
Design and implementation of a Maple-package

for the predictability of real-time systems

Mario Korte, Karsten Albers, Frank Slomka
Department of Computer Science, University of Oldenburg

Ammerländer Heerstr. 114-118
D-26129 Oldenburg, Germany

mario.korte
karsten.albers
frank.slomka

@informatik.uni-oldenburg.de

March 17, 2006

Abstract

Many critical systems are controlled by computers, for example air-
planes, nuclear power plants, airbag systems in cars etc. The most impor-
tant factor of the used systems is of course that they work error free. But
for the subset of hardware and software systems named real-time systems
it is as well most important, that the system works absolutely predictable
in both, time and function. Working predictable in time means that all
software tasks meet their previously defined deadlines. The implemented
Maple package supplies test methods and functions for scheduling algo-
rithms like EDF (Earliest Deadline First), RMS (Rate Monotonic Schedul-
ing) and DMS (Deadline Monotonic Scheduling), that have been proved
to predict the compliance with previously defined deadlines.

1 Introduction

Today computers can be found in everyones car, in many machines, spacecrafts
and planes. The telephone system is build with computers and each television
set uses microprocessors. However, the design of software for such embedded
computer devices is different from writing software for general purpose comput-
ers on our desktop. An important design challenge of such embedded systems
is the correct timing behavior of the software. Since the early days of real-time
computer design a mathematical theory of embedded real-time systems was de-
veloped. This theory allows the predictable design of real-time systems. The
given parameters in the theory are the worst- and best case execution time of a
software task, the timing behavior of events triggering the tasks, and the given

1

deadline in which the computation must finish to fulfill the needs of the sys-
tems application. Additionally it considers preemptive or non preemptive tasks.
Important design parameters of such systems, the questions the designer will
ask to his construction, are: do all software tasks meet their deadlines, which
response time can be calculated for a task and what is the processor utilization.
The goal for the analysis is to find a feasible scheduling of real-time software
tasks on one ore more given microprocessors.

The main contribution in this field was a paper written by Liu and Layland
in 1973 [1]. In this paper analysis techniques for real-time systems using priority
based scheduling and earliest deadline first are presented. It was shown that
both strategies are optimal and how the priority of a task can be calculated
by the designer of such a system to get an optimal scheduling. However, the
results are limited in some cases. These limitations are removed by later work,
for priority based systems by Burns and Wellings [2], for earliest deadline first
scheduling by Baruah [3] and independently by Gresser [4].

In this paper we introduce a Maple library for the analysis of real-time
systems. The main insistence of this package was to use it during lectures and
to give the students a tool to play with and test their own calculations on various
task sets. Real-time analysis is a mathematical theory and expressing its results
with a tool like Maple gives students and researchers a new access to the theory.
The latest results in this field, as given by Baruah [3], Gresser [4], Chackraborty
and Thiele [5], Albers and Slomka [6], are using mathematical functions which
can be interpreted graphically. While Maple is a powerful tool to plot functions
it becomes a new tool to explore and interpret results from the field real-time
analysis. Using the real-time analysis package described in this paper it is easy
to develop new analysis algorithms and to find new results in this growing field.
The package is available for free to students, lecturers and researchers.

2 Real-time analysis package

In this section a short introduction to real-time analysis is given and the be-
longing functions of the package are described. While the main contribution of
the paper is the description of the Maple package we only describe some funda-
mentals of the theory. A good text book in the field of the design and theory
of embedded real-time systems was written by Buttazzo [11].

2.1 Definitions of tasks and task sets

In Maple the definition of data types takes place in a procedure whose input
is an object to be tested and its output is a boolean value (“true” or “false”).
Within the procedure the evaluation takes place, for which integrated Maple
type definitions can be used as well as other formulas and equations.

A task (Maple type definition: task) is defined as an ordered set of math-
ematical expressions: the period p, the ready time r, the deadline d and the
worst-case execution time c (figure 1). Since there are periodic and aperiodic

2

Figure 1: Illustration of a task

tasks, the period is optional. Thus a task can be defined by an ordered sequence
(Maple type: list) with either 3 or 4 elements. These elements must be positive
numbers or 0 (Maple type: nonnegative). A missing period is defined as the
value +∞. So aperiodic tasks can also be entered as periodic tasks with an in-
finite period. As a consequence the value of a period can be a positive number
but also +∞ (Maple type: posinfinity). If all these properties are fulfilled an
object is accepted as a task.

