implement this function. In this paper a normalisation
for event streams is introduced in order to calculate
the ∆t+(n,Θ) efficiently.

1 ∆β (n) {
2 ni ∈ N ;
3 ∆eold = ∞ ;
4 f o r ((∀N|∑ni = n)) {
5 ∆t = max{∆t+(Θτi,ni)}
6 ∆e = 0 ;
7 f o r (∀τi|τi ∈ ΓR) {
8 ∆e = ∆e+(ni−1) · c−τi

; }
9 ∆eold = min(∆eold ,max(∆e,∆t)) ; }

10 re turn ∆eold ;}

Figure 3. Calculation of the intervals of limiting event streams
for competing tasks

The outer loop iterates over all combinations con-
sidered by the minimal operation of lemma 2 (line 4
to 10). Line 5 considers all intervals of each event
stream as it is done by max(∆t+(ni,Θτi)) of lemma
2. The inner loop (line 7 to 9) calculates the minimal
distance produced by the best-case execution times like
∑

m
i=1(ni−1) ·c−τi

of lemma 2. Finally, the minimum of
all intervals is determined and the minimal interval in
which n cumulated events can occur is returned (line
10).

As mentioned above to calculate the concrete event
streams via ν(~Θ,∆β (n)) we refer to [9].

5.2. Offset Based Dependencies

In order to show the generality of our new approach
we adapt the problem about offsets introduced in the
transaction model by [12]. We will only consider
static offsets between task stimulation as an example,
however this approach covers also dynamic offsets.

Lemma 3: For two strict periodic tasks τ1 and
τ2 with an offset a we only have to calculate
the minimum distance a′ between events of τ1 and
τ2. This minimum distance is calculated by a′ =
min(mod(a,x),mod(−a,x)) using the greatest common
divisor x = gcd(pτ1 , pτ2) of the periods of the tasks.
Leading to the limiting interval function:

∆β (n)=min(∆t+(n,{(pτ1 ,0),(pτ2 ,a′)}),∆t+(n,{(pτ1 ,a′),(pτ2 ,0)})) (5)

Proof: For a detailed explanation see [12].
Now we can directly set up the event
stream via ν(~Θ,∆β (n)): In the case of
mod(a,x) ≤ mod(−a,x) the limiting event stream is
Θ = ({(pτ1 ,0),(pτ2 ,a

′)},{Θτ1 ,Θτ2}). In the case of
mod(−a,x) < mod(a,x) the limiting event stream is

Θ = ({(pτ1 ,a
′),(pτ2 ,0)},{Θτ1 ,Θτ2}). For more than

two tasks the approach represented in [12] can be
adapted to calculate the limiting interval functions.

6. Real-Time Analysis with Limiting Event
Streams

In order to use the limiting event streams it is
necessary to adapt the new concept to the real-time
analysis, especially the worst-case response time ana-
lysis. We have to determine how great the worst-case
contribution of tasks in an interval ∆t is when limiting
event streams are considered.

Lemma 4: The maximal contribution of tasks in an
interval ∆t occurs when the task with the maximum
worst-case execution occurs as much as possible, then
the task with the second greatest execution time as
much as possible up to the task with the smallest worst-
case execution time until the limiting event streams
prohibits the occurrence of further events.

Proof: Assume that there is another distribution
than the one given by the assumption. Therefore, it
must exist at least one event which does not follow
the pattern in the assumption. In order to increase
the contribution of the tasks, the event must trigger
a task whose worst-case execution time is greater than
assumed. But this is a contradiction, since we already
assume for all tasks with greater worst-case execution
times the maximum number of invocations.

The response time analysis was introduced by
Lehoczky et al. [11] and is defined as follows:

Definition 5: If the condition ∀τ ∈ Γ : r+(τ) ≤ dτ

holds, the task set is feasible and the real-time analysis
is successful. The worst-case response time of a task
considering event streams can be calculated by:

r+(τ)=max
k∈N
{r+(k,τ)−∆t+(k,Θτ)|r+(k−1,τ)>∆t+(k,Θτ)}

r+(k,τ)=

c+

τ k=0

min{∆t|∆t=k·c+
τ +∑τ ′∈HP η(∆t,Θ

τ ′)·c
+
τ ′︸ ︷︷ ︸

calcHPStatic

} k≥1 (6)

The amount of executions produced by higher prior-
ity tasks can be calculated by the event bound function
multiplied by the worst-case execution time. By means
of a fixed-point iteration the worst-case response time
can be calculated for every job k.

