
Reducing Response Times by Competition Based Dependencies

Steffen Kollmann, Victor Pollex, and Frank Slomka
Ulm University

firstname.lastname@uni-ulm.de

Abstract

To ensure that time constraints in real-time systems are satisfied it is necessary to verify
the real-time behavior during the design process of such systems. Schedulabilitiy analysis
approaches can be used for this. The disadvantage of these methods is that sometimes the
calculated bounds are an overestimation of the real behavior of the system. Therefore it is
necessary to include the system contexts into the analysis to achieve tight bounds. In this paper
we will introduce a system context that is based on the competition of tasks for a common
resource. This dependency exists inherently in every system.

1. Introduction

Designing embedded systems is challenging due to the steadily increasing requirements and ar-
chitectural complexity. A good example for this trend can be seen in the automotive industry
where premium class cars have over 100 electronic components comprising electronic control units
(ECUs), buses, etc. During the design process of such systems the functional and non-functional
requirements have to be fulfilled.
One non-functional requirement which has to be verified during an early design phase are the
real-time constraints, for example those of the various safety critical functions of an automotive.
Bounds for the worst-case behavior of the system are determined by performing a schedulability
analysis and are then compared to the real-time constraints. The more contexts of the system are
considered, the better the bounds determined by the analysis methods become. Disregarding sys-
tem contexts in the analysis can cause an overestimation of the bounds leading to overdimensioned
systems and thus increase the costs of the systems unnecessarily. In previous work different types
of dependencies have been considered, like mutual exclusion of tasks and offsets between the stim-
ulation of the tasks or task chains, but for many other dependencies it is still open how to consider
them in the analysis.
This paper presents a new kind of dependency which exists inherently in each distributed system
design. In order to include this into the real-time analysis we use an existing method proposed
in [KPKS10], where a general model for the inclusion of different kinds of dependencies into the
analysis is proposed.
The remainder of the paper is organized as follows: In section 2 an overview of the related work
is given. The system model is defined in section 3. The resulting real-time analysis is presented
in section 4. An example shows the impact of the newly introduced dependency on the response
times in a distributed system. Finally a conclusion is given.

2. Related Work

Most of the considered related work uses the periodic event model with jitter. Tindel and Clark
have introduced in [TC94] the real-time analysis for distributed real-time systems. The lack of this
approach is that the task stimulations are considered as independent and therefore for each task the
worst-case response time is calculated separately. The transaction model proposed in [Tin94] copes
with this problem and allows the description of static offsets between tasks. To further improve
this Gutierrez et al. [GH98] extended the model to dynamic offsets so that the offset can vary from
one job of a task to another. Additionally, they have introduced an idea about mutual exclusion of
tasks [GH99] which is based on offsets between tasks. Redell has enhanced the idea to tree-shaped
dependencies [Red04], since Gutierrez et al. have only considered simple task chains. Pellizoni et
al. have shown that this model is also applicable to dynamic schedules and applied the transaction
model to earliest deadline first scheduling in [PL05].
Henia et al. have used the SymTA/S approach [Ric05] to extend the idea of the transaction model
in order to introduce timing-correlations between tasks in parallel paths in distributed systems
[HE05]. This idea has then been improved in [HE06].
The description of dependencies is not bounded to the transaction model. Many other correlations
have been described in related work. So, for example, another dependency considering the simul-
taneous occurrence of events is presented by Kollmann et al. in [KAS08] and recently, Rox et al.
[RE10] have described a correlation between tasks which is caused by a non-preemptive scheduler.
However the dependency we will consider in this paper is only subject to the available capacity of
the resource and is valid regardless of the scheduling policy used.

3. System Model

As we use the approach presented in [KPKS10] to describe our new dependency we will repeat
here the important points of that system model. We divide our model into a task model and an
event model.

3.1. Task Model

We abstractly consider the applications in a distributed system as tasks. A task can be a process
on a processing unit or a message transmission on a bus. The tasks (τi) mapped on a resource are
grouped into a taskset Γ = {τ1, ...,τn}. A task is defined as follows:

Definition 1. A task is a tuple τ = (c+,c−,d, φ ,Θ+,Θ̇+) consisting of c+ the worst-case execution
time, c− the best-case execution time, d the relative deadline of the task, φ the priority of the task
(lower value = higher priority), Θ+ the maximum incoming stimulation and Θ̇+ the maximum
outgoing stimulation.

