
Confirming the Design Gap

Benjamin Menhorn and Frank Slomka

Institute for Embedded Systems/Real-Time Systems
Ulm University

Albert-Einstein-Allee 11, Ulm, Germany
benjamin.menhorn|frank.slomka@uni-ulm.de

Abstract. The design gap is the divergence between technology capa-
bilities and design capabilities. This work uses a complexity measure to
calculate complexity figures for highly regular and irregular structures.
This measurement allows to assess complexity without the need of empir-
ical data to chart the design gap. This will demonstrate that the design
gap is caused by the structure itself.

1 Introduction

The design gap is well-known to digital hardware designers and others. It shows
the spread between technology capabilities and hardware design capabilities.
Among others, one explanation lists the structure of designs as cause for the
design gap. For now, there are only reasonable explanations for the structure
as source. The aim of this work is to show, that the design gap is caused by
the structure itself. Therefore a complexity measurement method is applied to
designs with different degrees of regularity.

This approach faces two main challenges. On the one hand two different
designs have to reflect the technology capabilities and hardware design capabil-
ities. On the other hand an adequate measurement method for complexity has
to be found. The complexity measure has to provide figures as mathematical
statements about the designs.

This work is organized as follows: First, the design gap is discussed with its
possible explanations in related work. Then, it will be discussed why a memory
as a highly regular structure and a processor as a highly irregular structure can
reflect technology capabilities and hardware design capabilities. The next part
introduces a hardware design measurement which is used to calculate complexity.
With all presuppositions the last part introduces and analyzes the designs and
reveals the design gap. The work closes with the conclusion.

2 Related Work

2.1 Moore’s Law

In context with integrated circuits, Moore’s Law describes the long-term trend
for the amount of transistors which can be placed on a chip inexpensively. De-
pending on the source, the amount doubles every 18 to 24 months [1] [2] [3].



2 Benjamin Menhorn and Frank Slomka

Figure 1 charts the trend of integrating transistors on a single chip over the past
two decades. Even though Moore’s Law is not a scientific natural law it is widely
accepted as an observation prediction of integrated circuit development. At the
same time one can speak of a “self-fulfilling prophecy” since various industries
are involved in the development of better microchips [4].

Fig. 1. Chip complexity development (from [5])

Originally Gordon Moore observed the number of components per integrated
function [1]. Later, transistors per chip were counted instead of components.
Even though Moore’s Law counts transistors over time, it is often used to de-
scribe the development of complexity over time [6]. The figures are based on
observations and forecasts. In order to compare the complexity from Moore’s
Law with the productivity, the following section will introduce the design gap.

2.2 The design gap

The design gap is the divergence between technology and design capabilities.
Design capabilities (also called productivity) are measured in transistors per day
[7]. Technology capabilities (also called complexity) are measured in transistors
per chip as in Moore’s Law [7]. Figure 2 plots productivity and complexity over
time. The design gap can be clearly identified. Complexity has an annual growth
rate of 58% while productivity has an annual growth rate of 21% [8]. A common
opinion for the slower growing productivity found in literature bases the design
gap on missing tools, abstraction layers and design possibilities [9] [10]. Another
work states, that the "designers appear limited by the very tools and processes
that made those billion transistors a reality" [11]. As well as that the "design gap



Confirming the Design Gap 3

might be avoided if more ESL (Electronic System Level) methodologies would
be deployed" [12].

log

Year

19
80 20
10

19
90

19
95

20
00

20
05

20
15

19
85

Technology capabilities
(Moore's Law) Design gap

Hardware design
capabilities

Gates/Chip
Gates/Day

Fig. 2. Design gap (Data from [13])

This works advances the view that the design gap is originally caused by the
difference between regular and irregular structures itself. Therefore the follow-
ing section will identify designs representing highly regular and highly irregular
structures as well as introduce a complexity measure.

3 Presuppositions

In order to calculated complexity for charting the design gap, two challenges ap-
pear. The first challenge is to identify a design which represents the technology
capabilities (Moore’s Law) and another design representing the design capa-
bilities (productivity). The second challenge is to find an adequate complexity
measure for hardware designs.

