
Improved Worst-Case Response-Time Calculations by Upper-Bound
Conditions

Victor Pollex, Steffen Kollmann, Karsten Albers and Frank Slomka
Ulm University

Institute of Embedded Systems/Real-Time Systems
{firstname.lastname}@uni-ulm.de

http://www.uni-ulm.de/in/esys

Abstract

Fast real-time feasibility tests and analysis algo-
rithms are necessary for a high acceptance of the for-
mal techniques by industrial software engineers. This
paper presents a possibility to reduce the computation
time required to calculate the worst-case response time
of a task in a fixed-priority task set with jitter by
a considerable amount of time. The correctness of
the approach is proven analytically and experimental
comparisons with the currently fastest known tests
show the improvement of the new method.

1. Introduction
Many embedded systems have real-time constraints.

To determine whether these real-time constraints can
be met or not, methods of the real-time analysis are
used. During the last 30 years various approaches
have been developed to verify the real-time behav-
ior of embedded systems, particularly with regard to
improving the run-time complexity of real-time and
feasibility test algorithms. These test algorithms can
be generally classified into exact tests and sufficient
tests. The advantage of sufficient tests is that they
deliver their results relatively fast compared to the
exact tests, but a disadvantage is that certain task sets
cannot be identified as feasible although they actually
are. This acceptance problem of sufficient tests grows
with an increasing utilization of the considered task
set. Embedded system designers want to achieve high
utilization of their embedded processors in order to
minimize the final system costs. However, if fast fea-
sibility tests reject suitable task sets, a careful design
space exploration of the system is difficult.

A well known approach to exactly analyze the real-
time behaviour of an embedded system is the response
time analysis first introduced by Lehoczky [4]. Certain
commercial tools like SymTA/S [7] are based on the

response time analysis to evaluate distributed real-
time systems by evaluating the end-to-end deadlines of
chained tasks. Because of the iterative formulation of
the response-time analysis, its run-time may increase
in a non linear way. To counter this, it is necessary to
further reduce the run-time complexity of the analysis.

In this paper we present such a reduction of run-
time complexity. The approach is based on the idea of
reducing the number of considered jobs by introducing
an upper-bound condition to the sufficient real-time
test. We will show that an algorithm based on this
approach leads to a vastly improved performance of the
test, especially when the utilization of the considered
task set is rather high.

The paper is organized as follows: First we give
an overview over the related work and introduce the
model used in literature and in this paper. Chapter 3
presents the improvements we have explored. Both the
theoretical background and the algorithm are given
there. Experimental results showing the impact of the
method to response time analysis are given in chapter 4
followed by a conclusion at the end.

2. Related Work
2.1. Overview

Many different approaches exist to determine the
feasibility of a real-time system. Thereby, the ap-
proaches have to be as accurate as possible and as fast
as possible. Much effort has been dedicated to reduce
the run-time complexity of such analysis methods.

Lehoczky [4] has introduced the worst-case response
time analysis with arbitrary deadlines. Sjödin and
Hansson [6] have proposed some lower-bound condi-
tions for the starting job of this test to improve the
performance. A similar approach has been introduced
by Bril, Verhaegh and Pol [3].

Liu and Layland [5] have developed a sufficient fea-
sibility test for strict periodic task sets scheduled by the

978-3-9810801-5-5/DATE09 © 2009 EDAA

rate monotonic policy. Since then a lot of conditions
for sufficient feasibility tests have been found. A good
overview is given in [10]. Recently, Bini and Baruah
[1] have presented an upper-bound condition for the
worst-case response time of a task. By means of this
bound condition a new sufficient feasibility analysis
for periodic tasks has been introduced.

2.2. Run-Time Improved Response-Time
Analysis

Before we introduce the new analysis method of
the worst-case response time analysis, we will give an
overview to the model we use, which is the same as
in the related work.