Let τi, j be the j-th job/execution of task τi. We assume that each job of a task generates an event at
the end of its execution to notify other tasks. Further we define that ΓHP,τ is a taskset containing
all tasks mapped on the same resource and having a higher priority than task τ .

3.2. Event Model

As event model we use the event streams proposed by Gresser [Gre93]. The basic idea is to define
an event function η(∆t,Θ+) which can calculate the maximum number of events occurring within
an interval of length ∆t (when speaking of an interval, we mean the length of the interval).

The idea of the event streams is to note for each number of events the minimum interval which can
include this number of events. Therefore we get an interval for one event, two events and so on.
The interval for one event is infinitely small and therefore considered to be zero. The result is a
sequence of intervals showing a non-decreasing behaviour. This is because the minimum interval
for n events cannot be smaller than the minimum interval for n− 1 events since the first interval
also includes n−1 events.
Definition 2. A maximum event stream Θ+ = {θ1,θ2, ...,θn} is a set of event stream elements θ

and each event stream element θ = (p,a) consists of a period p and an offset-interval a. The
maximum event stream satisfies the characteristic of sub-additivity:

η(∆t1 +∆t2,Θ+)≤ η(∆t1,Θ+)+η(∆t2,Θ+)

and is monotonically increasing:

∀∆t1,∆t2 : ∆t1 ≤ ∆t2⇒ η(∆t1,Θ+)≤ η(∆t2,Θ+)

Each event stream element θ describes a set of intervals {aθ +k · pθ |k ∈N} of the sequence. With
an infinite (∞) period it is possible to model irregular behaviour. Event tuples having infinity as
period are called aperiodic elements and event tuples having a period less than infinity are called
periodic elements. The event function is defined as follows:
Definition 3. The event function denotes for an event stream Θ+ and an interval ∆t the corre-
sponding number of events:

η(∆t,Θ+) = ∑
θ∈Θ+

aθ≤∆t

⌊
∆t−aθ

pθ

⌋
+1 (1)

As pseudo-inverse function we define the interval function which returns the minimum interval in
which a given number of events can occur.
Definition 4. The interval function denotes for an event stream Θ+ and a number of n events the
corresponding minimum interval in which these events can occur:

∆t(n,Θ+) = in f{∆t|η(∆t,Θ+)≥ n} (2)

A detailed definition of the concept and the mathematical foundation of the event streams can be
found in [AS04]. Event streams can be described in several ways by the event stream model. For
an efficient implementation of the approach we normalize the event streams.
Definition 5. A normalized event stream Θ̃+ has the form:

{(∞,a1), . . . ,(∞,am),(p,am+1), . . . ,(p,an)} : (1≤m≤ n∧ai ≤ a j⇔ i≤ j∧an−am+1 ≤ p) (3)

Meaning that the event stream has first an aperiodic part and then a periodic part where each
periodic element has the same period. Furthermore all elements are sorted by their offsets. We
define also that N∞

Θ̃+ is the number of aperiodic elements of an event stream and N p
Θ̃+ is the number

of periodic elements of an event stream. With this we can formulate the utilization of a task τ as
follows:
Definition 6. The utilization of a task τ is defined as:

Uτ =
N p

Θ̃
+
τ

· c+τ
p

Θ̃
+
τ

(4)

We define further that event streams which are only monotonically increasing are denoted by Θ.
The previous definitions apply also for these event streams.

4. Holistic Real-Time Analysis

Due to space limitation we will give here only a short summary of the holistic real-time analysis.
In [TC94] it is described that in each global iteration step (this is the iteration over all tasks in
the system) of the real-time analysis the worst-case response time and the outgoing stimulation
for each task in the system are computed until a fixed point is found. This approach with some
extension has been used in [KPS10] to perform a holistic real-time analysis with event streams.
Since the paper at hand focuses on the improvement of the worst-case response time of a task we
will only repeat this part of the analysis here. Based on Lehoczky’s et al. [Leh90] worst-case
response time analysis we can define the analysis for event streams as follows:

Definition 7. The worst-case response time of a task is bounded by:

r+(τ) = max
k∈[1,...,m]

{r+(k,τ)−∆t(k,Θ+
τ)} m = min

k∈N
{k|r+(k,τ)≤ ∆t(k+1,Θ+

τ)}

r+(k,τ) = min{∆t|∆t = bτ + k · c+τ + ∑
τi∈Γhp,τ

η(∆t,Θ+
τi
) · c+τi

} (5)

The proof and an explanation is given in [Leh90].