A set of tasks (Maple type definition: taskset) is defined as a non-empty set
of tasks. Therefore the only two properties that have to be checked are: the
input object has to be of Maple type list and all elements have to be of the
previously defined Maple type task.

To use these two types in the package they are defined and activated in
the special module function “ModuleLoad”, which is executed at loading of the
module.

The first group of functions period (p), ready (r), deadline (d) and wcet (c)
is used to compute and/or return the elementary task components, e.g. absolute
and relative deadline, ready times of the tasks and instances as well as the period
and the worst-case execution time. These functions can also be used later in
Maple outside of the package to simplify using the task characteristics in own
formulas and equations.

2.2 Static priority based scheduling with RMS and DMS

Liu and Layland [1] found that on one single processor preemptive software
tasks having a deadline equal to the period of their invocation can be optimal
scheduled, if the priorities of the tasks are selected in the following way: The task
with the highest rate of triggering events, or the shortest triggering period, gets
the highest priority. The tasks with the slowest rate get the lowest priority. Such
a scheduling scheme is called rate monotone scheduling (RMS). This scheme can
also be used if a deadline shorter than the period is given for each task. In this
case the lowest priority is assigned to the task with the shortest deadline. This
algorithm is called deadline monotone scheduling (DMS). For RMS the schedule
is always feasible, if the utilization of the processor (package function: U) is

3

equal or smaller then a given bound (package function: Umax), which depends
on the number of tasks n:

U =
n∑

i=1

ci

pi
≤ URMS

max (n) = n(21/n − 1)

In this formula the value c describes the worst-case execution time of the
task and p the period, as described in the definition of tasks. For the DMS
scheduling test using the processor utilization the period must be lowered to
the value of the deadline, which is a very pessimistic test:

U =
n∑

i=1

ci

di
≤ URMS

max (n) = n(21/n − 1)

The scheduling test using the processor utilization analysis is implemented
in the functions RMStest and DMStest. Unfortunately these formulas are only
necessary. This means that schedulable task sets exist, which are having a
processor utilization greater than this bound. To overcome the problem, Joseph
and Panday [8] published a more general approach to the problem: The response
time analysis (RTA). Response time analysis calculates the worst case response
time of each task. The worst case response time of a task (package functions:
RMSresponsetime and DMSresponsetime) depends on its priority, its worst case
execution time, the number of interrupts given by higher priority tasks, and the
worst case execution time of this high priority tasks. For this equation the task
set must be ordered by priorities:

Rk+1
i =

i−1∑
j=1

⌈
Rk

i

pj

⌉
cj , R0

i = ci

This formula must be solved iteratively, because the interrupt of a high
priority task extents the time used to calculate the number of interrupts. The
calculation ends if the formula convergates or if the deadline of the considered
task is reached. The scheduling tests using the RTA are implemented in the
functions RMSresponsetimeTest and DMSresponsetimeTest.

Additionally for RMS another test procedure is offered using the cumulated
processor demand as described by Lehocky, Sha and Ding [9]. For this schedu-
lability test the cumulative processor demand W (package function: W) for the
tasks τ1, . . . , τi in the interval [0, t] is defined as:

Wi(t) =
i∑

j=1

cj ·
⌈

t

pj

⌉
as well as:

Li(t) = Wi(t)/t ,
Li = min0<t≤piLi(t) and
L = max∀iLi

4

All these functions are computed in the overloaded package function L.
The task set is feasible if: L ≤ 1. This test is implemented in function

RMScumulativeDemandTest.
For the formulas Wi(t) and Li(t) the functions plotW and plotL are imple-

mented, which display the graph of those functions.

2.3 Dynamic priority based scheduling with EDF

The second policy to schedule tasks in real-time systems is called earliest dead-
line first (EDF)[1]. In EDF the task with the shortest remaining deadline is
scheduled. A task set is feasible if the processor utilization is smaller or equal
100%:

U =
n∑

i=1

ci

pi
≤ 1

This test is used in function EDFtest. However, this result holds only, if
the deadline of each task is equal to the tasks period. This condition is not
realistic in todays real-time systems. To calculate the feasibility of task sets
with deadlines shorter than the task periods an approach given by Baruah [3]
can be used. This approach is fundamental to real-time analysis and is called
the demand bound function (package functions: singleDBf and DBf):

Db(T, I) =

I≥di
n∑

i=1

Dbi
(T, I) =

I≥di
n∑

i=1

⌊
I − ri − di

pi
+ 1

⌋
ci

If the demand bound function for each deadline is smaller then the maximal
possible processor demand the task set is feasible:

∀I : Db(T, I) ≤ I

For an example see figure 2 which is an output of function plotDBf. This test
is called processor demand analysis and is implemented in function DBftest.