3.1 Structure regularity

The design gap is the disparity between transistors available to a designer and
the ability to use them effectively in a design [9]. The technology capabilities
in Moore’s Law represent the amount of transistors which can be placed on
a chip inexpensively. The highest gate density can be found in memories, a
highly regular structure. Breaking it down to the basic components, a memory
consists of single memory cells and an inverse multiplexer as control unit. With
the development of one (elementary) memory cell the basic component for a
memory is designed. This cell can be copied in any quantity and put together
to a grid. This grid and a separately developed control logic compose a whole



4 Benjamin Menhorn and Frank Slomka

memory. The reusability of single memory cells and the grid arrangement reduce
the design complexity drastically.

On the other hand, a design representing the productivity can be found
in a processor. Processors are highly irregular structures. Their control logic
needs most of their chip area. This is a highly irregular structure which is more
complicated to design. There are no elementary cells which can be copied in any
quantity. But parts of the processor such as caches or registers also consist of
single, reusable components. Therefore processors are not completely irregular
structures.

In contrast to memories, reusability in processors is very limited. This in-
creases design complexity. By adding regular structures, for example by increas-
ing the processor’s memory (cache), the throughput can be increased. By reduc-
ing the complexity of irregular structures at the same time, e.g. by using RISC
architectures, the ratio between regular and irregular structures can be enhanced
in favor of less complex designs.

The design gap is caused by this difference in structure. Additional abstrac-
tion layers and design tools shorten the gap between technology capabilities and
design capabilities. Those approaches reduce the decision possibilities for design-
ers and engineers. Thereby the amount of possible states of a system is reduced.
This is especially interesting in design automation processes.

3.2 Complexity measure

The determination of complexity makes it possible to give system related state-
ments and allows to compare different systems [14] [15]. In order to develop
a complexity model, complexity itself needs to be understood [16]. But today,
most methods for estimating system size use empirical data by analyzing pre-
vious projects [17]. In [18] a measurement, called design entropy concept, was
proposed which doesn’t rely on empirical data. This concept bases its calcula-
tions on an abstract variable: states. “A state is a situation in which a system or
system’s component may be at a certain point of time. It refers to the interior
of a system and ignores external influences such as input and output. The set of
states is the abstraction of a real system” [19].

The main statements of the design entropy concept are summarized in the
following in order to calculate complexity for the different designs in the next
section. The approach of the design entropy bases on Shannon’s information en-
tropy. In order to give mathematical statements about transmitted information,
Claude Elwood Shannon developed a model which became famous as Shannon’s
information theory [20]. The design entropy concept identifies the single com-
ponents of a design as sources and drains of information. Connections between
components are channels and information are symbols transmitted from a pool
of available symbols. In digital hardware connections are normally implemented
by wires. The available symbols are “high” and “low” signals in the simplest
model. For instance an assignment a:=b between two components would be
identified as: The information (=signal level) from component (=source/sender)
b is transmitted (=assigned) to component (=drain/receiver) a.



Confirming the Design Gap 5

Complexity can be considered to be a measure of a system’s disorder which
is a property of a system’s state. Complexity varies with changes made at the
amount of possible states of a system. An entropy measurement can be used to
measure project size by using states. States are abstract variables which depend
on the analyzed property of a project. It becomes possible to calculate the effect
of introducing design tools to a development process by calculating complexity
on different abstraction levels and comparing them.

H = −K
N∑
i=1

pα log pα (1)

The form of Shannon’s theorem (see equation (1)) is recognized as that of
entropy as defined in certain formulations of statistical mechanics (e.g. [21]),
where pα is the probability of a system being in cell α of its phase space. H is
from Boltzmann’s famous H theorem and the constant K merely amounts to a
choice of unit of measure [20]. Equation (1) can be rewritten as (2) and leads to
definition 1 [18] [22].

Definition 1 (Behavior Entropy) Let c be a component with inputs (compo-
nent’s sources) ni(c), i = {1, . . . , n(c)} and outputs (component’s drains) mj(c),
j = {1, . . . ,m(c)}, where n(c) is the amount of inputs of c and m(c) the amount
of outputs of c. Let z(ni(c)), i = {1, . . ., n(c)} be the amount of possible states
for the inputs n1(c) . . . nn(c)(c) and z(mj(c)), j = {1, . . . ,m(c)} be the amounts
of possible states for the outputs m1(c) . . .mm(c)(c). Then the behavior entropy
HB(c) ∈ R+

0 of component c is given by:

HB(c) = log

n(c)∏
i=1

z(ni(c)) ·
m(c)∏
j=1

z(mj(c))

 (2)

The behavior entropy gives a statement about the (usage) complexity of a
component. The behavior complexity does not allow for the actual implementa-
tion complexity of a component. It only provides complexity information about
the usage of a component. It can be compared to an outer or black box view
on a component. In contrast to the behavior entropy the structure entropy in
definition 2 provides information how complex the implementation/realization
of a component is. This is similar to an inner or white box view on a component.

