
C-based System Development of Asynchronous Distributed Systems∗

Mario Korte
Department of Computer Science

University of Oldenburg
Ammerländer Heerstr. 114, 26111 Oldenburg

Mario.Korte@informatik.uni-oldenburg.de

Frank Slomka
Department of Embedded / Real-Time Systems

University of Ulm
Albert-Einstein-Allee 11, 89069 Ulm

Frank.Slomka@uni-ulm.de

Abstract

Embedded control systems have to be function-
ally correct, stable, and have to fulfil real-time
constraints. The presented integrated approach
of embedded software and hardware development
supports the developer to meet design decisions in
a system context using simulations at the system
level and the task level of modelling. At the system
level, first the behaviour of the digital controller
model is specified. Secondly, the developer ex-
plores at the task level various alternatives of task
scheduling policies and hardware/software archi-
tectures using simulations based on task models
and virtual prototype models of the hardware. Es-
timated delays and scheduling times are back-
annotated to the system level model. There the
annotations are used to correct the digital control
algorithm parameters that the embedded system
remains functionally correct and stable.

1. Introduction

Embedded systems are designed to do some
specific task such as engine control in cars, com-
munication devices, and household appliances.
Especially systems in automotive and industrial
control applications are constrained by real-time
conditions. Their violation may lead to a system
failure. New technologies allow creating complex
embedded systems that consist of heterogeneous
subcomponents such as application-specific pro-
cessors, general purpose processors, memory
structures and communication networks. There-
fore, the developer is faced with what Künzli,

∗The work has been supported in part by the Energy Re-
search Alliance of Lower Saxony.

Thiele, and Zitzler call “a huge design space”
[13]. The developer has to explore a solution in
this huge design space that is functionally correct
and that does not fail at anytime. In this paper we
present an integrated approach for a model-driven
software design in C that ensures real-time capa-
bility and functional correctness. As an example
this approach begins with algorithm models of the
system using Simulink block diagrams. The al-
gorithm models are suitable to meet design deci-
sions such as tuning the algorithm and partition-
ing between hardware and software. The models
of the software portion are mapped on tasks and
interrupt routines. Inchron’s real-time simulator
chronSim [1] is used to define a task scheduling
so that the system remains causal and does not
violate real-time constraints. The simulator uses
virtual prototype models of processors that add
information about the timing of commands, the
number of registers, and arithmetic units. This so-
called real-time performance analysis in chron-
Sim outputs information about lag time, and de-
tects real-time violations even before the program
runs on costly hardware. Lag time changes the al-
gorithm behaviour and therefore might destabilise
the whole system. In the integrated approach for
a model-based real-time embedded software de-
sign the time lag values are back-annotated to the
functional description in Simulink. There the al-
gorithms can be verified and tuned further before
the next iteration of mapping software models on
tasks. This integrated approach is only possible
by combining different model implementations at
various abstraction levels.

After an overview about the related work we
present the used design flow in Section 3. In
Section 4 we focus on how to describe the sys-



tem using a model-based approach. After that we
present the event-based simulation of chronSim
and how to use it for system analysis in Sections 5
and 6. We conclude the paper with an outlook on
future work.

2. Related work

For the design of tasks developers distinguish
between dataflow-oriented, control-oriented, and
protocol-oriented types. As an example, the em-
bedded software of a communication system con-
sists of protocol-oriented tasks for parsing and
decoding or encoding data packets, dataflow-
oriented tasks for compression and decompres-
sion, and control-oriented tasks to manage the
user interface. Dataflow-oriented tasks ideally
consume and produce data sequences and run
continuously. Control-oriented tasks react to
events from outside or to events created by
other tasks. Their states can change errati-
cally. Protocol-oriented tasks combine data-
oriented and control-oriented features. They are
parsing a data-flow-like bit stream and depend-
ing on the detected pattern their state changes to
detect the next pattern. The three task types can
be distinguished by data access and coding styles.
Correspondingly there exist very specific model
representations and design tools.