However, the computation of the demand bound function is complex. Be-
cause the function is discontinuous for each task instance at the deadline of the
task the demand bound function must be calculated for each instance of every
task separately. The total number of test points that have to be calculated de-
pends on the task’s periods and their deadlines. In the package the test points
are generated in function EDFtestPoints.

2.4 Approximated test algorithms for EDF

In real life examples often tasks of the operating system have deadlines in terms
of milli seconds while tasks of the application are executed in seconds. In such a
case a large number of test points must be calculated when using the processor
demand analysis test.

5

pr
oc

es
so

r
de

m
an

d

1

4

0
1

t

3

104

4

2

30 2

DBf

Umax

Figure 2: output of function “plotDBf”

In general the feasibility test is NP-hard. The computational complexity
of the problem leads to approximative feasibility algorithms. These algorithms
calculate results in linear time. The price for this is a smaller accuracy of the
result. A good overview to the problems of approximative real-time analysis is
given by Albers and Slomka [6], [7].

2.4.1 Chakraborty’s approximation

One solution to the problem was given by Chakraborty et al. [5]. To reduce the
number of test points the maximum test interval

Imax =
U

1− U
·max

∀i
(pi −Di)

is divided into k equal test intervals. Only at the borders of these intervals
the demand bound function is computed. The processor demand between the
borders is summed up and brought forward in time to the previous border.
So only k test points have to be computed. As figure 3 (output of function
plotChakrabortyDBf) shows, the approximated demand bound function is al-
ways equal or greater than the original demand bound function. The approxi-
mated demand bound function is implemented in function chakrabortyDBf, the
computation of the set of test points in chakrabortyTestPoints and the approx-
imated processor demand test in chakrabortyDBfTest.

2.4.2 Approximation by superposition

An other approach to an approximated processor demand analysis is the ap-
proximation by superposition introduced in [7]. The idea of the algorithm is

6

10,0005,000

pr
oc

es
so

r
de

m
an

d

t

7,500

5,000

0

7,500

10,000

0

2,500

2,500

DBf

ChakraDBf

Umax

Figure 3: output of function “plotChakrabortyDBf”

to limit the number of test points separately for each task by constructing an
approximated demand bound function for each task and to superpose then all
approximations to a single approximated demand bound function. The number
of test points can be reduced easily by linearization of the demand bound func-
tion. However, only the linearization of the demand bound function leads to a
bad approximation. A better approximation can be constructed by computing
exactly a firm number of k test points and to approximate all left test points by
linearization. If k + 1 test points are considered the maximal test interval for
each task is given by

Im(τi) = k · pi + ri + di

and the approximated demand bound function for a single task using Im and
Dbi

(T, I) is given by

D′
bi

(T, I) =
{

Dbi
(T, Im(τi)) + ci

pi
· (I − Im(τi))), I > Im(τi)

Dbi
(T, I), I ≤ Im(τi)

The approximated demand bound function for the task set is defined by

D′
b(T, I) =

n∑
i=1

D′
bi

(T, I)

As figure 4 (output of function plotSuperpositionDBf) shows, the approx-
imated demand bound function is always equal or greater than the original
demand bound function.

7

7,500

7,500

2,500

5,000

pr
oc

es
so

r
de

m
an

d

0

10,000

10,0000

t

5,000

2,500

DBf

SupDBf

Umax

Figure 4: output of function “plotSuperpositionDBf”

The approximated demand bound function using superposition is imple-
mented in function superpositionDBf, the computation of the set of test points
in superpositionTestPoints and the approximated processor demand test in su-
perpositionDBfTest. In addition a test for superposition is implemented using a
dynamic error test in function superpositionDynamicErrorTest.

2.5 User interface functions using Maplets

The sub-package “tools” uses many functions from the package “realTimeAnal-
ysis” to offer the user interactive graphical functions. They are used to help
the user to easy start working with the package. It contains: A method for the
interactive creation of tasks and task sets (createTaskset), a possibility to easy
handle the plots of demand bound functions (DBfPlotter) and a method to give
an overview about the different schedulability tests for a task set (schedulabili-
tyTests).