4.1. Limiting Event Stream

The lack of the previous discussed model is that the context of the system is not considered for
the analysis. In [KPKS10] a general model to describe dependencies has been proposed. This
model has been successfully applied to a real automotive architecture in [KPK+10]. The idea is
to separate the worst-case response time analysis from the determination of the dependencies. We
repeat here the main points and extensions of the model. On this basis we are able to derive our
new dependency.

Definition 8. The limiting event stream is an event stream which defines the maximum occurrence
of events for a set of event streams. The limiting event stream is defined as Θ=(Θ,

−→
Θ). Θ describes

the limitation for a set of event streams
−→
Θ . The limiting event stream fulfills the condition:

η(∆t,Θ
Θ
)≤ ∑

Θi∈
−→
Θ

Θ

η(∆t,Θi)

Note that for the limitation Θ
Θ

we only demand that the resulting event function is monotonically
increasing. It is not necessary that the bound is subadditive. It must only be a valid bound for a
number of events.

Example 1. Assume an interval of ∆t = 25 t.u. and two event streams Θ
+
A = Θ

+
B = {(100,0)} and

an offset dependency of 50 t.u. between these two event streams. If the offset is not considered in
the interval of 25 t.u. two events occur. One from each event stream, because in this case the simple
union of the two event streams describes the behavior η(∆t,Θ+

A ∪Θ
+
B) = 2. If the dependency is

considered, the limiting event stream can be described as Θ = ({(100,0),(100,50)}, {Θ+
A ,Θ

+
B }).

In this case in the interval of 25 t.u. only one event occurs, because Θ bounds the cumulated
number of the events η(∆t,Θ

Θ
) = 1. Therefore the number of preemptions in an interval can be

reduced by the use of limiting event streams.

Next we define how a limiting event stream can be calculated.

Definition 9. Let ∆β : N→R be a limiting interval function which assigns a minimal time interval
from a given number of events in dependency from a given relationship of event streams

−→
Θ :=

{Θ1, . . . ,Θn}, then a limitation for a limiting event stream Θ can be determined by:

Θ
Θ

:= ν(
−→
Θ

Θ
,∆β (n))

Note that ν(
−→
Θ

Θ
,∆β (n)) and ∆β (n) are abstract formulas which must be concretely formulated

for the different types of dependencies. Next we will show how the limiting event streams can be
used to improve the worst-case response time analysis.

Lemma 1. Let τ be the task under analysis, Θ a limiting event stream, and Γ
Θ,τ,τi

:= {τ j ∈
Γhp,τ |(c+τ j

> c+τi
∨(c+τ j

= c+τi
∧φτ j > φτi))∧Θ+

τ j
∈−→Θ

Θ
}, then the worst-case response time is bounded

by:

r+les(τ) = max
k∈[1,...,m]

{r+(k,τ)−∆t(k,Θ+
τ)} m = min

k∈N
{k|r+(k,τ)≤ ∆t(k+1,Θ+

τ)} (6)

r+(k,τ) = min{∆t|∆t = bτ + k · c+τ + ∑
τi∈Γhp,τ

η(∆t,τi,k,τ) · c+τi
} (7)

η(∆t,τi,k,τ) = min(max(min
∀Θ|Θ+

τi∈
−→
Θ

Θ

{η(∆t,τi,k,τ,Θ)},0),η(∆t,Θ+
τi
)) (8)

η(∆t,τi,k,τ,Θ) =

η(∆t,Θ

Θ
)− ∑

τ j∈Γ
Θ,τ,τi

η(∆t,τ j,k,τ) Θ+
τ 6∈
−→
Θ

Θ

η(∆t,Θ
Θ
)− ∑

τ j∈Γ
Θ,τ,τi

η(∆t,τ j,k,τ)− k Θ+
τ ∈
−→
Θ

Θ

(9)

Proof. The proof is given in [KPKS10].

