

A MULTIOBJECTIVE TABU SEARCH ALGORITHM
FOR THE DESIGN SPACE EXPLORATION OF
EMBEDDED SYSTEMS

Frank Slomka1, Karsten Albers1, Richard Hofmann2
1Department of Computer Science, University of Oldenburg, Ammerländer Heerstraße 114-
118, 26111 Oldenburg, Germany, {slomka,albers}@informatik.uni-oldenburg.de;
2Department of Computer Science 7, University of Erlangen-Nürnberg, Martensstr. 3, 91058
Erlangen, Germany, richard.hofmann@informatik.uni-erlangen.de

Abstract: An important step during the design of embedded systems is to allocate suit-
able architectural components and to optimally bind functions (tasks) to these
components. This design step is called system synthesis. The automation of
system synthesis is limited in recent research by developing models only for
standard optimization algorithms. This paper describes the first approach to
improve a standard optimization technique itself for the use in embedded sys-
tem design. Our solution extends the heuristic optimization algorithm tabu
search by multiobjective optimization. Using the multiobjective approach,
domain specific heuristics could easily be included into the algorithm. By per-
forming experiments with the new algorithm, a new effect was discovered: In
contrast to known results from literature, the quality of optimization was de-
pending on the size of the neighborhood if the moves in the neighborhood
were sorted by domain specific estimation.

Key words: Tabu-Search, Multiobjective, Optimization, System Synthesis.

1. INTRODUCTION

A number of approaches for system synthesis have been proposed in the
relevant literature. The common goal of such approaches is to build an opti-
mization model and to use heuristic optimization techniques to solve the syn-
thesis problem. The optimization problem itself is tackled using simulated
annealing [1], [6], genetic algorithms [1], [2], [5] and tabu search [1], [6],
[10]. In some papers, self-made heuristics are used [4], [7], [11].

(c) 2004 IFIP

 Frank Slomka, Karsten Albers, Richard Hofmann

228

Most of the papers considering the analysis of real-time systems, which
means different system tasks with different priorities running on one proces-
sor, must hold given deadlines. Only in [2] just the latency of the problem is
considered.

Embedded system design is a multiobjective optimization challenge. The
most important objectives are time, area and power. Many papers in system
synthesis do not consider this aspect. The authors describe optimization as a
cost or area optimization problem with time constraints. Only [2] and [5] de-
scribe multiobjective algorithms using a Pareto approach. Both papers deal
with genetic algorithms, but [2] do not consider real-time systems. The algo-
rithm described in [5] deals with real-time systems, but it disregards com-
munication synthesis.

However, no paper deals with aspects for improving the quality of the
optimization heuristic by information coming from the application domain,
which in our case is embedded system design. The results of [1],[5], and [11]
are based on an effective real-time analysis algorithm. In this paper, we pre-
sent a technique that uses the multiobjective nature of the problem as a
chance for improving the optimization technique itself. In contrast to recent
literature on tabu search, which uses randomly generated neighborhoods [1],
[6], we revealed that a sorted multiobjective neighborhood can improve the
optimization algorithm.

2. EXPLORATION MODEL

Our approach to the system synthesis is based on two input models, (1)
the problem graph to specify the application, and (2) the architecture graph
to describe the maximal available hardware [2]. To synthesize a system ar-
chitecture, the problem graph is mapped onto the architecture graph, along
with the determination of additional parameters. A major difference of our
modeling approach to related work is the use of different types of program
nodes for modeling semantic aspects, e.g. to describe asynchronous commu-
nication between system-level tasks (processes) and other semantic peculi-
arities of languages based on the model of finite state machines.

2.1 Problem Graph

The problem model consists of two types of graphs: a control-flow graph
(CFG) to model the behavior of the system (the control-flow of the specifi-
cation, given in a formal description technique, e.g. SDL [12]) and a set of
data-flow graphs (DFG). The two types of graphs are combined to a control

(c) 2004 IFIP

A Multiobjective Tabu Search Algorithm for …

229

data flow graph (CDFG), or problem graph for short. Each DFG refines a
node of the CFG to model computational tasks.