The Unified Modelling Language (UML) de-
fines thirteen types of graphical representations,
divided into three categories [2]. As an exten-
sion of UML, the Systems Modelling Language
(SysML) is intended for general systems engi-
neering applications [4]. As an example, Rhap-
sody and Statemate from Telelogic I-Logix Inc
support UML and an early version of SysML.
The constructs of UML allow the simulation of
events in the system. Dataflow-oriented tasks are
preferably drawn as block diagrams. Design tools
like Synopsys’ System Studio, CoWare’s Signal
Processing Designer SPW, and The MathWorks’
MATLAB/Simulink support the developer with
block diagram editors [5]. Protocol-oriented tasks
are supporting the decoding or encoding of data
packets in wireless communication systems and
in bus networks. Hence design tools come with
communication standard libraries. As an exam-
ple, for the design of systems with bus networks
in automotive applications, Vector Informatik of-

fers a set of tools, where CANoe (CAN Open
Environment) plays the role as simulation envi-
ronment for a bus network with several electronic
control units [6].

The previous design tools provide system level
models, which have to be mapped onto task level
models. This mapping procedure is supported by
code generation which leads to a causal system of
scheduled tasks. As an example, The MathWorks
has released Simulink Real-Time Workshop and
Simulink Real-Time Workshop Embedded Coder
[5]. As Simulink is widely used for the functional
design of signal processing and control systems,
we explored a design flow using Real-Time Work-
shop code generation.

3. Tool flow

The contribution of this paper is a new model
driven C-based design flow. In this section the
used tool flow is explained which is shown in Fig-
ure 1 .

.c .xml

.mdl
Model

.xml

.xml

.sc .c

C-based System 
Simulation

Co-Simulation

System 
Architect

Algorithm 
Architect

Hardware 
Designer

refined
HW-Architecture

refined
SW-Architecture

RequirementsProgram
Structure

HW-Architecture

Simulink Model

Process Structure

Figure 1. Platform design

The first step is the creation of the needed al-
gorithms on system level. This is done by the Al-
gorithm Architect as a block model in Simulink.
Using the Real-Time Workshop and Real-Time



Workshop Embedded Coder it is possible to au-
tomatically generate the C-code for the software
of the embedded system [5]. Additionally we en-
hance the blocks of the model in such a way that
Simulink generates the (simulation-)requirements
of the software during the simulation of the algo-
rithms. These two factors define the input param-
eters for the C-based real-time system simulation
in chronSim.

The System Architect can now define on which
hardware (processor or microcontroller, bus sys-
tems, etc.) the previously generated software will
be executed and divide the whole C-program into
processes.

Now the real-time simulation in chronSim can
be compiled and executed to get the information
if the complete system is valid and can keep the
deadlines [1]. Those informations are back anno-
tated to the model and can be used to refine the
software and the hardware to fit the needs. The
Hardware Designer uses the specifications from
the System Architect and the output from the sim-
ulation in chronSim and refines the Hardware in
SystemC.

The resulting C-software and the SystemC-
hardware code can then be executed and co-
simulated.

In the following sections we want to describe
the tools in detail and how to combine them for
this model driven C-based system development.

4. Model-based system design

A model is a construct to describe the be-
haviour of the embedded system. Embedded
systems consist of heterogeneous subcomponents
that can be represented by different models. Mod-
els exist at different levels of abstraction that add
structure to a design flow. With each level closer
to hardware and software implementation more
functional details are added. Models describing
real-time constraints contain attributes like worst-
and best-case response-times of tasks. As an
example, Künzli, Thiele, and Zitzler [13] intro-
duce five levels of abstraction on which design
choices must be taken: (1) Logic Design and High
Level Synthesis, (2) Programmable Architecture,
(3) Software Compilation, (4) Task Level, and (5)
Distributed Operation (system level).

