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Abstract. This work deals with the problem to optimise the energy consumption
of an embedded system. On system level, tasks are assumed to have a certain
CPU-usage they need for completion. Respecting their deadlines, slowing down
the task system reduces the energy consumption. For periodically occurring tasks
several works exists. But even if jitter comes into account the approaches do not
suffice. The event stream model can handle this at an abstract level and the goal
of this work is to present and solve the optimisation problem formulated with the
event stream model. To reduce the complexity we introduce an approximation to
the problem, that allows us a precision/performance trade-off.

1 Introduction

Reducing the energy consumption of an embedded system can be done by shut-
ting down (zero voltage), freezing (zero frequency, e.g. clock gating) or stepping
the circuits with a slower clock and lower voltage (Dynamic Voltage Scaling or
Adaptive Body Biasing).
On system level, tasks as programmes or parts of those are assigned a processing
unit. Here we are interested in tasks having a deadline not to miss and with some
sort of repeated occurrence, that is those tasks are executed repeatedly as long as
the embedded system is up and running.
The mentioned possibilities to reduce the overall energy consumption result in a
delay or slowdown from the view of a program running on the system. It has a
lower-bound for those tasks having deadlines to meet with the side effect, that the
available processing time for other tasks running on the the same processor will
be reduced. Thus any technique regarding energy reduction which influences the
processing speed has to take these limits into account.
The problem we focus here is to minimise the systems total power consumption
for a task set, where each task may have its own trigger and its own relative dead-
line, using static slowdown to guarantee hard real-time feasibility.
In the next section we will describe work on similar problems. In the model sec-
tion we will specify our assumptions, describe the event stream model along with
the demand bound function. We will improve the number of test points and then
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show how this is incorporated into a linear programme solving the problem of cal-
culating slowdown factors, while guaranteeing hard real-time feasibility. Before
we conclude the paper, we will do an example and demonstrate the advantages,
we gained with the developed theory.

2 Related Work

There are several works regarding the energy optimisation of hard real-time sys-
tems. Here we are interested in optimising without granting the circuits any loss
of precision, without missing any deadlines, and we want a true optimal solution,
if possible, thus we focus on linear program solutions.
Ishihara and Yasuura [1] incorporate in their integer linear program different dis-
crete voltage/frequency pairs, an overall deadline for their task set to meet, but
no intertask dependency and only dynamic power consumption. They consider
mode switching overhead negligible and for every task a number of needed CPU-
cycles, in worst-case analysis this corresponds to their worst-case execution time.
Andrei et al. [2] formulate four different problems, each regarding intertask de-
pendency, a deadline per task, and per task a number of clock cycles to complete
it, which can, again, be considered as worst-case time. The four problems vary in
with or without regarding mode switching overhead and with or without integer
linear programming for the number of clock cycles. The task set is considered
non-preemptive. The authors prove the non-polynomial complexity of the integer
linear problem with overheads.
A somewhat different approach have Hua and Qu [3]. They are looking for the
number and the values of voltages yielding the best solution with dynamic volt-
age scaling. However, their problem formulation only explores the slack between
execution time and relative deadline of a task with the assumption that the task
system is schedulable even if every task uses the complete deadline as execution
time. In hard real-time analysis this assumption does not hold. For example if
each task has its own period a common way is to set its deadline equal to its pe-
riod.
Rong and Pedram [4] have their problem formulated with intertask dependen-
cies, leakage and dynamic power consumption, different CPU-execution modes,
external device usage each with different execution modes. They state that mode
switching overhead on the CPU is negligible especially when “normal” devices
(e.g. hard disks etc.) are involved in the calculation. They also state the non-
polynomial complexity of the mixed integer linear program. And their task graph
is assumed to be triggered periodically with a period they use as overall deadline
for the task set. The tasks are considered non-preemptive. The tasks themselves
do not have an own deadline.
In [5] Jejurika and Gupta present a work on calculating slowdown factors for
energy optimisation of earliest-deadline-first scheduled embedded systems with
periodic task sets. The work does not consider static power consumption and
therefore does not take switching off the CPU into account.
They first present a method to calculate a slowdown factor for a whole task set
using state-of-the-art real-time feasibility tests. Then they develop a method with
ellipsoids to have a convex optimisation problem. This test incorporates the fea-
sibility test of Baruah [6], which turned out to be very computational intensive,
because it requires to test all intervals up to the hyper period of the task system