We assume a real-time system which has n inde-
pendent tasks Γ = {τ0, . . . ,τn−1} scheduled on a single
processor by a fixed-priority scheduling algorithm.
Each task is characterized by a period Ti, which is
the nominal time between two consecutive jobs in the
absence of jitter, a worst-case execution time Ci of a
task, which denotes a maximum amount of time that
is needed on a reference processor for a job of the
task to complete, a relative deadline Di denoting the
time after the arrival of a job, when the job has to be
completed, a jitter Ji describing an interval in which the
arrival of a job can vary. We will also use Ui to refer
to the utilization of a task which equals to Ui = Ci

Ti
.

Further we will assume that ∑
n−1
i=0 Ui < 1, because if

∑
n−1
i=0 Ui = 1 then the bound introduced by (10) will

not be usable for the proposed improvement under
certain conditions. We will also assume that the tasks
are sorted by decreasing priorities, meaning that τi has
a higher priority than τ j for all i, j : 0≤ i < j < n.

In a periodic static-priority task set with jitter

Ik
i = min

l∈N
(Ik

i,l |Ik
i,l = (k +1) ·Ci +

i−1

∑
j=0

⌈
Ik
i,l−1 + J j

Tj

⌉
·C j)

(1)
with Ik

i,0 = 0 is the completion-time of the k-th job of
task τi as it was shown in [9]. Note that (1) is only
valid for jobs within the level-i busy period as defined
in [4].

The response time of a task is the difference between
its completion time and its arrival time. Rk

i = Ik
i −Ak

i
where Ak

i = max(k ·Ti− Ji,0). To calculate the worst
case response time of task τi, currently the response
times of all jobs within its busy period have to be
evaluated [8]. The algorithm stops when the following
condition holds Ik

i ≤Ak+1
i , thus the worst-case response

time is:

Ri = max
k∈0...m

Rk
i : m = min({l : Il

i ≤ Al+1
i }) (2)

Sjödin and Hansson have presented in [6] several
methods on how to reduce the run-time complexity
of the response-time analysis. The main idea of their
presented methods is to define lower-bound conditions
where the analysis can start without changing the result
of the analysis. This allows to skip every evaluation up
to these lower-bound conditions.

Most of these methods reduce the number of itera-
tions in the fix-point iteration by trying to start the fix-
point iteration as close as possible to the final result.
If the jobs of a task are evaluated in successive order,
you can start at Ik

i,0 = Ik−1
i +Ci [6]. If the tasks are

being evaluated in priority order, the calculation can
start at Ik

i,0 = Im
i−1 +(k +1) ·Ci .

Another method is to reduce the number of jobs to
evaluate by starting with the last job that arrives at
time 0 t.u.. For a detailed discussion of the explained
methods see [6].

Bini and Baruah presented in [1] a sufficient feasi-
bility test, in which they characterize the completion
time as follows:

Ik
i = Xi−1((k +1) ·Ci) (3)

where Xi(h) = mint{t : Hi(t) ≥ h}, with Hi(t) = t −
Wi(t) being the worst-case idle time and Wi(t) being
the worst-case workload of the i highest priority tasks
over an interval of length t [1]. In 3.2 we will extend
the equations to incorporate task jitter and derive a new
upper-bound condition for the response time.

3. Advanced Job Reduction for Response-
Time Analysis

To reduce the number of jobs which have to be
considered, we propose two improvements. In section
3.1 we will first use the idea to start with the latest job
for which we can show that the response time is greater
or equal to the response time of any of the previous
jobs. Second, with a much greater impact, we introduce
a condition which allows us to stop evaluating jobs
as early as possible. It is based on the upper-bound
condition presented in [1] for a sufficient analysis by
Bini and Baruah. We extend it to incorporate task jitter
and use it to improve the performance of the exact
analysis.

3.1. Removing Starting Jobs by Lower-Bound
Condition

Sjödin and Hansson have shown in [6] that the
evaluation can be started at job

h = max
k∈N0
{k : Ak

i = 0} (4)

Lemma 1: The starting job as formulated in (4) is
equal to h = b Ji

Ti
c.