Definition 2 (Structure Entropy) Let c be a component with instances cb
and implemented sub-components cs. Then the structure entropy HS(c) ∈ R+

0

for component c is given by the sum of all behavior entropies of all instances cb
and the structure entropy of all implemented sub-components cs:

HS(c) =
∑
i∈cb

HB(i) +
∑
j∈cs

HS(j) (3)



6 Benjamin Menhorn and Frank Slomka

The structure entropy allows to add up the entropies from the single sub-
components. If these sub-components have also been implemented, their struc-
ture complexity needs to be considered, too.

In the following section the measurement will be applied on a well-known
effect, the design gap. This will demonstrate on the one hand, that the source
for complexity lays in the structure itself and on the other hand that the design
entropy model is capable to give mathematical statements about the complexity
of designs.

4 Explaining the design gap

In order to demonstrate that the design gap is caused by the structure itself, we
implemented a memory and a processor in VHDL. For both implementations,
only basic gates (such as AND, OR, XOR, NOR etc.) were used in order to
make both designs comparable. In order to demonstrate the design gap, we need
to calculate the complexity. Because both implementations consist of several
single components, we will show the complexity calculation with a memory cell.
Therefore, the structure of the memory will be described in the following and
the VHDL code will be given.

4.1 Memory

As discussed before, this work considers a memory as a design where transistors
can be placed on a chip inexpensively. The memory is linked to Moore’s Law and
the technology capabilities. The fundamental structure of a memory in shown in
figure 3. The main parts are an address decoder and the storage matrix. The
storage matrix consists of single memory cells. The structure of a memory cell in
shown in figure 4. The core is a D-flip-flop, which can hold one bit. The VHDL
implementation of such a memory cell is given in listing 1.1.



Confirming the Design Gap 7

Address bus
Data_in

Data_out

Enable
W/R

A
dd

re
ss

 d
ec

od
er

St
or

ag
e 

m
at

rix

Fig. 3. Fundamental structure of a memory

1 entity memory_cell i s
2 port (
3 I : in s td_log i c ; −−inpu t b i t
4 W : in s td_log i c ; −−wri te_enab le
5 S : in s td_log i c ; −−s e l e c t_enab l e
6 O : out s td_log i c −−output b i t
7 ) ;
8 end memory_cell ;
9

10 architecture s t r u c t u r a l of memory_cell i s
11 signal E,D_g,E_g,Qa,Qb,NotD : s td_log i c ;
12

13 begin
14 E <= WAND S ;
15 NotD <= Not I ;
16 D_g <= NotD AND E;
17 E_g <= I AND E;
18 Qa <= Qb NOR D_g;
19 Qb <= Qa NOR E_g;
20 O <= Qa and S and not W;
21 end s t r u c t u r a l ;

Listing 1.1. VDHL code for a memory cell

In order to calculate the complexity for the memory equations (2) and (3)
are used. The calculation starts with the complexity of a single memory cell:

HB(memory_cell) = 4 · log(2) (4)



8 Benjamin Menhorn and Frank Slomka

W/R

Data_in

Enable

Data_out

D-flip-flop

Fig. 4. Memory Cell

HS(memory_cell) = 2 ·HB(Inverter)
+ 3 ·HB(AND)

+ 2 ·HB(NOR)
+HB(AND_2)
= 23 · log(2) (5)

The memory cells are used to build up 1-bit word arrays which compose m-
bit word arrays. These word arrays are the storage matrix of the memory. The
address decoders consists of a n-bit wide inverse multiplexer which itself consists
of single 1-to-2 inverse multiplexers. The whole structural design hierarchy can
be found in figure 5. The complexity for the whole memory is calculated in
equation (6)

HS(memory) = HB(address_decoder)
+HS(address_decoder)
+HB(storage_matrix)
+HS(storage_matrix)

= ((m+ 4)2n+m2 + 2n+m+ 33) · log(2) (6)

The next part will calculate the complexity for the processor. Because of its
more heterogeneous design there are more components to consider.