1

2

3

4

5

1

2

3

4

5

tim
e

co
ns

tr
ai

nt

model generation

Problem Graph Architecture Graph
SDL Description

and
Constraints

process 2

process 1

process 1

process 2

type 1
type 2

 c
la

ss

Figure 1. Optimization Modell

In order to derive the problem graph, the behavioral description of the
system, as given by e.g. an SDL description, is transformed to the problem
graph. The problem graph is a directed graph, where the nodes may repre-
sent computation or communication tasks. The edges of the problem graph
specify the control flow. In addition to the nodes of the CDFG, we define
super nodes that allow to model system-level tasks. A system-level task
represents an instance of code with its own memory, i.e. a process running
on an architecture component. In our model, a super node is defined as a set
of nodes, where each node has the same process identifier and the same pri-
ority. The priorities of system-level tasks influence scheduling decisions
where two or more super nodes are mapped onto the same architecture com-
ponent, e.g. a processor.

In order to define time constraints, labels are assigned to the nodes. All
nodes of the graph marked with the same label are associated to the same
timing constraint.

2.2 Architecture Graph

The architecture graph defines the maximal available configuration of the
hardware. It contains different types of nodes to model different types of
components. The node types are used to model different scheduling strate-
gies of processing elements: preemptive scheduling, nonpreemptive schedul-
ing, no scheduling and communication. In this terminology, no scheduling
means that a resource can only be used by one task exclusively.

(c) 2004 IFIP

 Frank Slomka, Karsten Albers, Richard Hofmann

230

All architecture nodes contain a class attribute that specifies different
classes of components (e.g. different processor types and technologies). Fig.
1 outlines how the behavioral description — in our case an SDL description
— is transformed to a problem graph, which in turn is mapped onto an archi-
tecture graph. In the problem graph, dotted nodes represent communication
nodes. In the architecture graph, dotted nodes represent architecture nodes
not yet allocated.

2.3 Allocation, Binding and Scheduling

As outlined above, our optimization algorithm for system synthesis de-
fines the allocation, the binding and the schedule.

The allocation defines the selection of the architecture components from
the available architecture components as defined by the architecture graph.
The decisions are implicitly defined by the binding, i.e. each architecture
node to which a program node is bound to is allocated.

Binding: Each node of the problem graph is bound to exactly one archi-
tecture node. The binding of the nodes of the problem graph to the architec-
ture graph is achieved by edges between the two graphs.

Scheduling: We assume that the derived implementation employs run-
time scheduling. Thus, decisions made by the system synthesis implicitly de-
fine the schedule. The factors influencing the schedule comprise 1) the
scheduling strategies employed by the architecture nodes, 2) the binding of
the program nodes on architecture nodes, 3) the priorities of the program
nodes (super nodes).

3. MULTIOBJECTIVE OPTIMIZATION WITH
TABU-SEARCH

3.1 Multiobjective Optimization

Optimization of embedded systems is a multiobjective search problem.
Different design parameters like time, area and power need consideration.
Using a weighted cost function in a multiobjective optimization problem is
questionable [5]. The weights are depending on the problem and finding the
right set of weights could be as expensive as the optimization problem itself.

In multiobjective optimization, an effective method for ranking solutions
is used: the Pareto approach. Consider a two dimensional objective space,
e.g. area and power. For each solution, a value for each objective, power and
area, can be calculated. This results in a point in the two dimensional objec-

(c) 2004 IFIP

A Multiobjective Tabu Search Algorithm for …

231

tive space. A point in the objective space is dominating when it is in all ob-
jectives at least equal or better then the dominated point. Pareto points are
points which are not dominated by other points. Thus, all system implemen-
tations represented by Pareto points are equal in terms of their design qual-
ity. To further discriminate them requires additional constraints. An optimi-
zation tool can find the Pareto points by using an algorithm called Pareto
ranking [5]. Pareto ranking sorts all solutions according to the number of so-
lutions that dominate them. The Pareto points are dominated by no other
points, so they are on the top of the list.