in the case of a periodic task system (again, see [6]) in other cases.
To face the problem of computational intensity Albers and Slomka developed
another test [7] with a fast approximation [8], having the possibility to do a per-
formance/precision tradeoff, based on the event stream methodology by Gresser
[9]. Here, in this work, we want to show how this approximation applies for the
problem of calculating slowdown factors.

3 Model

We do not want to limit us to periodic triggered task systems. Therefore, we as-
sume that a task can be triggered not only periodic, but periodic with a jitter or
sporadic with minimal distance between two consecutive triggers or other forms.
We assume the triggers of a task be given in the form of an event stream, see be-
low. For the scheduling algorithm, we assume preemptive earliest deadline first
scheduling.
When we speak of a task system we speak of tasks sharing one single processor
concurring on the available processing time. Additional we assume it to be syn-
chronous, i.e. all tasks can be triggered at the same point in time.
An invocation of a task is called a job and the point in time when a task is trig-
gered an event.
Each task of our task systems is assumed to have a relative deadline d, measured
from the time when the task is triggered, a worst-case execution time c, and an
event stream denoting the worst-case trigger of that task. The latter one is de-
scribed in the following subsection.

3.1 Event Streams

Motivated by the idea to determine bottlenecks in the available processing time,
Gresser ([9]) introduced the event stream model, which is used in [7] to provide
a fast real-time analysis for embedded systems. We understand a bottleneck as a
shortest time span in which the most amount of processing time is needed, i.e. a
time span with the highest density of needed processing time. The event stream
model covers this, time spans with maximal density are ordered by their length
(maximal among time spans having the same length: go through all intervals on
the time axis having the same length and take the length of that one, that has the
least available processing time within).
Achieved is this by calculating the minimal time span for each number of task
triggers.

Definition 1. Let τ be a task. An event stream E(τ) is a sequence of real numbers
a1,a2, . . . , where for each i ∈ N ai denotes the length of the shortest interval in
time in which i number of events of type τ can happen. (See [7] for a more detailed
definition)

Event streams are sub-additive sequences, i.e. ai + a j >= ai+ j, for all i, j ∈ N.
Albers and Slomka explain how to gather that information for periodic, periodic
with jitter, and sporadic triggered tasks [7].

Example 1. Consider the following three tasks.



1. Let τ1 be triggered with a period of 100 ms. Then the shortest time span
to trigger two tasks is 100 ms. For three it is 200 ms and so on, thus the
resulting event stream is E(τ1) : a1 = 0s,an = (n−1) ·100ms.

2. Then, let τ2 be triggered sporadically with a minimal distance between two
events of 150 ms. Then the shortest time span to trigger two tasks is 150 ms.
For one task more it is 300 ms. The resulting event stream is E(τ2) : a1 =
0s,an = (n−1) ·150ms.

3. And let τ3 be triggered periodically every 60 ms but can be triggered 5 ms
before and after its period. Thus the shortest time span to trigger two tasks
is 50 ms, which corresponds to one trigger 5 ms after one period and the
next trigger 5 ms before the next period. The then earliest task after both
can not be triggered shorter than 60 ms later, which is 5 ms before the over-
next period, and this corresponds to a time length of 110 ms to trigger 3
tasks. Following this argumentation the resulting event stream is E(τ3) : a1 =
0s,a2 = 50ms,an = 50ms+(n−2) ·60ms.