Real-time design uses the fact that models at

the task level describe the hardware and software
portion with an interdependent relationship. As
hardware affects task timing and scheduling, so-
called virtual prototype models of the hardware
are used in combination with task models. A
hardware-software co-design of systems with this
interdependency leads to a system model with dif-
ferent representations of hardware, software, and
the environment.

In this paper we want to use Simulink to design
the model for the algorithms. Simulink by The
MathWorks is a tool for modeling, simulating and
analysing multi-domain dynamic systems. Its pri-
mary interface is a graphical block diagramming
tool and a customisable set of block libraries. It
offers tight integration with the rest of the MAT-
LAB environment and can both drive MATLAB
or be scripted from it.

Together with virtual prototypes of microcon-
trollers and processors we then analyse the com-
plete system using chronSim.

5. Event-based simulation

In real-time systems task scheduling depends
on real-time constraints. The execution time from
triggering a task to its response is constrained by a
deadline. The response time of a task depends on
the task complexity, the hardware, and interrup-
tion times by other tasks. The real-time behaviour
of embedded software depends on the causality of
tasks and their concurrent execution. Hence, ex-
ploring the real-time behaviour is tightly related
to the scheduling algorithm of the Real-Time Op-
erating System (RTOS) that determines how and
when commonly shared resources are available
for a specific task. A schedulability analysis an-
swers the question if the task schedule does not
violate causality and the execution times do not
miss their deadlines.

5.1. Schedulability analysis

The schedulability analysis uses abstract rep-
resentations of the tasks and analyses if tasks will
finish their execution within predefined deadlines.
The dataflow can be modelled using flow-graph
models. The analysis of the interference of tasks
on different priority levels will lead to a value
of the worst-case response time (WCRT) of a



task. Jersak, Richter, and Ernst propose a per-
formance analysis as a promising alternative to
simulation [12]. This analysis calculates mini-
mum and maximum response times for tasks or
task chains based on task properties, scheduling
parameters and all possible timings of activating
events. Therefore an event model, like the event
stream model by Gresser [10], describes all pos-
sible timings of events. Such an analysis is based
on the assumption that the worst-case execution
time of each task is known [7][8].

There exist several design tools that support a
worst-case execution time (WCET) analysis. As
an example, AiT created by the company AbsInt
is intended for this longest path analysis [11]. AiT
computes upper time bounds for the WCET of the
embedded system for all combinations of inputs
and each task execution. Byhlin et. al. [9] explain
that the analysis of the longest path requires addi-
tional information such as program flow, targets
of indirect function calls and branches. Accord-
ing to Heckmann and Ferdinand [11] the upper
bounds for the iteration numbers of all loops have
to be known.

The longest path analysis is also suitable for
non-preemptive tasks. It can provide very con-
servative estimates but the quality of results de-
pends on constraints specified by the developer
about software behaviour and hardware architec-
ture. If the behaviour of the real-time system
depends on data-dependencies a simulative ap-
proach using task models and virtual prototypes
is an alternative to schedulability analysis.

5.2. Real-time simulation

A simulation of tasks on a virtual platform will
lead to an average estimate of the WCRT because
the models carry information about software and
hardware. This simulation considers all unfore-
seen events and errors and takes them into ac-
count.

ChronSim is a platform for real-time simula-
tion. With this real-time simulator the software
runs on a host computer before task scheduling
has been defined and before there exists any hard-
ware. It comes with virtual prototype models of
the target architecture that are adding information
about the timing of instructions, number of regis-
ters and arithmetic units to the simulation. Addi-

tionally the simulation takes target compiler opti-
misation settings into account. Before execution
of the simulation, the task source code is trans-
lated into an intermediate representation consist-
ing of basic blocks. The runtime of these basic
blocks is estimated using information about hard-
ware allocation and linkage. This intermediate
representation is converted into the machine lan-
guage of the host platform afterwards. With this
intermediate code, latencies and delays associated
with the hardware add the notion of time to the
running software.