Proof: Assume k0 = b Ji
Ti
c. Because Ak

i is mono-
tonically non-decreasing, we only have to show that
Ak0

i = 0 by showing that k0 ·Ti− Ji ≤ 0 and Ak0+1
i > 0

by showing that (k0 +1)Ti− Ji > 0.

k0 ·Ti− Ji = Ti(k0−
Ji

Ti
)≤ 0

(k0 +1)Ti− Ji = Ti(k0 +1− Ji

Ti
) > 0

We will now improve the lower-bound condition by
following lemma:

Lemma 2: The response time of job k = b Ji+Ci
Ti
c of

task τi is greater or equal to maxl=0..k−1Rl
i .

Proof: Assume k0 = b Ji+Ci
Ti
c. First we will show

that

k0 ≤
Ji +Ci

Ti

k0 ·Ti− Ji ≤Ci

Ak0
i ≤Ci (5)

Because of the nature of Ak
i we know that Ak0−1

i =
0 and Ak0+1

i > Ci. If Ak0
i = 0 then k0 would be the

solution to (4), where Rk0
i > maxk∈0...k0−1 Rk

i follows.
Now we will consider the case where 0 < Ak0

i ≤ Ci.
According to [6], the completion time of this job is by
at least Ci greater compared to the completion time of
the previous job

Ik
i ≥ Ik−1

i +Ci (6)

With (5) and (6) we can formulate the following
equation

Rk0
i −Rk0−1

i = Ik0
i −Ak0

i − Ik0−1
i ≥Ci−Ak0

i ≥ 0 (7)

where Rk0
i ≥maxk∈0...k0−1 Rk

i follows.

Since only up to one job per task can be reduced, the
new lower bound condition is just a small improvement
compared to previous methods [6]. In Fig. 1 the new
approach is formulated as an algorithm.

3.2. Removing Remaining Jobs by Upper-
Bound Condition

After improving the lower-bound condition of the
starting job of the tasks, we will now derive a new
condition which will allow us to skip the evaluation
of all remaining jobs from the point where the new
condition holds. The new approach is based on the
upper-bound condition for the response time given in

1 I#0
−1 = q = 0

2 f o r i = 0 t o n−1 /∗ n = number o f t a s k s ∗ /
3 Rmax

i = 0
4 k = b Ji+Ci

Ti
c

5 I#0
i = I#q

i−1 + kCi
6 do
7 I#0

i = I#q
i +Ci

8 q = 0
9 do

10 I#q+1
i = (k +1)Ci +∑

i−1
j=0 (d I#q

i +J j
Tj
e ·C j)

11 q = q+1
12 whi le (I#q

i > I#q−1
i)

13 Rmax
i = max(I#q

i −Ak
i ,R

max
i)

14 k = k +1
15 whi le (I#q

i > Ak
i)

16 end

Figure 1. Algorithm by Sjödin and Hansson with the starting
job improvement given in section 3.1

[1]. This upper-bound condition is adapted to incorpo-
rate task jitter by extending the upper-bound condition
of the workload. The upper-bound condition of the
workload is a linear function given by wo

j(t) =U jt +x.
To calculate the upper-bound condition for a given
task it is necessary to compute the constant x, which
is performed by solving the equation wo

j(kTj − J j +
C j) = (k + 1) ·C j giving us the following value for
x = J j ·U j + C j(1−U j), which results in following
equation for the upper-bound condition of the workload

wo
j(t) = U j · t + J j ·U j +C j(1−U j) (8)

Transforming (8) as in [1]

W ub
i (t) =

i

∑
j=0

(U jt + J jU j +C j(1−U j))

H lb
i (t) = t

(
1−

i

∑
j=0

U j

)
−

i

∑
l=0

(JlUl +Cl(1−Ul))

Xub
i (h) =

h+
i

∑
j=0

(J jU j +C j(1−U j))

1−
i

∑
j=0

U j

where W ub
i (t) is the upper bound of the workload

Wi(t), H lb
i (t) the lower bound of the idle time Hi(t)

and Xub
i (h) the upper bound of Xi(h) as mentioned in

2.2, leads to following upper-bound condition for the
completion time

ι
k
i =

(k +1)Ci +
i−1
∑
j=0

(J jU j +C j(1−U j))

1−
i−1
∑
j=0

U j

(9)

therefore the response time is bounded by

ρ
k
i = ι

k
i −Ak

i (10)