To take the limiting event streams into account
lemma 4 is used. To implement ∑τ ′∈HP η(∆t,Θτ ′) ·c+

τ ′

the algorithm in figure 4 was developed. The rest of
equation 6 is unmodified.

The algorithm has as parameters the interval ∆t
which is considered, k the job number of the task

1 / / ∆t The i n t e r v a l which i s c o n s i d e r e d
2 / / k Number o f c a l l s o f τ

3 / / τ The t a s k under a n a l y s i s
4 / / Θall A l l n e c e s s a r y l i m i t i n g e v e n t s t r e a m s
5 / / ΓHP S e t o f τ ′ : φτ > φτ ′

6 c a l c H P S t a t i c (∆t,k,τ,Θall ,ΓHP) {
7 ∆e = 0;
8 s o r t (ΓHP) ; / / ∀i≤ j : cτi ≥ cτ j ;
9 (∀Θ ∈Θall) : η [Θ] = η(∆t,Θ

Θ
) ;

10 (∀Θ ∈Θall |Θτ ∈ ~Θ
Θ
) : η [Θ] = η [Θ]− k ;

11 f o r (τ j ∈ ΓHP) {
12 n = η(∆t,Θτ j) ;
13 m = min (η [Θ]|Θτ j ∈ ~Θ

Θ
) ;

14 ∆e = ∆e + min (n ,m) · c+
τ j

;
15 f o r ((∀Θ ∈Θall |Θτ j ∈ ~Θ

Θ
) {

16 η [Θ] = η [Θ] − min (n ,m) ; } }
17 re turn ∆e ; }

Figure 4. Calculation of the contribution of higher priority tasks
for the worst-case response time with limiting event streams

under analysis, τ the task which is explored, Θall the
set of the necessary limiting event streams and ΓHP
containing all tasks having a higher priority than τ . The
algorithm sorts the tasks by their worst-case execution
times (line 8) and stores for every limiting event stream
the maximum amount of events which this stream
allows within ∆t (line 9). The number of invocations
of the task under analysis τ must be subtracted from
the corresponding limiting event streams (line 10).
In a loop (line 11 to 16) all higher priority tasks
are considered. The task with the greatest worst-case
execution time is considered first according to lemma
4. The algorithm determines the maximum amount of
invocations for the task by the event stream of the task
(line 12) and the bound of the event stream if one
exists (line 13). The minimum of these are used to
calculate the maximum contribution of the task within
∆t (line 14). The second loop (line 15 to 16) reduces
the corresponding limiting event streams by the used
events (line 16). Therefore the loops distribute the
amount of events of the limiting event streams over the
tasks according to lemma 4. This leads to the worst-
case contribution of higher priority tasks within ∆t.

Note, that the complexity of the response time
analysis is still pseudo-polynominial. The complexity
to calculate the limiting event streams depends on the
kind of the dependency which is considered. To cal-
culate the problem of competing-based dependencies
can become challenging, because of its combinatorial
complexity. The analysis, however, is not affected by
this problem. So it is suggestive to find upper bounds
for the limiting event streams to improve the runtime
performance.

7. Case Study

The significance of this new approach is shown by
the following case study. The system to explore is
depicted in figure 1 and described in chapter 3. Table 1
gives the parameters for the system and table 2 the
event streams. We have chosen this system, because it
is easy to follow and it shows the new methodology
in the whole.

CPU 1 τ1 τ2 τ3

c+ 40 30 40

c− 30 20 20

φ 1 2 3

Θ ΘA ΘB ΘC

BUS 1 τ4 τ5

c+ 90 90

c− 50 80

φ 1 2

Θ ΘE ΘF

CPU 2 τ6 τ7 τ8

c+ 50 35 35

c− 30 25 25

φ 3 2 1

Θ ΘD ΘG ΘH

Table 1. Parameters of the distributed system which is
depicted in figure 1

To calculate the event streams of the system, we use
the approach given in [9]. The resulting event streams
in the system are shown in the table 2. Thereby, we
compare the event streams calculated with dependen-
cies versus ones without dependencies. A static offset
of 100 t.u. between the event streams ΘB and ΘC is
assumed.