The chronSim simulation combines analysis of
the interaction and behaviour of tasks. The devel-
oper can chose virtual prototype models that are
associated with an RTOS and its functions like
OSEK [3] or generic prototype models in com-
bination with chronSim-specific RTOS functions.
Beyond that chronSim comes with generic func-
tions that describe hardware behaviour such as
processor allocation (blocking) and delay, protec-
tion of hardware resources using semaphore ob-
jects, and task synchronisation using event and
queue objects. In the generic case, delays added
in the intermediate representation approach are
superseded. The developer can configure an en-
tire artificial operating system by setting task
priority, and combination of scheduling strate-
gies such as “First in, First Out”, “Priority”, and
“Round Robin” with scheduling types such as
“Preemptive”, “Cooperative”, “Time-Slice”, and
“Run-To-Completion”. The developer can chose
between a functional and a structural representa-
tion of the embedded software. In the structural
case, the developer models just skeletons of the
tasks without any functionality. These skeletons
are suitable to create a hypothesis of task schedul-
ing and deadlines. In the further design flow, the
developer can successively refine the model by
adding functional code to the tasks. With each re-
finement step, the simulated real-time behaviour
is approaching the behaviour of embedded soft-
ware running on a virtual prototype model.

With the simulative approach the developer
can explore the software architecture and task
scheduling early in the design flow to check the
systems behaviour if it fulfils its real-time con-
straints. Hence the integrated approach described
here combines real-time simulation in chronSim
with Simulink’s dataflow simulation.



6. Simulation-based analysis

The integrated approach which is presented
here uses design representations for system-level
and task-level analysis. At the system level the
algorithm is modelled using block diagrams in
Simulink. Simulink Real-Time Workshop gen-
erates C-code out of the block diagram. At the
task level, the developer explores, at which rate
the tasks should be activated and if all tasks do
not exceed their deadlines. Figure 2 shows the
integrated approach of system level analysis and
task level analysis.

Constraints C-Code StT(t)
wcrt(t)

Constraint
Library

Code
Generation

Back-Annotation
Library

System Level Analysis
MATLAB/Simulink

Controller
Discretisation

Basic Block
Estimation

Task Level Analysis
Event Based Simulation

Design Space
Exploration

Figure 2. System level analysis and task
level analysis with design files and anno-
tations

The block diagrams in Simulink describe the
overall system which consists of models of the
digital controller, the plant controlled system,
and the environment. In a first step, the de-
veloper explores controller model parameters to
tune the overall system behaviour and stability.
All models in these block diagrams are untimed
and describe analog values. As tasks in embed-
ded systems process quantised and sampled data
and they add an execution time, models of the
controller in the block diagram are replaced by
a discrete representation. In the integrated ap-
proach, the controller models are simply switched

to a different representation. This switch is per-
formed by a dedicated constraint library provided
to connect Simulink with chronSim and which is
fully integrated in Simulink. New simulations
in Simulink now show lag-times and quantisa-
tion levels. These simulations are suitable to de-
tect the worst-case lag-times before the system
reaches the stability limit. These lag-times define
the deadlines that have to be watched at the task
level. From the constraint library the worst-case
response times, activation times, and quantisation
levels are written to a constraints file. This file is
available for task level analysis in chronSim. The
developer uses Simulink Real-Time Workshop in
parallel to generate source code for each task.

In chronSim the developer creates new tasks
and adds the functionality of the generated source
code. Additionally it is possible to combine the
generated code with legacy or handwritten code
of other system components. The constraints de-
fine the deadlines in the chronSim simulation.
In case a deadline is missed, the developer has
several options. Schäufele and Zurawka recom-
mend that the developer might have to recon-
sider prolonging deadlines, change task schedul-
ing by shifting activation times, changing task
priorities, or splitting long running tasks into
smaller chunks [14]. Especially prolonging dead-
lines and splitting long running tasks into smaller
chunks requires a reiteration at the system level in
Simulink.