In the following sections of the paper it is assumed
that k0 = b Ji

Ti
+ Ui

1−∑
i−1
j=0 U j

c. We will now show that the

response time is bounded from above by

Rub
i =

(k0 +1)Ci +
i−1
∑
j=0

(J jU j +C j(1−U j))

1−
i−1
∑
j=0

U j

(11)

by formulating the following lemma
Lemma 3: ρk

i has its maximum at k = k0.
Proof: Assume k ∈ N0. First we will show that

Ak0+1
i > 0 by showing k0 > Ji

Ti
− 1 and Ak0−1

i = 0 by
showing k0 ≤ Ji

Ti
+1.

k0 =

⌊
Ji

Ti
+

Ui

1−∑
i−1
j=0 U j

⌋
≥
⌊

Ji

Ti

⌋
>

Ji

Ti
−1 (12)

k0 =

⌊
Ji

Ti
+

Ui

1−∑
i−1
j=0 U j

⌋
≤
⌊

Ji

Ti
+1
⌋
≤ Ji

Ti
+1 (13)

From (12) and (13) we can see that ρk
i is monotonically

non-increasing for all k > k0 and monotonically non-
decreasing for all k < k0. Because Ak

i has the property
of being monotonically nondecreasing, we now know
that Ak

i > 0 for all k > k0 and that Ak
i = 0 for all k < k0,

thus

ρ
k+1
i −ρ

k
i =

Ci

1−∑
i−1
j=0 U j

−Ti < 0 ∀k > k0 (14)

ρ
k
i −ρ

k−1
i =

Ci

1−∑
i−1
j=0 U j

> 0 ∀k < k0 (15)

Now we have to show that ρ
k0
i −ρ

k0−1
i ≥ 0 where it is

assumed that Ak0
i > 0, because in the case that Ak0

i = 0
the result is the same as in (15)

ρ
k0
i −ρ

k0−1
i =

Ci

1−∑
i−1
j=0 U j

− k0Ti + Ji

= Ti(
Ji

Ti
+

Ui

1−∑
i−1
j=0 U j

− k0)≥ 0

and additionally we have to show that ρ
k0+1
i −ρ

k0
i ≤ 0.

Now we will assume that Ak0
i = 0 otherwise it would

be like (14)

ρ
k0+1
i −ρ

k0
i =

Ci

1−∑
i−1
j=0 U j

− (k0 +1)Ti + Ji

= Ti(
Ji

Ti
+

Ui

1−∑
i−1
j=0 U j

− (k0 +1)) < 0

Directly from lemma 3 we can formulate the fol-
lowing sufficient feasibility test:

Corollary 1: A task set scheduled by static priorities
is feasibly if for all tasks the upper-bound condition of
the response time is less or equal to the deadline

∀i Rub
i =

(k0 +1)Ci +
i−1
∑
j=0

J jU j +C j(1−U j)

1−
i−1
∑
j=0

U j

≤ Di

(16)
Note that in the case that all tasks do not have a jitter
∀i : Ji = 0, this sufficient test is equivalent to the test
presented in [1].

Now we can finally formulate the condition which
will help us reduce the number of jobs which have to
be considered by following corollary

Corollary 2: If max
l∈0...k

Rl
i ≥ ρ

k+1
i then Ri = max

l∈0...k
Rl

i .
Proof: In the case that k < k0− 1 the condition

maxl∈0...k Rl
i ≥ ρ

k+1
i does not hold, hence only the

case where k ≥ k0 − 1 has to be considered. From
lemma 3 we know that at k = k0, ρk

i has its maximum
and for any successive job ρk

i does not increase,
meaning that at ρk

i for any k ≥ k0 it is the maximum
response time of all the following jobs. Now if the
response time of all following jobs is less or equal
to the currently computed maximum response time,
the currently computed maximum response time is the
actual worst-case response-time of the analyzed task.

To implement this, simply change line 15 of Fig. 1
from “while (I#q

i > Ak
i)” to “while (I#q

i > Ak
i)∧ (ρk

i >
Rmax

i)”
From corollary 2 we can also formulate an exact

feasibility test for a task
Corollary 3: If the currently analyzed job k≥ k0−1

and the currently computed maximum response time
maxl∈0...k Rl

i ≤ Di and the maximum response time of
all following jobs ρ

k+1
i ≤ Di then τi is feasible.