3.2 Tabu Search

Tabu search is a heuristic optimization algorithm. In contrast to simulated
annealing and genetic algorithms, tabu search represents a purely determinis-
tic approach. Similar to simulated annealing, tabu search is based on a
neighborhood search. Thus, any new solution is derived from the previous
solution. In order to support this, the definition of the neighborhood of a so-
lution and the definition of the moves to transform a previous solution to a
new solution is of importance.

Different from greedy algorithms, e.g. as gradient search, tabu search
also allows moves to solutions with higher cost. This is important for escap-
ing from local minima. However, allowing non-improving steps may result
in a cyclic search. To avoid cycles, tabu search employs a memory, typically
called tabu list. The purpose is to prevent moves, which can lead to cycles.
This list could have very different implementations. One possible way is to
store a fixed number of previous moves, whose recurrence is inhibited.

3.3 Structure of Multiobjective Tabu Search

The idea of Pareto ranking can be used to construct a multiobjective tabu
search algorithm. As tabu search defines moves for constructing new solu-
tions and all moves are put to a list, called neighborhood, it is easy to con-
struct a single neighborhood for each objective. The moves are evaluated
only by the single objective of the neighborhood. Additionally, it is possible
to use estimation techniques to find fast evaluation results. Such a fast esti-
mation technique may be the use of Liu and Laylands real-time analysis in-
stead of a computation expensive worst-case response time analysis or simu-
lation. By using this technique, it is possible to explore a lot of possible sys-
tem implementations or solutions. All neighborhoods will then be sorted
separately. These lists are than merged with Pareto ranking.

However, constructing an optimal solution requires an extended analysis
of complex objectives, which is in our approach carried out by selecting the

(c) 2004 IFIP

 Frank Slomka, Karsten Albers, Richard Hofmann

232

N best moves given by the Pareto ranking. For the chosen solutions, an ex-
tended and precise evaluation is performed.

3.4 Moves and Neighborhood

3.4.1 Definition of Moves

Priority Changing of Processes: To each process, a priority is attached.
The priority defines the scheduling priority of a process. This means that all
processes bound to the same component will be scheduled with respect to
this priority. The actual priority of a process can be increased or decreased
within a move.

Partitioning of Processes: Each process can be partitioned. A process
partitioning is supported by the super node concept. Each process can be
split into a number of super nodes. If a process is split into different super
nodes, it is possible to bind the super nodes to different components of the
component graph. This is used to support fine grain hardware/software parti-
tioning in a hierarchical environment.

Binding of Super Nodes: This move changes the binding of the super
nodes to hardware components. Only the binding of super nodes can be
changed.

Sorted Neighborhoods

Start Solution

Lis
t m

erg
in

wit
h

cho
ice

 of
 m

ove

Tabu-Search

So
lut

ion

Analyse

highsmall

highsmall

smallhigh

highsmall

smallhigh

smallhigh

highsmall

Tabu-List

Evaluation

power

relilibility

througput

timing violations

utilization

binding cost

allocation cost

Move Generation

Real-Time Simulation

Changing

- Allocation
- Binding

- Priorities

Figure 2. Multiobjective Tabu-Search

Allocation of Components: Moves to allocate and deallocate compo-
nents are very important. If allocation were implicitly performed by binding
moves, in many cases it would take a few moves to deallocate a component.

(c) 2004 IFIP

A Multiobjective Tabu Search Algorithm for …

233

These intermediate steps are problematical because the not yet deallocated
component still needs area, while its workload is moved to other compo-
nents, which reduces their quality in other objectives like the performance.
Deallocating moves prevent this overall stepwise degradation.

3.4.2 Neighborhood

The result of these moves is the neighborhood of a solution. In many
cases, the resulting number of different moves is too high for a reasonable
performance of the optimization process. Every move in a neighborhood is
evaluated separately for each objective. Therefore, a separate list of moves is
built for each objective.

Allocation Cost: The total system cost consist of the allocation cost,
which represent the fixed cost of architecture components and the binding
cost that is caused by binding the program nodes on architecture nodes. Each
allocated node of the architecture graph results in a fixed cost. The fixed cost
of an architecture component depends on its type and its class.

Binding Cost is caused by the need for memory (software) or cost for
registers, ALUs, etc., on ASICs. Similar to allocation cost, binding cost de-
pends on the type and class of the architecture component to which the pro-
gram node is bound.