Θ with dependencies without dependencies

ΘA {(100,0)} {(100,0)}

ΘB {(200,0)} {(200,0)}

ΘC {(200,0)} {(200,0)}

ΘD {(∞,0),(100,90)} {(∞,0),(100,90)}

ΘE {(∞,0),(200,150)} {(∞,0),(200,150)}

ΘF {(∞,0),(200,140)} {(∞,0),(200,70)}

ΘG {(∞,0),(200,100)} {(∞,0),(200,100)}

ΘH {(∞,0),(∞,80),(∞,160),(200,310)} {(∞,0),(∞,80),(∞,160),(∞,240),(200,370)}

ΘI {(∞,0),(∞,30),(∞,60),(100,130)} {(∞,0),(∞,30),(∞,60),(∞,90),(100,165)}

ΘJ {(∞,0),(200,55)} {(∞,0),(200,55)}

ΘK {(∞,0),(∞,70),(∞,150),(200,300)} {(∞,0),(∞,70),(∞,150),(∞,130),(200,360)}

Table 2. All event streams of the distributed system. The
results are computed with as well as without the approach.

To determine the outgoing event streams with de-
pendencies it is necessary to calculate the limiting
event streams of the system. We consider only two
limiting event streams Θ1 and Θ2. Θ1 describes the
offset between ΘB and ΘC. Θ2 describes the competing
based dependency between ΘG and ΘH .

Θ Θ ~Θ

Θ1 {(200,0),(200,100)} {ΘB,ΘC}

Θ2 {(∞,0),(∞,0),(∞,80),(∞,130),(∞,210),(200,300),(200,310)} {ΘG,ΘH}

Table 3. Results of the calculated limiting event streams

After calculating the event streams, we have a closer
look on the improvements in the analysis of the system.
At first, some event streams and the improvement
of the density in the system are considered. This is
depicted in table 4 and figure 5.

n ΘF Θ
′
F imp. ΘH Θ

′
H Imp. ΘI Θ

′
I imp.

1 0 0 0% 0 0 0% 0 0 0%

2 140 70 50% 80 80 0% 30 30 0%

3 340 270 20,58% 160 160 0% 60 60 0%

4 540 470 12,96% 310 240 22,5% 130 90 30,7%

5 740 670 9,45% 510 370 27,45% 230 165 28,26%

6 940 870 7,44% 710 570 19,71% 330 265 19,69%

7 1140 1070 6,14% 910 770 15,38% 430 365 15,11%

8 1340 1270 5,22% 1110 970 12,61% 530 465 12,26%

9 1540 1470 4,54% 1310 1170 10,68% 630 565 10,31%

10 1740 1670 4,02% 1510 1370 9,27% 730 665 8,9%

Table 4. This shows the improvement of the approach on the
event streams ΘF ,ΘH and ΘI . Θ shows the intervals with the
dependency, Θ

′
shows the intervals without the dependency,
improvement is given in %

2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

45

50

55

60

ΘF ΘH ΘI

#Events

R
ed

uc
tio

n
of

 D
en

si
ty

 [%
]

Figure 5. This figure shows the improvements of the intervals
in percent of the event stream ΘF ,ΘH and ΘI .

The dependencies have not only an influence on
the density of the event streams, but also a direct
influence on the worst-case response times. The worst-
case response time of the task τ3 has been reduced
from 150 t.u. to 80 t.u. This means that the result of
the analysis with dependencies is in this case 46,66%
tighter compared to the analysis without dependencies.
The task τ6 has a worst-case response time without
dependencies of 255 t.u. and with dependencies of 205
t.u., which is a reduction of the worst-case response
time of 19,6%.

This synthetical example shows that dependencies
can improve the real-time analysis. Thereby we have

shown how easy different dependencies can be com-
bined in a general approach.

8. Conclusion

We have shown the possibililty to achieve a holistic
model for task dependencies in distributed real-time
systems. The new approach has been applied to fixed-
priority systems. We have shown by two kinds of
dependencies how these can be described by the new
defined limiting event streams. Thereby, a new kind of
dependency has been introduced. With the effect, that
we have cut the complexity of the dependencies from
the real-time analysis.

Finally, a case study has been conducted to show the
improvements of the approach. Despite the example is
synthetical, it has been shown that our concept works
for different kinds of dependencies.