3.2 Demand bound

To guarantee the deadline of a task one has to consider the current workload of
the resource the task runs on. The demand bound function (see [10] and [7]) pro-
vides a way to describe this, and the np-hard feasibility test using this function
can be approximated in polynomial time [7].
For the workload we now calculate the maximal amount of needed processing
time within an interval of length ∆ t. If we allow the simultaneous trigger of dif-
ferent tasks, which was our assumption, this leads to synchronising the event
streams, and that is to assume all the intervals, out of which we obtained the time
lengths for our event streams, have a common start. Thus, the sum of the worst-
case execution times of all events in all event streams happening during a time
of length ∆ t, having their deadline within that time, gives us an upper bound of
the execution demand for any interval of length ∆ t. Note, that we only have to
process jobs with deadline within this time span. Formulated with the notion of
definition 1 the demand bound function turns out as follows.

Definition 2. The demand bound function denotes for every time span an upper
bound of workload on a resource to be finished within that time span.
(See for ex. [10])

Lemma 1. Let τ1, . . . ,τn be tasks running on the same resource, each with worst-
case execution time ci and relative deadline di, i = 1, . . . ,n. And let E1, . . . ,En be
their event streams. Define a0 := −∞. Under the assumption all tasks can be
triggered at the same time, the demand bound function can be written as

D(∆ t) =
n

∑
i=1

max{ j ∈ N0 : a j ∈ Ei∪{a0},a j ≤ ∆ t−di}ci.

(see [7])

Example 2. Consider the task set of example 1. Let the deadlines be 30 ms for
the first, 20 ms for the second, and 10 ms for the third task; let the worst-case



execution times for each task be 25 ms, 15 ms, and 5 ms, respectively. Out of
these properties, we obtain the demand bound function, which is

D(∆ t) =
⌊

∆ t +70ms
100ms

⌋
·25ms+

⌊
∆ t +130ms

150ms

⌋
·15ms

+
(

max
{

0,
∆ t−10ms
|∆ t−10ms|

}
+
⌊

∆ t
60ms

⌋)
·5ms.

The next step proceeds with a match of the needed processing time below the
available processing time. This is the feasibility test of the real-time system.
Since one can process exactly t seconds processing time within an interval of t
seconds, if every consumer of processing time is modelled within the task set,
and thus the feasibility test results in proving

D(∆ t)≤ ∆ t ∀∆ t > 0. (1)

Lemma 2. Let τ1, . . . ,τn be tasks and E(τ1), . . . ,E(τ2) their corresponding event
streams. A sufficient set of test points for the demand bound function is E ′ :=⋃N

i=1{ai +di : ai ∈ E(τi)}.

Proof. The demand bound function remains constant between two points e1,e2 ∈
Ẽ.

The values of E ′ can be bounded above and the remaining set will still be a suf-
ficient test set. If the event streams contain only periodic behaviour, it is feasible
to use their hyper period, since this is defined as the least common multiple of all
involved periods it grows as the prime numbers contained in the periods grow (cf.
p1 = 31 ∗ 2 = 62, p2 = 87 : H = p1 ∗ p2 = 5394, whereas p′1 = 60 and p′2 = 90
will yield H = 180). Another test bound exists [6] covering also non-periodic be-
haviour. It depends on the utilisation U : ∆ tmax = U

1−U ·max{Ti−di} and it cannot
be used here, because in slowing down the system, we will increase its utilisation
(more processing time due less speed) and thus formulas, similar to the one men-
tioned, will result in infinite test bounds (which is the reason that such formulas
are only valid for utilisations strict less than 1). Instead of using such test bounds,
we improve the model in another way.

Definition 3. A bounded event stream with slope s from k on is an event stream
E with the property

∀ i≥ k, ai ∈ E :
1

ai+1−ai
≤ s. (2)

The index k is called the approximation’s start-index.