The idea is to reduce the interference of the higher priority tasks. By means of the limiting event
streams the number of preemptions of higher priority tasks is bounded. This reduced number of
events for a set of maximum event streams must be distributed on the possible number of events
of the maximum event streams for which the limitation holds. This distribution is not done arbi-
trarily. It has to be ensured that the interference in each iteration step is maximal. For this the
events are distributed so that the task with the greatest worst-case execution time gets as many
events as possible, then the task with the second greatest worst-case execution time and so on.
Thereby, the worst-case response time analysis is not affected by the kind of dependency. Each
dependency in the system is abstractly described by a limiting event stream. Therefore for each
kind of dependency the concrete limitation has to be derived.
Note that we have discussed here a general worst-case response time bound for fixed priority
systems which applies for non-preemptive and preemptive systems. Better bounds can be given
for each scheduling policy which differ slightly from equation (5), as described in [GRS96]. For
the example in section 6 we use the scheduling specific bounds, but in the theory part we have
considered only a general bound. Since the dependencies are described orthogonal to the analysis,
it is insignificant for which of the bounds the improvement is shown.

∆t

∆t

c−τ1

c−τ2
p1

p2

c−τ1
c−τ2

c−τ1
c−τ2

Θ̇+
τ1
∪Θ̇+

τ2

Θ
Θ

(Improvement of the interval for 4 events)

Figure 1: Competition based dependency

5. Competition Based Dependency

Based on the system model and the real-time analysis we introduce in this section a new kind of
dependency called competition based dependency. Assume the tasks τ1 and τ2 are executed by
the same resource, which means that they compete for the resource. In related work, for example
[TC94], the outgoing event streams are considered independently for the analysis of the tasks τ1
or τ2, but this can lead to an overestimation of the real-time behavior of the system.
Let us consider the gantt-chart in figure 1 and that Θ̇+

τ1
= {(∞,0),(p1,c−τ1

)} and Θ̇+
τ2
= {(∞,0),

(p2,c−τ2
)}. In the upper part of the gantt-chart the case of non competing tasks is considered,

meaning that the distance between the outgoing events are computed independently. In this case the
maximum cumulated number of events produced by τ1 and τ2 is calculated by: η(∆t,Θ̇+

τ1
∪ Θ̇+

τ2
).

But this is not always possible, since the jobs c−τ1
and c−τ2

must be executed sequentially, because τ1
and τ2 are executed by the same resource. This means that four events can only occur in a minimal
distance of ∆t = c−τ1

+ c−τ2
and not in the interval ∆t = c−τ2

. This is depicted in the lower part which
describes the correct occurrence of the events. Due to the task interference it is not sufficient to
consider the outgoing event streams independently from each other.
This interference can be modeled by a limiting event stream. Note, that this dependency is inde-
pendent of the scheduling policy. Therefore this consideration of context is more general than the
one proposed in the related work. So the simple question for this new context is: Has the resource
enough capacity to produce the n events?
To calculate the limiting event stream we have to determine the minimal distance between n events
by formulating the limiting interval function for competition based dependencies.

Lemma 2. Let ΓR be a subset of m tasks sharing the same processor and N = {(n1, . . . ,nm) :
∑

m
i=1 ni = n} the set of distributions of n events, where each task τi ∈ ΓR produces ni events, then

the limiting interval function is given by:

∆β (n) = min
(n1,...,nm)∈N

(
max

(
max

i=1,...,m

(
∆t
(
ni,Θ̇

+
τi

))
,

(
m

∑
i=1

(ni−1) · c−τi

)))
(10)

Proof. Assume Θ
+
∪ =

⋃
τi∈ΓR

Θ̇+
τi

as the case of independent stimuli and assume further that

∆t(n,Θ+
∪) = inf{∆t| ∑

τi∈ΓR

η(∆t,Θ̇+
τi
) ≥ n}= ∆t0∧ni = η(∆t0,Θ̇+

τi
) then it follows:

∀i ∈ [1, . . . ,m] : ∆t(ni,Θ̇
+
τi
)≤ ∆t0

⇒ max
i∈[1,...,m]