4.2 Processor

The design for the processor is illustrated in figure 6. The design of the processor
is based on a MIPS design from [23]. We use a fixed address width of 32-bit and a



Confirming the Design Gap 9

Memory

n-bit inverse multiplexer

1-to-2 inverse multiplexer

m-bit word array

1-bit word array

memory cell

Fig. 5. Structural design hierarchy of a memory

variable data width. The processor has a separate instruction and data memory.
The program counter is a m-bit wide register which can be loaded with the next
address from the adder or directly with an address from an (un-)conditional
jump from the control unit. The ALU can perform five basic operations (add,
sub, and, or, slt).

In order to calculate the design entropy of our MIPS, the behavior entropy
and structure entropy of every single component has to be calculated. As fig-
ure 6 shows, the design is very heterogeneous. Therefore, the structural design
hierarchy of this processor becomes large, as shown in figure 7. The ALU is
composed by single 1-bit ALUs. Since we already built a memory, we used this
memory for the data and the instruction memory of the processor. Due to the
huge amount of components and sub components, we only provide the complete
complexity for the whole processor in equation (7).

HS(processor) =

((m+ 40)2m + 2m2 + 100m+ 1748) · log(2) (7)

4.3 The design gap

With equation (6) for the memory’s entropy and (7) for the processor’s entropy,
both designs can be plotted as a function of the data widthm. The address width
for the memory is also 32-bit. As the minimum data width for the processor is
32-bit, we chart values starting with 32-bit. This leads to the complexity figures
in table 1. The figures can then be plotted in figure 8.

The divergence between the processor and the memory can clearly be iden-
tified.

5 Conclusion

As figure 8 shows, the design of a processor is more complex than the design of
a memory. A memory was chosen to represent highly regular structures while a



10 Benjamin Menhorn and Frank Slomka

ALUop

''010''

4

Adder

3

Instruction
memory

Instruction
address

Instruction

m

PC

clock

Instruction[25-21]

Instruction[20-16]

Instruction[15-11]

Instruction[15-0]

32

Registers

R1
D1

RegWrite

R2

D2R3

Write data

Extender

0

1

RegDst

Multiplexer
0

1

ALUop

ALU

3

Result

Z Address

Data_in

Data_out
Enable

W/R Data Memory
Memwe

Memen

ALUop

''010''

Adder

3

Shift
Left 2

ALUSrc

Multiplexer

0

1

Multiplexer

MemtoReg

0

1

Branch

Multiplexer

m

m

m
m

m

m

m

m

m

Fig. 6. Basic processor architecture

processor represents highly irregular structures. Therefore the results from the
complexity calculation were expected to show that highly irregular structures
are more complex than highly regular structures. In contrast to the chart in
figure 2, the values for figure 8 were calculated by the complexity measurement
method, which was introduced earlier.

Figures for Moore’s Law and for the productivity rely on empirical data.
Explanations for the slower growing productivity are missing tools, abstraction
layers and design possibilities. But as this work shows, the gap is caused by the
structure itself. It also shows that complexity can be calculated by relying only
on key figures of a design.

Processor
(MIPS)

Program
counter

D-flip-flops

ALU Register file

25×m-bit 
memory

m-bit wide
multiplexer

2-to-1
multiplexer

5-bit wide
multiplexer

2-to-1 
multiplexer

Data
memory

ALU
control

Control
unit

Instruction
control

Instruction
memory

Main
control

Overflow
detection

1-bit
ALU

Full
adder

Half
adder

4-to-1
multiplexer

2-to-1
multiplexer

Fig. 7. Structural design hierarchy of a processor



Confirming the Design Gap 11

Width 32 64 128 256

Processor 4, 3 · 1011 2, 7 · 1021 8, 1 · 1040 8, 4 · 1097

Memory 1, 5 · 1011 2, 9 · 1011 5, 7 · 1011 1, 1 · 1012

Table 1. Entropy for different data widths

32 64 96 128
1,00E+000

1,00E+008

1,00E+016

1,00E+024

1,00E+032

1,00E+040

1,00E+048

1,00E+056

1,00E+064

1,00E+072

1,00E+080

MISP
RAM

H[log(2)]

d[bit]

Fig. 8. Entropy of processor and memory

It wasn’t necessary to take empirical data into account for the calculation.
For the complexity calculation a measurement was chosen which depends on
states. With this complexity calculation method, it can also be explained why the
introduction of further tools, abstraction layers and design possibilities shorten
the gap. Those approaches reduce the decision possibilities for designers and
engineers and therefore reduces the amount of possible states.