Because of the sub-additivity the pair (s,k) = (a2,2) always forms a bounded
event stream, this is used in [8], but in changing the index, we may change the
precision, as the following example shows:

Example 3. Let there be a jittering task with period 100 ms and a jitter of 5 ms.
Then approximating with a2 = 90 ms will have a significant error. Starting the
approximation at index 2 with a3−a2 = 100 ms will end up in no error at all!

We summarise this information more formal in the following lemma.



Lemma 3. Let task τ have a bounded event stream E with slope s from k, then
an upper bound on its demand is

Dτ (∆ t) =

{
c ·max{ j : a j ∈ E,a j +d ≤ ∆ t} ∆ t < ak +d

c ·
(

k−1+ ∆ t−ak−d
s

)
∆ t ≥ ak +d.

(3)

Note that the growth of the function has its maximum between 0 and ak + d, be-
cause for values greater than ak +d the function grows with ∆ t/s, which must be
less or equal the maximal growth according to the sub-additivity of the underly-
ing event stream.

The definition reduces our set of test-points depending on the wanted precision.

Theorem 1. Let τ1, . . . ,τn be tasks, c1, . . . ,cn their worst-case execution times,
and let E1, . . . ,En be their bounded event streams with slopes s1, . . . ,sn and ap-
proximation start-indices k1, . . . ,kn.
Define Ẽ :=

⋃n
i=1{ai, j +di : ai, j ∈ Ei,ai, j ≤ ai,ki−1}.

A sufficient feasibility test is then

∀∆ t ∈ Ẽ : D(∆ t)≤ ∆ t (4)

and
n

∑
i=1

ci

si
≤ 1. (5)

Proof. In Lemma 2 we stated that the demand bound function is constant between
the test-points of Ẽ. For values greater than A := max{a ∈ Ẽ} we approximate
the demand bound function by a sum over straight lines for each task, cf. lemma
3:

D(∆ t)≤ D′ :=
n

∑
i=1

gi(∆ t)∀∆ t > A,

with: g(∆ t) = c ·
(

ki−1+
∆ t−ai,k−di

si

)
The growth of D′ has its maximum between 0 and A, because this is true for the
elements of the sum (compare note in lemma 3). If the function D′ is below the
straight line h(x) := x for values between 0 and A, then it will cut h for values
greater than A if and only if its derivate there is greater than 1. That results in
proving:

1≥ ∂

∂∆ t
(D′(∆ t)) (∆ t > A)

=
∂

∂∆ t

(
n

∑
i=1

gi(∆ t)

)

=
n

∑
i=1

∂

∂∆ t

(
c ·
(

ki−1+
∆ t−ai,k−di

si

))
=

n

∑
i=1

ci

si
.



If a task system’s demand bound function allows some “slack”, that is it does
not use the full available processing time, we are interested what happens to the
calculation if we introduce another task into the system. The argumentation is
clear: it has to fit into the rest available processing time. To be more formal we
state the following lemma, which basically expresses, that we do not have to
recalculate the demand bound as a whole but only for the new test-points.

Lemma 4. Let Γ be a real-time feasible task system and let D′ be it’s demand
bound function in the notion of the theorem. Let τ be a task with event stream E,
deadline d and worst-case execution time c.
Then the task system Γ ∪{τ} is real-time feasible if

D′(∆ t)+max{ j ∈ N : a j ∈ E, a j +d ≤ ∆ t} · c≤ ∆ t

∀∆ t ∈ {ai +d : ai ∈ E}. (6)

(cf. [7])

Proof. Since the function D′ will by prerequisite not exceed the line h(x) = x,
this violation can only occur at points when the task τ needs to be finished.

Clearly, if the introduced task has a bounded event stream with some slope s from
some index k on, the set of test-points reduces to those induced by indices less
than k.
We summarise the gained complexity reduction along with the accuracy of the
test.