See Fig. 2 for an example on how to incorporate this
into an exact feasibility test for a task set.

4. Experiments
The new worst-case response time analysis and exact

feasibility test as developed in section 3 is compared
with the work of Sjödin and Hansson [6]. For this
comparison we have generated random task sets with
periods distributed uniformly ranging from 10 t.u.
up to 10,000,000 t.u., jitter was also generated by
uniformly distributing it in the range between 0 and
5 times its period, 0 ≤ Ji < 5 · Ti, utilization was
distributed with the UUniFast algorithm as proposed
in [2]. With the generated utilization, the worst-case

1 I#0
−1 = q = 0

2 f o r i = 0 t o n−1 /∗ n = number o f t a s k s ∗ /
3 k = b Ji+Ci

Ti
c

4 I#0
i = I#q

i−1 + kCi
5 do
6 I#0

i = I#q
i +Ci

7 q = 0
8 do

9 I#q+1
i = (k +1)Ci +∑

i−1
j=0 (d I#q

i +J j
Tj
e) ·C j

10 q = q+1
11 i f (I#q

i −Ak
i > Di)

12 re turn ” n o t f e a s i b l e ”
13 whi le (I#q

i > I#q−1
i)

14 k = k +1
15 whi le (I#q

i > Ak
i)∧(ρk

i > Di)
16 end
17 re turn ” f e a s i b l e ”

Figure 2. An exact feasibility test

execution time was set to Ci =Ui ·Ti. Finally, deadlines
were set to twice the period Di = 2 ·Ti.

Experiments conducted with the starting job as
shown in 3.1 resulted in overall slower computation
times compared to starting at the job proposed by
Sjödin and Hansson in [6]. We assume this is due to the
uncertainty of its arrival time. If the evaluation starts
at k = b Ji+Ci

Ti
c the value of Ak

i has to be computed.
If the evaluation starts at k = b Ji

Ti
c then Ak

i = 0 and
does not have to be computed. The proposed new
starting job does save us to evaluate some jobs, but
the additional computation time needed to compute the
arrival-time outweighs the gains from the saved jobs.
Because of this we started to evaluate at k = b Ji

Ti
c in

our experiments.
First we sampled the utilization axis in steps of

0.1% starting at 0.1% up to 99.9%. For each step 1000
random task sets were generated with 100 tasks each.

Fig. 3 and 4 are showing the average run-time and
the average number of jobs evaluated per task set each
as a function of the utilization of a task set. Note that
the y-axis is scaled logarithmically. As can be seen the
higher the utilization the more efficient the condition
becomes. In this experiment the improvement of the
run-time over all evaluated task sets amounts to almost
50%. If we only consider task sets with an utilization
greater or equal to 0.9 then the improvement rises to
almost 66%.

In additional experiments the utilization is set to 0.8
and the number of tasks was varied from 5 up to 1000
tasks per task set in increments of 1 task. For each
sample we generated 100 random task sets.

Fig. 5 and 6 are again showing the average run-
time and the average number of jobs evaluated per
task set this time as a function of the number of tasks

10-1

100

101

102

103

 0 10 20 30 40 50 60 70 80 90 100

av
er

ag
e

ru
n-

tim
e

[m
s]

utilization [%]

n = 100, 0 <= Ji < 5 Ti

Sjoedin / Hansson

Our

Figure 3. Run-time vs. utilization

102

103

104

 0 10 20 30 40 50 60 70 80 90 100

av
er

ag
e

nu
m

be
r o

f j
ob

s
ev

al
ua

te
d

pe
r t

as
k

se
t

utilization [%]

n = 100, 0 <= Ji < 5 Ti

Sjoedin / Hansson

Our

Figure 4. Jobs vs. utilization

in a task set. The experiments give the result that
with an increasing number of tasks in a task set, our
new approach is more efficient than the previous one
presented by Sjödin and Hansson.

Fig. 7 and 8 show the same relationships as Fig. 5
and 6 with the difference that the exact feasibility test
algorithms were used, see also Fig. 2.