Timing Constraints: In order to evaluate meeting of time constraints,
the actual execution schedule has to be derived. This schedule not only de-
pends on the allocation and the binding of the processes but also on the dis-
tribution of the priorities. In this work, a simple event-driven simulation ana-
lyzes the temporal behavior of a given system (for more information see
[10]). The problem to verify a given system and scheduling is NP-complete
[5]. For that reason, it is problematic to verify a large neighborhood in an
exact manner. As a rough estimation about the real-time behavior, the utili-
zation formula in Liu und Layland [8] is used. The calculated utilization is
then used as a metric to sort the solutions into the neighborhood.

3.4.3 The Tabu List

A new approach combines a problem independent sizing of the tabu list
with a reduction of program memory size: It uses the multiobjective nature
of the problem to implement an effective tabu list. The evaluation parameter
of each neighborhood is stored separately. Although the used data structure
is very compact, it describes a solution very exactly: Let us assume e.g., a
system implementation needs 100 mm2 allocation area, 50 mm2 program
memory (binding cost) at 70% processor utilization. In such a case, the set

(c) 2004 IFIP

 Frank Slomka, Karsten Albers, Richard Hofmann

234

{100, 50, 70} completely describes the system. As equivalent solutions have
the same evaluation parameter, they can be mapped to the same description.

4. EXPERIMENTAL RESULTS

Using a multiobjective search for hierarchical problems in combination
with neighborhood estimation reduces the run-time and the cost of the final
system implementation. We verified this by experiments based on given ex-
amples from the literature [11]. Fig. 3 gives an idea about the quality im-
provement achieved by sorted neighborhoods. The figure shows the two ob-
jectives, number of real-time violations and total system cost. The total sys-
tem cost is the sum of binding and allocation cost. The figure shows the ef-
fect of sorted neighborhoods for the examples random1 and random2. Tab. 1
gives a detailed overview, how the algorithm’s run-time depends on the size
of the neighborhood.

The table shows three experiments with a small neighborhood and a large
neighborhood to find an optimal value for the length of a sorted neighbor-
hood. The first number in the neighborhood size row gives the number of es-
timated moves and the second number gives the number of total evaluated
(using a detailed real-time simulation) moves. This number is equivalent to a
neighborhood size in standard tabu-search. The given run-time is the com-
plete run-time for 10,000 iterations fixed given by starting the program. The
number in the brackets gives the number of iterations after which the best so-
lution was found. As can be seen, a neighborhood of 6000 yields better re-
sults than a small neighborhood of 600 moves. In detailed experiments, we
found that a size of 4000 is a break-even in run-time and quality. A
neighborhood with a size larger than 8000 again increases the run-time of
the algorithm, without improving quality. However, a neighborhood size be-
tween 4000 and 8000 is a good value for optimization with sorted neighbor-
hoods.

The experiments reveal that the result from tabu search literature, which
states that the quality of optimization is independent from the neighborhood
size, only holds for unsorted or randomly generated neighborhoods. Our
newly found result allows the design of fast system synthesis algorithms
based on tabu search. Note that the experiments in [1] show that the quality
of tabu search is as good as the quality of genetic algorithms. Sorting the
neighborhood gives the possibility to include embedded system designers
knowledge to the heuristic search algorithm and to improve the results given
in [1], [2], and [5].

(c) 2004 IFIP

A Multiobjective Tabu Search Algorithm for …

235

run-time [min]

#t
im

in
g

vi
ol

at
io

ns

run-time [min]

to
ta

l s
ys

te
m

 c
os

ts

0

5

10

15

20

25

30

35

40

45

50
0 2e+06 4e+06 6e+06 8e+06 1e+07

0

1000

2000

3000

4000

5000

6000

7000

8000

0 33,3 66,6 100 133,3 166,6

0 33,3 66,6 100 133,3 166,6

0 2e+06 4e+06 6e+06 8e+06 1e+07
run-time [ms]

0

2

4

6

8

10

12

14

0 33,3 66,6 100 133,3 166,6 200 233,3 266,6

neighborhood size: 600
neighborhood size: 6000

#t
im

in
g

vi
ol

at
io

ns

run-time [min]