After task level analysis and hardware/soft-
ware design space exploration, the correctness of
the algorithm has to be verified at the system level
using simulations in Simulink once more again.
The chronSim simulation outputs activation times
and response times of tasks to a file which is back-
annotated to the Simulink simulation. This file is
read by Inchron’s back-annotation library during
a Simulink simulation where it affects the algo-
rithm behaviour. At this point the algorithm sim-
ulation might show an unstable behaviour or sim-
ply output wrong results. After corrections at the
system level in Simulink, like changes to the con-
trol parameters, the developer can start the next
round in chronSim.



7. Case study: Submarine Explorer

The submarine exploring robot is a platform to
support research on autonomous underwater vehi-
cles. The mechanical system is based on standard
components that are available for model construc-
tion of radio controlled submarines. The subma-
rine explorer has been used to test the integrated
approach for a model based software design.

Figure 3. Output of course controller
(continuous / with 200ms response time)

The initial algorithm simulation of the course
control model in Simulink outputs a continuous
response curve as shown in Figure 3 above. In
case input data is sampled and the output is de-
layed with a time-lag, the system can become un-
stable. In the second example of Figure 3 the out-
put signal shows an erratic behaviour. In this case
the responding and sampling times are too long.
The deadline for the task is shorter.

8. Conclusions

This paper presents an integrated approach for
a model-based real-time embedded software de-
sign using C-code. As hardware affects task tim-
ing and scheduling, virtual prototype models of
the hardware are used in combination with task
models. For real-time behaviour exploration we
give preference to a simulative approach instead
of a static schedulability analysis because the de-
veloper can design deadlines and RTOS func-
tions early in the design flow. The integrated ap-
proach combines real-time simulation in chron-

Sim with Simulink system-level simulation. De-
lays and starting times of tasks are back annotated
to the system-level where they are used to ad-
just the control algorithm parameters. This back-
annotation of embedded software parameters to
the system level supports a virtual prototype-
based design flow that leads to a functionally cor-
rect and stable system.

References

[1] INCHRON GmbH. http://www.inchron.com,
2007.

[2] OMG’s Unified Modeling Language (UML).
http://www.omg.org, 2007.

[3] OSEK VDX Portal. http://www.osek-vdx.org,
2007.

[4] SysML Forum. http://www.sysmlforum.com,
2007.

[5] The Mathworks. http://www.mathworks.com,
2007.

[6] Vector Group. http://www.vector-group.net,
2007.

[7] K. Albers, F. Bodmann, and F. Slomka. Hier-
archical Event Streams and Event Dependency
Graphs: A New Computational Model for Em-
bedded Real-Time Systems. In IEEE Proceed-
ings of the 18th Euromicro Conference on Real-
Time Systems, pages 97–106, 2006.

[8] F. Bodmann, K. Albers, and F. Slomka. Analyz-
ing the Timing Characteristics of Task Activa-
tions. In Poceedings of the SIES’06 (Symposium
for Industrial Embedded Systems), 2006.

[9] S. Byhlin, A. Ermedahl, L. Gustafsson, and
B. Lisper. Applying Static WCET Analysis
to Automotive Communication Software. In
17th Euromicro Conference of Real-Time Sys-
tems (ECRTS’05), Mallorca, Spain, 2005.

[10] K. Gresser. An event model for deadline veri-
fication of hard real-time systems. In 5th Eu-
romicro Workshop on Real-Time Systems, Fin-
land, 1993.

[11] R. Heckmann and C. Ferdinand. Worst-Case
Execution Time Prediction by Static Program
Analysis. In AbsInt Angewandte Informatik
GmbH, 2005.

[12] M. Jersak, K. Richter, and R. Ernst. Performance
Analysis for Complex Embedded Applications.
In International Journal of Embedded Systems,
Special Issue on Codesign for SoC, 2004.

[13] S. Künzli, E. Thiele, and E. Zitzler. Multi-
criteria Decision Making in Embedded System
Design. In SoC: Next Generation Electronics,
IEE Press, 2005.

[14] J. Schäufele and T. Zurawka. Automotive Soft-
ware Engeneering. Vieweg, 2003.