5. Conclusion
In this paper the improvements of [1] and [6] are

combined and extended to formulate a new faster
analysis algorithm for the response-time analysis. The
extension of the upper-bound condition for the worst-
case response time given to the response-time analysis
to consider jitter and exploiting its properties, improves
the response-time analysis dramatically. This result is
given because the new algorithm formulated in this
paper reduces the number of jobs considered by the
analysis. The improvement is compared experimentally
with the work of Sjödin and Hansson. The experiments
show that by using the new algorithm, larger task sets

 0

 100

 200

 300

 400

 500

 600

 0 100 200 300 400 500 600 700 800 900 1000

av
er

ag
e

ru
n-

tim
e

[m
s]

number of tasks per task set

U = 0.8, 0 <= Ji < 5 Ti

Sjoedin / Hansson

Our

Figure 5. Run-time vs. number of tasks

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 100 200 300 400 500 600 700 800 900 1000

av
er

ag
e

nu
m

be
r o

f j
ob

s
ev

al
ua

te
d

pe
r t

as
k

se
t

number of tasks per task set

U = 0.8, 0 <= Ji < 5 Ti

Sjoedin / Hansson

Our

Figure 6. Jobs vs. number of tasks

and task sets with a rather high utilization are evaluated
faster. In future work we will explore the effect of
the run-time improvement in the context of distributed
systems.

References
[1] Enrico Bini and Sanjoy K. Baruah. Efficient computation

of response time bounds under fixed-priority scheduling. In
Proceedings of the 15th International Conference on Real-
Time and Network Systems, pages 95–104, March 2007.

[2] Enrico Bini and Giorgio C. Buttazzo. Measuring the per-
formance of schedulability tests. Real-Time Systems, 30(1-
2):129–154, 2005.

[3] Reinder J. Bril, Wim F. J. Verhaegh, and Evert-Jan D. Pol.
Initial values for online response time calculations. In Pro-
ceedings of 15th Euromicro Conference on Real-Time Systems,
pages 13–22, 2003.

[4] John P Lehoczky. Fixed priority scheduling of periodic task
sets with arbitrary deadlines. In Proceedings of the 11th IEEE

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 100 200 300 400 500 600 700 800 900 1000

av
er

ag
e

ru
n-

tim
e

[m
s]

number of tasks per task set

U = 0.8, 0 <= Ji < 5 Ti, Di = 2 Ti

Sjoedin / Hansson

Our

Figure 7. Run-time vs. number of tasks (feasibility test)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 100 200 300 400 500 600 700 800 900 1000

av
er

ag
e

nu
m

be
r o

f j
ob

s
ev

al
ua

te
d

pe
r t

as
k

se
t

number of tasks per task set

U = 0.8, 0 <= Ji < 5 Ti, Di = 2 Ti

Sjoedin / Hansson

Our

Figure 8. Jobs vs. number of tasks (feasibility test)

Real-Time Systems Symposium, pages 201–209, December
1990.

[5] C. L. Liu and James W. Layland. Scheduling algorithms for
multiprogramming in a hard-real-time environment. J. ACM,
20(1):46–61, 1973.

[6] Mikael Sjödin and Hans Hansson. Improved response-time
analysis calculations. In IEEE Real-Time Systems Symposium,
pages 399–408, 1998.

[7] Symtavision. http://www.symtavision.com.
[8] K. W. Tindell. An extendible approach for analysing fixed

priority hard real-time tasks. The Journal of Real-Time
Systems, 6:133–151, 1994.

[9] Ken Tindell and John Clark. Holistic schedulability analysis
for distributed hard real-time systems. Microprocessing and
Microprogramming, 40:117–134, April 1994.

[10] Jianjia Wu, Jyh-Charn Liu, and Wei Zhao. On schedulability
bounds of static priority schedulers. In RTAS ’05: Proceedings
of the 11th IEEE Real Time on Embedded Technology and
Applications Symposium, pages 529–540, Washington, DC,
USA, 2005. IEEE Computer Society.

	Main
	DATE09
	Front Matter
	Table of Contents
	Author Index