Lemma 5. The complexity of the test for a periodic only task system is linear
in the number of tasks, if for all tasks the deadlines are equal to the periods, no
accuracy will be lost.
The complexity of the test for a periodic task system with m tasks having a jitter
is linear in the number of tasks plus m.

Two reasons for loss in accuracy exist. On the one hand, there is an error by the
assumption of synchronicity. And on the other hand there is an approximation
error due to linearisation.

3.3 Linear Programme

Our optimisation problem can now be formulated as a linear programme. Since
our goal is to slow down the task system as much as it is allowed, the correspond-
ing formulation (in the notion of the theorem) for the objective is then

Maximize:
n

∑
i=1

αi · ci

si
, (7)

where αi is the slow down for task i.
Note that a slowdown factor of < 1 means to speed up the task as this shortens its
execution time and therefore we have to ensure the opposite:

αi ≥ 1. (8)



As stated in the theorem, the long term utilisation must not exceed 1, this gives
us the constraint:

n

∑
i=1

αi · ci

si
≤ 1. (9)

Clearly, the optimum will never exceed 1.
Let ai, j denote the j-th element in the event stream belonging to task i. The con-
straint limiting the demand is then:

∀ ∆ t ∈ Ẽ
n

∑
i=1

max{ j ∈ N : ai, j +di ≤ ∆ t} ·αi · ci ≤ ∆ t. (10)

The max-term in the equation is calculated beforehand, because it does not change
during optimisation, if it’s value reaches a start-index k of some task then it is re-
placed by the equation 3 given in lemma 3.

4 Experiments

As first experiment we chose a rather simple example given in [11], describing
seven periodic tasks, having their deadlines equal to their periods, on a Palm-pilot
(see table 1). It has a utilisation of 86.1%. Calculation with the unimproved test
results in slowing down task 7 by 3.075 with the help of 45 constraints. Exactly
the same slowdown was calculated by our fast approach with only 7 constraints.

Table 1. Task set of the Palm-pilot

Task Exec. Time [ms] Period [ms]
1 5 100
2 7 40
3 10 100
4 6 30
5 6 50
6 3 20
7 10 150

For demonstration purpose, we chose a periodic task system with some tasks hav-
ing a deviation in their period, whose maximal value is found as jitter in table 4.
The example was taken from [12]. The task set has a utilisation of about 65.2%.
We first applied the slowdown calculation without test-point reduction and tested
up to the hyper-period of the task periods, which is 59,000,000, and the test re-
sulted in 78562 constraints concerning the demand bound function. It yielded a
slowdown for task 9 of about 9.7, a utilisation of exactly 1, which both are the
same result as with the improved linear program we suggested with our devel-
oped theory having only 20 constraints regarding the demand bound function.
All linear programs were programmed in GNU MathProg modelling language
and solved with glpsol, version 4.15 [13].



Table 2. Task set of processor one

Task Exec. Time [µs] Jitter [µs] Deadline [µs] Period [µs]
1 150 0 800 800
2 2277 0 5000 200000
3 420 8890 15000 400000
4 552 10685 20000 20000
5 496 9885 20000 20000
6 1423 0 12000 25000
7 3096 0 50000 50000
8 7880 0 59000 59000
9 1996 15786 100000 50000

10 3220 34358 10000 100000
11 3220 55558 10000 100000
12 520 0 10000 200000
13 1120 107210 20000 200000
14 954 141521 20000 1000000
15 1124 0 20000 200000
16 3345 0 20000 200000
17 1990 0 100000 1000000

5 Conclusion and Future Work

We have shown a very fast and yet accurate method for calculating static slow-
down factors while providing hard real-time feasibility. In contrast to other meth-
ods it does not rely on periodic task behaviour, it’s complexity does not increase
when other forms of trigger, like sporadic with minimal distance between two
consecutive triggers or periodic with a certain jitter, are part of the optimisation
problem. In future work we want to embed criteria to allow modelling different
system states such as sleep states and with our methodology we want to research
in what cases a common slow down factor will be sufficient.
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