{∆t(ni,Θ̇
+
τi
)} ≤ ∆t0

⇒ min
Σni=n

(max{∆t(ni,Θ̇
+
τi
)})≤ ∆t0

⇒ min
(n1,...,nm)∈N

(
max

i=1,...,m

(
∆t
(
ni,Θ̇

+
τi

)))
≤ ∆t0 (11)

This bound describes the minimum interval in which n events can occur considering the case of
independence. This can be relaxed, because the jobs must be executed sequentially. So we derive
a lower bound by the execution demand.
Between ni outgoing events from a task ∆t(ni,Θ̇

+
τi
) at least (ni− 1)c−τi

execution demand must be
executed. So the minimum interval ∆t0 in which n events can be produced must be greater than:

∆t0 ≥
m

∑
i=1

(ni−1)c−τi
(12)

We can combine (11) and (12) and get (13):

min
(n1,...,nm)∈N

(
max

(
max

i=1,...,m

(
∆t
(
ni,Θ̇

+
τi

))
,

(
m

∑
i=1

(ni−1) · c−τi

)))
(13)

Next we show how the concrete event stream can be derived:

Lemma 3. By means of lemma 2 the concrete limiting event stream can be derived. Let Θ̃
+
∪ be

the normalized union of the set
−→
Θ

Θ
= {Θ̇+

τi
} and j = min{i|i > N∞

Θ̃
+
∪
∧∀a ∈ [i, i+N p

Θ̃
+
∪
] : ∆β (a)≤

∆t(a,Θ̃+
∪))}. Then the concrete limiting event stream can be derived as follows:

ν(
−→
Θ

Θ
,∆β (n)) =

j⋃
i=1

(∞,∆β (i))∪

j+N p
Θ̃
+
∪⋃

i= j+1

(p
Θ̃
+
∪
,∆β (i))

Proof. Assume an utilization less than one on the processor then it follows:

∑
τi

N p
Θ̇
+
τi

c+τi

p
Θ̇
+
τi

< 1⇒
∑
τi

N p
Θ̇
+
τi

c+τi

p
Θ̃
+
∪

< 1⇒∑
τi

N p
Θ̇
+
τi

c+τi
< p

Θ̃
+
∪

(14)

First we have to show that when an idle time exists, a periodic behavior can be assumed. From
(14) together with ∆β (a)≤ ∆t(a,Θ̃+

∪) : a > N∞

Θ̃
+
∪

it follows:

∆β (a)+∑
τi

N p
Θ̇
+
τi

c+τi
≤ ∆t(a,Θ̃+

∪))+ p
Θ̃
+
∪
⇒ ∆β (a+N p

Θ
+
∪
) = ∆t(a+N p

Θ
+
∪
,Θ̃+
∪))

This means that after an idle time only equation (11) can hold for a+ k ·N p
Θ̃
+
∪

events. Now we
have to show that for each periodic element such a gap must exist. From (14) we can follow that ε

idle time is saved in each period. So we can conclude for each periodic element of the normalized
event stream Θ̃

+
∪ :

x+ kp = x+ k

(
∑
τi

N p
Θ̇
+
τi

c+τi
+ ε

)
(15)

Assume that at a point in time x an amount of execution demand is requested so that:

x < ∑
τi

η(x,Θ̇+
τi
)c+τi

Together with (15) this execution demand must be executed after

k =

⌈
∑τi η(x,Θ̇+

τi
)c+τi
− x

ε

⌉

periods. From this together with (11) it follows:

∆β (η(x,Θ̃+
∪)+ kN p

Θ̃
+
∪
) = ∆t(η(x,Θ̃+

∪)+ kN p
Θ̃
+
∪
)

Hence, for each periodic event tuple an idle time exists and therefore a periodic behaviour.

By means of the last two lemma it is possible to calculate the competition based dependency in a
distributed system.

6. Example

In order to show that our new kind of dependency has a direct impact on real applications we
have analyzed a distributed system depicted in figure 2a. The system consists of three processor
units connected by a fixed priority non-preemptive communication channel. This communication
channel is a 500 kBit/s CAN bus with 10 messages. Note that the messages are modeled as tasks.
Three messages are transmitted by CPU1, three messages by CPU2 and four messages by CPU3.