In the future we will show how more kinds of
dependencies can be integrated by this new model
and how the limiting event streams can be propagated
through the system. Furthermore, the integration of
the limiting event streams into approximative real-
time analysis like the real-time calculus [16] or the
hierarchical event streams [1] to improve the runtime
performance is also an aim.

References

[1] Karsten Albers, Frank Bodmann, and Frank Slomka. Hierar-
chical event streams and event dependency graphs: A new
computational model for embedded real-time systems. In
ECRTS ’06: Proceedings of the 18th Euromicro Conference
on Real-Time Systems, pages 97–106, Washington, DC, USA,
2006. IEEE Computer Society.

[2] Karsten Albers and Frank Slomka. An event stream driven
approximation for the analysis of real- time systems. In
ECRTS ’04: Proceedings of the 16th Euromicro Conference
on Real-Time Systems, pages 187–195. IEEE, July 2004.

[3] Klaus Gresser. An event model for deadline verification of
hard real-time systems. In Proceedings of the 5th Euromicro
Workshop on Real-Time Systems, 1993.

[4] J. C. Palencia Gutierrez and Michael Gonzalez Harbour.
Schedulability analysis for tasks with static and dynamic
offsets. In RTSS, page 26 ff, 1998.

[5] J. C. Palencia Gutierrez and Michael Gonzalez Harbour.
Exploiting precedence relations in the schedulability analysis
of distributed real-time systems. In IEEE Real-Time Systems
Symposium, pages 328–339, 1999.

[6] Rafik Henia and Rolf Ernst. Context-aware schedul-
ing analysis of distributed systems with tree-shaped task-
dependencies. In DATE ’05: Proceedings of the conference
on Design, Automation and Test in Europe, pages 480–485,
Washington, DC, USA, 2005. IEEE Computer Society.

[7] Rafik Henia and Rolf Ernst. Improved offset-analysis using
multiple timing-references. In DATE ’06: Proceedings of the
conference on Design, automation and test in Europe, pages
450–455, 3001 Leuven, Belgium, Belgium, 2006. European
Design and Automation Association.

[8] Rafik Henia, Razvan Racu, and Rolf Ernst. Improved output
jitter calculation for compositional performance analysis of
distributed systems. In Proceedings Workshop on Parallel and
Distributed Real-Time Systems, March 2007.

[9] Steffen Kollmann, Karsten Albers, and Frank Slomka. Effects
of simultaneous stimulation on the event stream densities
of fixed-priority systems. In Spects’08: Proceedings of the
International Simulation Multi-Conference. IEEE, June 2008.

[10] Simon Kuenzli, Arne Hamann, Rolf Ernst, and Lothar Thiele.
Combined approach to system level performance analysis of
embedded systems. In CODES+ISSS ’07: Proceedings of
the 5th IEEE/ACM international conference on Hardware/-
software codesign and system synthesis, pages 63–68, New
York, NY, USA, 2007. ACM.

[11] John P Lehoczky. Fixed priority scheduling of periodic task
sets with arbitrary deadlines. In Proceedings of the 11th IEEE
Real-Time Systems Symposium, pages 201–209, December
1990.

[12] Rodolfo Pellizzoni and Giuseppe Lipari. Improved schedula-
bility analysis of real-time transactions with earliest deadline
scheduling. In RTAS ’05: Proceedings of the 11th IEEE Real
Time on Embedded Technology and Applications Symposium,
pages 66–75, Washington, DC, USA, 2005. IEEE Computer
Society.

[13] Ola Redell. Analysis of tree-shaped transactions in distributed
real-time systems. In ECRTS ’04: Proceedings of the 16th
Euromicro Conference on Real-Time Systems (ECRTS’04),
pages 239–248, Washington, DC, USA, 2004. IEEE Computer
Society.

[14] Ken Tindell. Adding time-offsets to schedulability analysis.
Technical report, University of York, Computer Science Dept,
YCS-94-221, 1994.

[15] Ken Tindell and John Clark. Holistic schedulability analysis
for distributed hard real-time systems. Microprocessing and
Microprogramming, 40:117–134, April 1994.

[16] Ernesto Wandeler. Modular Performance Analysis and
Interface-Based Design for Embedded Real-Time Systems.
PhD thesis, ETH Zurich, September 2006.