With this work, it was demonstrated that complexity figures can be calcu-
lated. This calculation reflects empirical data known for 30 years in semicon-
ductor industry. Therefore it reflects the effort of complexity in future designs.
Concluding, that the different complexities depend on the designs’ structure.
Therefore the cause for the design gap also depends on the structure.

References

1. Moore, G.E.: Cramming more components onto integrated circuits. Electronics
38(8) (April 1965)



12 Benjamin Menhorn and Frank Slomka

2. Intel Corporation: Excerpts from a conversation with gordon moore: Moore’s law.
ftp://download.intel.com/museum/Moores_Law/Video-transcripts/Excepts_
A_Conversation_with_Gordon_Moore.pdf (2005)

3. Kanellos, M.: Moore’s law to roll on for another decade. http://news.cnet.com/
2100-1001-984051.html (2003)

4. the INQUIRER: Gordon moore says aloha to moore’s law. www.theinquirer.net/
inquirer/news/1014782/gordon-moore-aloha-moore-law (2005)

5. Conference, I.S.S.C.: Isscc 2011 trends report. www.isscc.org/doc/2011/2011_
Trends.pdf (2011)

6. Mollick, E.: Establishing moore’s law. IEEE Annals of the History of Computing
28(3) (2006) 62–75

7. Semiconductor Industry Association: International technology roadmap for semi-
conductors. www.itrs.net/Links/2007ITRS/Home2007.htm (2007)

8. Semiconductor Industry Association: International technology roadmap for semi-
conductors. public.itrs.net/files/1999_SIA_Roadmap/Home.htm (1999)

9. Sedcole, N.P.: Reconfigurable Platform-Based Design in FPGAs for Video Image
Processing. PhD thesis (2006)

10. Henkel, J.: Closing the soc design gap. Computer 36(9) (2003) 119–121
11. Hamilton, S.: Semiconductor research corporation: Taking moore’s law into the

next century. Computer 32(1) (1999) 43–48
12. Henkel, J., Wolf, W., Chakradhar, S.: On-chip networks: A scalable,

communication-centric embedded system design paradigm. VLSI Design, Inter-
national Conference on 0 (2004) 845

13. Ecker, W., Müller, W., Dömer, R.: Hardware-dependent Software - Principles and
Practice. Springer (2006)

14. DeMarco, T.: Controlling Software Projects: Management, Measurement, and Es-
timates. Prentice Hall PTR, Upper Saddle River, NJ, USA (1986)

15. Fenton, N.E., Pfleeger, S.L.: Software Metrics: A Rigorous and Practical Approach,
Revised. Course Technology (February 1998)

16. Calvano, C.N., John, P.: Systems engineering in an age of complexity: Regular
paper. Syst. Eng. 7 (March 2004) 25–34

17. Hinrichs, N., Leppelt, P., Barke, E.: Building up a performance measurement sys-
tem to determine productivity metrics of semiconductor design projects. In IEEE,
ed.: IEEE International Engineering Management Conference (IEMC), Austin Tex-
asErmolayev2007, IEEE (2007) CD–ROM Proceedings

18. Menhorn, B., Slomka, F.: Design entropy concept. In: ESWEEK 2011 Compilation
Proceedings. (10 2011)

19. Menhorn, B., Slomka, F.: States and complexity. In Dumitrescu, D., Lung, R.I.,
Cremene, L., eds.: Coping with Complexity COPCOM 2011. (10 2011) 68–88

20. Shannon, C.E.: A mathematical theory of communication. Bell System Technical
Journal 27 (1948) 379–423, 623–656

21. Tolman, R.C.: The principles of statistical mechanics. Oxford Univ. Pr., London
(1938)

22. Menhorn, B., Slomka, F.: Project Management Through States. In: IEMS 2009:
International Conference on Engineering Management and Service Sciences. (2009)

23. Patterson, D.A., Hennessy, J.L.: Computer Organization and Design: The Hard-
ware/software Interface. 3 edn. Morgan Kaufmann (2005)