CPU1

CPU2

CPU3

τ1

τ2

τ3

Tx: 3

Tx: 4

CAN bus
500KBit/s

Θ1

Θ2

(a) Architecture

Task c+[µs] c−[µs] d[µs] φ Θ+

τ1 500 250 ∞ 1 {(∞,0),(∞,0),(∞,0),(∞,0),(∞,0),(10000,0)}
τ2 500 200 ∞ 2 {(∞,0),(∞,0),(∞,0),(∞,0),(∞,0),(10000,0)}
τ3 600 300 ∞ 3 {(∞,0),(∞,0),(∞,0),(∞,0),(5000,0)}
τ4 150 114 350 1 Θ̇+

τ1
τ5 150 114 1000 2 Θ̇+

τ2
τ6 150 114 3000 3 Θ̇+

τ3
τ7 150 114 10000 4 {(10000,0)}
τ8 150 114 10000 5 {(5000,0)}
τ9 150 114 10000 6 {(5000,0)}
τ10 150 114 4000 7 {(2000,0)}
τ11 150 114 10000 8 {(10000,0)}
τ12 150 114 5000 9 {(5000,0)}
τ13 150 114 5000 10 {(5000,0)}

(b) Properties
Figure 2: Distributed system example

τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8 τ9 τ10 τ11 τ12 τ13

r+(τ)[µs] 3000 7500 16000 300 1300 3150 4650 4800 5100 5700 6300 6450 6600
r+les(τ)[µs] 3000 7500 16000 300 700 1500 2100 2400 2850 3300 4050 4650 4650
Red. [%] 0 0 0 0 46,16 52,39 54,84 50 44,22 42,11 35,72 27,91 29,55

R.n.P 0 0 0 0 4 11 17 16 15 16 15 12 13

Table 1: Results of the example

All messages have a best-case execution time of 114 µs which is the transmission of 1 byte payload
and a worst-case execution time of 150 µs which is 3 byte payload. CPU1 has three tasks which
all transmit massages on the bus. Task τ1 transmits message τ4, τ2 transmits message τ5 and τ3
transmits message τ6. We need to consider the tasks on CPU1 in detail to compute the limitations.
The tasks produce an initial burst on the CAN bus which leads to an enormous peak load on the
bus. We use two limiting event streams to describe the competition based dependency in the system
and to relax this peak load. With these dependencies we can bound the maximum load on the bus
as CPU1 has not the capacity to produce all events at once.
We have analyzed the system with the limiting event streams and without the limiting event
streams. In table 1 the improvements of the worst-case response times of the tasks can be seen.
From message τ4 to message τ13 we have significant improvements of the response times. Espe-
cially, task τ7 has been improved by 54,84%. In the last line the reduced number of preemptions
(R.n.P) is described. For example, task τ11 is preempted 15 times less if the limiting event streams
are considered. The relaxation is caused by the two limiting event streams Θ1 and Θ2. In figure 3
the relaxation of the two outgoing event streams Θ̇+

τ1
and Θ̇+

τ2
is depicted. It can be observed that

for the first 20 events an enormous relaxation can be achieved.
This leads to the conclusion that the consideration of this dependency can lead to an enormous
reduction of the worst-case response times in the system. Certainly, there are also many cases in
which the dependency does not lead to an improvement. These are the cases where the capacity
of the resource is sufficient to produce the events. Therefore it is desirable to have a metric which
can decide whether it is useful to consider the dependency or not.

7. Conclusion

In this paper we have introduced an new kind of dependency between tasks to improve the bounds
of the response times in distributed real-time systems. The new dependency has been exemplarily

 0

 5

 10

 15

 20

 25

 0 1000 2000 3000 4000 5000

N
um

be
r o

f E
ve

nt
s

Interval

Θ1
Θ̇
+
τ1
∪ Θ̇

+
τ2

Figure 3: Impact of the competition dependency on Θ̇+
τ1

and Θ̇+
τ2

applied in an example to a fixed-priority system but is in general applicable to any scheduling
policy. The idea is to determine if a resource has enough capacity to produce a specific number
of events within a specific time interval. If the capacity is not available, the density of the events
can be relaxed and therefore also the worst-case response times in the system. We have shown
that the new competition based dependency can lead to significant improvements of the worst-case
response times.