0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07 1.4e+07

0

2000

4000

6000

8000

10000

12000

0 33,3 66,6 100 133,3 166,6 200 233,3 266,6

run-time [min]

to
ta

l s
ys

te
m

 c
os

ts

0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07 1.4e+07 1.6e+07

run-time [ms]

neighborhood size: 600
neighborhood size: 6000

neighborhood size: 600
neighborhood size: 6000

neighborhood size: 600
neighborhood size: 6000

Figure 3. Results

 Table 1. Results: Different Sizes of the Neighborhood
Small Neighborhood Large Neighborhood Experiment
Size Cost run-time[ms] Size Cost Run-Time [ms]

Random-1.20 600/20 310 424212 (4652) 6000/20 195 133910 (36)
Random-2.20 600/40 2192 2421560 (3397) 6000/40 222 4671360 (789)
Random-3.100 600760 500 6194830 (631) 8000/20 417 73440 (11)

5. CONCLUSION

In this paper, a new multiobjective tabu search heuristic is presented: In-
cluding domain-specific heuristics into a general optimization algorithm im-
proves the quality of the optimization results and reduces the algorithm’s run
time. For that reason, the heuristic was extended to work with both estima-
tion and evaluation algorithms for the different objectives. This enables the
use of large neighborhoods without loosing quality of the optimization re-
sults. It also combines for the first time tabu-search with Pareto-ranking.

REFERENCES

1. J. Axelsson. Analysis and Synthesis of Heterogeneous Real-Time Systems. Dissertation,
Linköping Studies in Science and Technology, 502. 1997.

(c) 2004 IFIP

 Frank Slomka, Karsten Albers, Richard Hofmann

236

2. T. Blickle, J. Teich, L. Thiele. System-Level Synthesis Using Evolutionary Algorithms.
Design Automation For Embedded Systems, Kluwer Academic Publisher, Boston, 3(1),
1998.

3. Dave, B.P. und Jha, N.K. COHRA. Hardware-Software Cosynthesis on Hierarchical
Heterogeneous Distributed Embedded Systems. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems. 17(10). 1998.

4. B.P. Dave, G. Lakshminarayana, N.K. Jha. COSYN: Hardware-Software Co-Synthesis of
Heterogeneous Distributed Embedded Systems. IEEE Transactions on Very Large Scale
Integration (VLSI). 7(1), 1999.

5. R.P. Dick, N.K. Jha. MOGAC: A Multiobjective Genetic Algorithm for Hardware-
Software Cosynthesis of Distributed Embedded Systems. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems. 17(10). 1998.

6. P. Eles, Z. Peng, K. Kuchcinski, A. Doboli. System-Level Hardware/Software
Partitioning based on Simulated Annealing and Tabu Search. Design Automation For
Embedded Systems, Kluwer Academic Publisher, Boston, 2(1), 1997.

7. C. Lee, ,M. Potkonjak, W. Wolf. Synthesis of Hard Real-Time Application Specific
Systems. Design Automation for Embedded Systems. Kluwer Academic Publisher,
Boston, 4(4), 1999.

8. C. Liu, J. Layland Scheduling Algorithms for Multiprogramming in Hard Real-Time
Environments, Journal of the ACM, 20(1), 46-61, 1973

9. F. Slomka, J. Zant, L. Lambert. Schedulability Analysis of Heterogeneous Systems for
Performance Message Sequence Chart. 6th International Workshop on
Hardware/Software Codesign. IEEE Computer Society Press. Seattle, 1998.

10. F. Slomka, S. Kocher, A. Mitschele-Thiel. A Three-Level Heuristic for System Synthesis
Based on Tabu Search. Technical Report IMMD7 3/99. University of Erlangen-
Nuremberg.

11. T. Yen, W. Wolf. Hardware-Software Co-Synthesis of Distributed Embedded Systems.
Kluwer Academic Publisher, Boston. 1996.

12. ITU-T. Z.100, Appendix I. ITU, SDL Methodology Guidelines. ITU, 1993

(c) 2004 IFIP

	Select a link below
	Return to Main Menu
	Return to Previous View