2.6 Package overwiev

The selection of the functions and methods which have been implemented ori-
ents itself to the contents of the course “Real-time systems” teached at the
University of Oldenburg. For usability of the package graphical user interfaces
were implemented for suitable functions. Of course there are help files with
explanations and examples for every function, that can be accessed through the
Maple help-system.

8

realTimeAnalysis

Busyperiod(Tau:taskset)

DBf(Tau:taskset, t:anything)

DBftest(Tau:taskset, interval:positive)

DMSresponsetimeTest(Tau:taskset)

RMSresponsetime(Tau:taskset, i:posint)

RMSresponsetimeTest(Tau:taskset)

DMStest(Tau:taskset)RMStest(Tau:taskset)

E(Tau:taskset, t:anything)

EDFtest(Tau:taskset)

Hyperperiod(Tau:taskset)

Imax(Tau:taskset)

L(Tau:taskset, i:posint, t:anything, type:string)

ProcessorUtilization(Tau:taskset)

Umax(Tau:taskset)

W(Tau:taskset, i:posint, t:anything, type:string)

wcet(tau:task) deadline(tau:task) ready(tau:task) period(tau:task)

chakrabortyDBf(Tau:taskset, testLimit:posint, t:anything)superpositionDBf(Tau:taskset, k:posint, t:anything)

singleDBf(tau:task, t:anything)

superpositionSingleDBf(tau:task, k:posint, t:anything)

chakrabortyDBftest(Tau:taskset, testLimit:posint, interval:positive)

superpositionDBftest(Tau:taskset, k:posint, interval:positive)

chakrabortyTestPoints(Tau:taskset, testLimit:posint)

EDFtestPoints(Tau:task, interval:positive)

superpositionTestPoints(Tau:taskset, k:posint, interval:positive)

plotDBf(Tau:taskset, t:anything)

plotSuperpositionDBf(Tau:taskset, k:posint, interval:positive)

plotChakrabortyDBf(Tau:taskset, testLimit:posint, interval:positive)

DMSresponsetime(Tau:taskset, i:posint)

werden von nahezu allen Funktionen verwendet

superpositionDynamicErrorTest(Tau:taskset, k:posint, interval:positive)

ProcessorUtilization(tau:task)

deadline(tau:task, k:posint) ready(tau:task, k:posint)

L(Tau:taskset, i:posint, type:string)

L(Tau:taskset, type:string)

type:task type:tasksettools

DBfPlotter(Tau:taskset)

createTaskset()

schedulabilityTests(Tau:taskset)

plotE(Tau:taskset, interval:positive)

RMScumulativeDemandTest(Tau:taskset)

Figure 5: Structure of the package

9

A Maple package is a collection of equal functions, but of course there are
dependencies between the implemented functions in this package. Figure 5 gives
an overview about the implemented functions and the dependencies between
them using a in form of a dependency graph with a syntax based on UML.

3 Example application of the package

As an example application the task set of a hypothetical flight control system
developed by Tindell and Clark [10] is used to show the functionality of some
functions of the package. The definition of the previously made out task set T
in Maple is easy:

> Tau:=[[800 , 0, 800 , 150],

[200000 , 0, 5000 , 2277],

[40000 , 0, 15000 , 420],

[20000 , 0, 20000 , 552],

[20000 , 0, 20000 , 496],

[25000 , 0, 12000 , 1423],

[50000 , 0, 50000 , 3096],

[59000 , 0, 59000 , 7880],

[50000 , 0, 100000 , 1996],

[100000 , 0, 100000 , 3220],

[100000 , 0, 100000 , 3220],

[200000 , 0, 100000 , 520],

[200000 , 0, 200000 , 1120],

[1000000, 0, 200000 , 954],

[200000 , 0, 200000 , 1124],

[200000 , 0, 200000 , 3345],

[1000000, 0, 1000000, 1990]];

with [p, r, d, c].
After loading the package with “with(realTimeAnalysis)” all test func-

tions for the different scheduling algorithms are ready to use:

3.1 Tests for RMS and DMS

For the RMS and DMS scheduling algorithms the test using the processor uti-
lization (computed by the function U) can be used to analyze the feasibility of
the task set:

> U(Tau);

19233803

29500000

> DMStest(Tau);

maybe

> RMStest(Tau);

true

It can be seen that the task set can be scheduled with RMS, but for DMS this
test is not accurate. To solve the problem a different test method using the
worst-case response time of the tasks is used:

10

> DMSresponsetimeTest(Tau);

true

> RMSresponsetimeTest(Tau);

true

This tells us that the task set can be scheduled with both algorithms, RMS and
DMS. The next command shows the worst-case response time of every task for
DMS and the belonging deadline, which must be greater for every task to be
schedulable:

> seq(

[DMSresponsetime(Tau,i),d(Tau[i])],

i=1..nops(Tau)

);

[150, 800], [2877, 5000], [5170, 15000],

[5872, 20000], [6368, 20000], [4600, 12000],

[10214, 50000], [19894, 59000], [23688, 100000],

[29381, 100000], [33351, 100000], [34021, 100000],

[35441, 200000], [36545, 200000], [37969, 200000],

[43832, 200000], [46272, 1000000]

3.2 Tests for EDF

For the EDF scheduling algorithm 2 different test methods are implemented,
the first one using the processor utilization and the second one performing the
processor demand analysis by using the demand bound function:

> EDFtest(Tau);

true

> DBftest(Tau);

true

The test by processor demand analysis can also be displayed graphically:

> plotDBf(Tau);

For the Maple output of the function see figure 2.

3.3 Approximative tests for EDF

The exact computation of the EDF processor demand test is very slow because
of the many test points that have to be evaluated. To get the results faster two
approximative processor demand tests are implemented, Chakraborty’s approx-
imation of the demand bound function and the approximation by superposition:

> chakrabortyDBftest(Tau, 2000);

true

> superpositionDBfTest(Tau, 1);

true

> superpositionDynamicErrorTest(Tau, 10);

true

To show the results graphically also plotting functions are available for Chakraborty’s
approximation (figure 3) and approximation by superposition (figure 4):

11

> plotChakrabortyDBf(Tau, 2000, 10000);

> plotSuperpositionDBf(Tau, 1, 10000);

4 Efficiency

An important characteristic characteristic of the implementation that should be
seen is the speed of the computations. In order to ensure that the results are
computed as fast as possible the methods and functions have been tested with
the Maple profiling tools. They provide functions to measure the memory use
as well as the time used for computation. The speedup of many function could
be achieved by using some other Maple constructs and methods that are equal
to well known programming constructs.

E.g. in the function that computes the test points for the EDF feasibility
test by processor demand analysis the computation can be done in a while or
a for -loop, which is very slow. A better way is to use special Maple methods
to dynamically create lists, like seq. Both variants can be seen in the following
two functions which produce the same results:

• EDFtestPoints1 := proc(Tau::taskset, interval::positive)::set;

local k::nonnegint, i::posint, t::nonnegative,

D1::set, D2::set;

k := 0; t := 0; D1:={}; D2:={};

while (true) do

for i from 1 to nops(Tau) do

if ((p(Tau[i]) = infinity)) then

t := d(Tau[i]) + r(Tau[i]);

else

t := k * p(Tau[i]) + d(Tau[i]) + r(Tau[i]);

end if;

if (t <= interval) then

D1 := D1 union {t};

end if;

end do;

if (D1 = D2) then

return D1;

else

D2 := D1;

end if;

k := k + 1;

end do;

end proc;

• EDFtestPoints2 := proc(Tau::taskset, interval::positive)::set;

local t::nonnegint, tau::task, D::set;

D := {};

for tau in Tau do

if (p(tau) = infinity) then

D := D union {d(tau) + r(tau)};

else

D := D union {seq(d(tau, t),

t = 1..(floor((interval-d(tau)-r(tau))/p(tau)))+1)};

end if;

end do;

end proc;

12

Using the profiling tools it can be seen, that the loop variant uses 9-times
more time and memory than the version that builds the lists dynamically:

• EDFtestPoints1 := proc(Tau::taskset, interval::positive)

local k::nonnegint, i::posint, t::nonnegative,

D1::set, D2::set;

|Calls Seconds Words|

PROC | 1 3,616 15960691|

1 | 1 0,000 0| k := 0;

2 | 1 0,000 0| t := 0;

3 | 1 0,000 0| D1 := {};

4 | 1 0,000 0| D2 := {};

5 | 1 0,000 5| do

6 | 1251 0,010 3753| for i to nops(Tau) do

7 |21267 0,693 2658412| if p(Tau[i]) = infinity then

8 | 0 0,000 0| t := [...]

else

9 |21267 2,813 12191232| t := k*[...]

end if;

10 |21267 0,040 88740| if t <= interval then

11 | 1517 0,040 1012843| D1 := ‘union‘(D1,{t})

end if

end do;