References
[AS04] Albers, Karsten and Frank Slomka: An event stream driven approximation for the analysis of real- time systems. In ECRTS ’04:

Proceedings of the 16th Euromicro Conference on Real-Time Systems, pages 187–195. IEEE, July 2004, ISBN 0-7695-2176-2.

[GH98] Gutierrez, J. C. Palencia and Michael Gonzalez Harbour: Schedulability analysis for tasks with static and dynamic offsets. In RTSS,
page 26 ff, 1998.

[GH99] Gutierrez, J. C. Palencia and Michael Gonzalez Harbour: Exploiting precedence relations in the schedulability analysis of distributed
real-time systems. In IEEE Real-Time Systems Symposium, pages 328–339, 1999.

[Gre93] Gresser, Klaus: An event model for deadline verification of hard real-time systems. In Proceedings of the 5th Euromicro Workshop on
Real-Time Systems, 1993.

[GRS96] George, L., N. Rivierre, and M. Spuri: Preemptive and non-preemptive real-time uniprocessor scheduling. Technical report, INRIA,
1996.

[HE05] Henia, Rafik and Rolf Ernst: Context-aware scheduling analysis of distributed systems with tree-shaped task-dependencies. In DATE
’05: Proceedings of the conference on Design, Automation and Test in Europe, pages 480–485, 2005.

[HE06] Henia, Rafik and Rolf Ernst: Improved offset-analysis using multiple timing-references. In DATE ’06: Proceedings of the conference
on Design, automation and test in Europe, pages 450–455, 2006.

[KAS08] Kollmann, Steffen, Karsten Albers, and Frank Slomka: Effects of simultaneous stimulation on the event stream densities of fixed-priority
systems. In Spects’08: Proceedings of the International Simulation Multi-Conference. IEEE, June 2008.

[KPK+10] Kollmann, S., V. Pollex, K. Kempf, F. Slomka, M. Traub, T. Bone, and J. Becker: Comparative application of real-time verification
methods to an automotive architecture. In Proceedings of the 18th International Conference on Real-Time and Network Systems, 2010.

[KPKS10] Kollmann, Steffen, Victor Pollex, Kilian Kempf, and Frank Slomka: A scalable approach for the description of dependencies in hard
real-time systems. In proceedings of the 4th International Symposium On Leveraging Applications of Formal Methods, Verification and
Validation, 2010.

[KPS10] Kollmann, Steffen, Victor Pollex, and Frank Slomka: Holisitc real-time analysis with an expressive event model. In proceedings of the
13th Workshop of Methoden und Beschreibungssprachen zur Modellierung und Verifikation von Schaltungen und Systemen, 2010.

[Leh90] Lehoczky, John P: Fixed priority scheduling of periodic task sets with arbitrary deadlines. In Proceedings of the 11th IEEE Real-Time
Systems Symposium, pages 201–209, December 1990.

[PL05] Pellizzoni, Rodolfo and Giuseppe Lipari: Improved schedulability analysis of real-time transactions with earliest deadline scheduling.
In RTAS ’05: Proceedings of the 11th IEEE Real Time on Embedded Technology and Applications Symposium, pages 66–75, 2005.

[RE10] Rox, Jonas and Rolf Ernst: Exploiting inter-event stream correlations between output event streams of non-preemptively scheduled
tasks. In Proc. Design, Automation and Test in Europe (DATE 2010), March 2010.

[Red04] Redell, Ola: Analysis of tree-shaped transactions in distributed real-time systems. In ECRTS ’04: Proceedings of the 16th Euromicro
Conference on Real-Time Systems (ECRTS’04), pages 239–248, 2004.

[Ric05] Richter, Kai: Compositional Scheduling Analysis Using Standard Event Models - The SymTA/S Approach. PhD thesis, University of
Braunschweig, 2005.

[TC94] Tindell, Ken and John Clark: Holistic schedulability analysis for distributed hard real-time systems. Microprocessing and Micropro-
gramming, 40:117–134, April 1994.

[Tin94] Tindell, Ken: Adding time-offsets to schedulability analysis. Technical report, University of York, Computer Science Dept, YCS-94-
221, 1994.