12 | 1251 0,020 5706| if D1 = D2 then

13 | 1 0,000 0| return D1

else

14 | 1250 0,000 0| D2 := D1

end if;

15 | 1250 0,000 0| k := k+1

end do

end proc

• EDFtestPoints2 := proc(Tau::taskset, interval::positive)

local t::nonnegint, tau::task, D::set;

|Calls Seconds Words|

PROC | 1 0,400 1914464|

1 | 1 0,000 0| D := {};

2 | 1 0,000 0| for tau in Tau do

3 | 17 0,000 2125| if p(tau) = infinity then

4 | 0 0,000 0| D := ‘union‘([...])

else

5 | 17 0,400 1912339| D := ‘union‘([...])

end if

end do

end proc

Further optimizations of the factor 3 - 4 can be achieved by using the function
add instead of sum, which is appropriate for these functions.

These examples are also detailed shown in file IPprofile.mw.

5 Conclusion

The package “realTimeAnalysis” offers many basic functions and test methods
for different scheduling algorithms for real-time systems. In addition functions
with graphical user interfaces and detailed help files are offered, which simplify
the use especially for Maple beginners. So this package can help teaching the

13

basic concepts of real-time system analysis and understanding the mathematic
principles behind them.

The package is logically arranged by using subpackages and can be easily
extended with further packages for new functions and data types. To simplify
that the source code will be made available under GNU General Public License
and can be downloaded fom the internet.

A Source code

The sources of the package and the pre-compiled binaries for use with Maple
9.5 and Maple 10 can be downloaded at:

http://www.mariokorte.de/downloads/easytrack.php?id=ip1.

References

[1] C. L. Liu and James W. Layland Scheduling Algorithms for Multiprogram-
ming in a Hard-Real-Time Environment Journal of the ACM, pages 46 - 61,
1973

[2] A. Burns and A. Wellings HRT-HOOD: A Structured Design Method for
Hard Real-Time Ada Systems Elsevier, Oxford, 1995

[3] S. Baruah, A. Mok and L. Rosier Preemtive Scheduling Hard-Real-Time
Sporadic Tasks on One Processor Proceedings of the Real-Time Systems
Symposium, pages 182 - 190, 1990

[4] K. Gresser Echtzeitnachweis ereignisgesteuerter Realzeitsysteme PhD
Thesis, Lehrstuhl für Prozessrechner, Technical University of Munich.
Fortschrittsberichte VDI, Reihe 10, Nr. 268, VDI Verlag, Duesseldorf, 1993

[5] Samarjit Chakraborty, Simon Künzli and Lothar Thiele Approximate
Schedulability Analysis 23rd IEEE Real-Time Systems Symposium (RTSS),
IEEE Press, pages 159 - 168, 2002

[6] Karsten Albers and Frank Slomka Efficient Feasibility Analysis for Real-
Time Systems with EDF scheduling IEEE Procedings of the DATE (Design,
Automation and Test in Europe) Conference 2005, pages 492 - 497, 2005

[7] Karsten Albers and Frank Slomka An Event Stream Driven Approximation
for the Analysis of Real-Time Systems IEEE Procedings of the 16th Eu-
romicro Conference On Real-Time Systems, 2004

[8] M. Joseph and P. Panday Finding Response Times in Real-Time Systems
The Computer Journal(29/5), pages 390 - 395, 1986

14

http://www.mariokorte.de/downloads/easytrack.php?id=ip1

[9] John Lehoczky, Lui Sha and Ye Ding The Rate Monotonic Scheduling
Algorithm: Exact Characterization And Average Case Behavior CH2803-
5/89/0000/0166/$01.00, 1989

[10] Ken Tindell and John Clark Holistic Schedulability Analysis for Distributed
Hard Real-Time Systems Microprocessing and Microcomputing 50, pages:
117 - 134, 1994

[11] Giorgio C. Buttazzo Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications Kluwer Academic Publishers, 2002.

15

	1 Introduction
	2 Real-time analysis package
	2.1 Definitions of tasks and task sets
	2.2 Static priority based scheduling with RMS and DMS
	2.3 Dynamic priority based scheduling with EDF
	2.4 Approximated test algorithms for EDF
	2.4.1 Chakraborty's approximation
	2.4.2 Approximation by superposition

	2.5 User interface functions using Maplets
	2.6 Package overwiev

	3 Example application of the package
	3.1 Tests for RMS and DMS
	3.2 Tests for EDF
	3.3 Approximative tests for EDF

	4 Efficiency
	5 Conclusion
	A Source code

