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Abstract: An important step during the design of embedded systems is to allocate suit-
able architectural components and to optimally bind functions (tasks) to these 
components. This design step is called system synthesis. The automation of 
system synthesis is limited in recent research by developing models only for 
standard optimization algorithms. This paper describes the first approach to 
improve a standard optimization technique itself for the use in embedded sys-
tem design. Our solution extends the heuristic optimization algorithm tabu 
search by multiobjective optimization. Using the multiobjective approach, 
domain specific heuristics could easily be included into the algorithm. By per-
forming experiments with the new algorithm, a new effect was discovered: In 
contrast to known results from literature, the quality of optimization was de-
pending on the size of the neighborhood if the moves in the neighborhood 
were sorted by domain specific estimation. 
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1. INTRODUCTION 

A number of approaches for system synthesis have been proposed in the 
relevant literature. The common goal of such approaches is to build an opti-
mization model and to use heuristic optimization techniques to solve the syn-
thesis problem. The optimization problem itself is tackled using simulated 
annealing [1], [6], genetic algorithms [1], [2], [5] and tabu search [1], [6], 
[10]. In some papers, self-made heuristics are used [4], [7], [11]. 
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Most of the papers considering the analysis of real-time systems, which 
means different system tasks with different priorities running on one proces-
sor, must hold given deadlines. Only in [2] just the latency of the problem is 
considered. 

Embedded system design is a multiobjective optimization challenge. The 
most important objectives are time, area and power. Many papers in system 
synthesis do not consider this aspect. The authors describe optimization as a 
cost or area optimization problem with time constraints. Only [2] and [5] de-
scribe multiobjective algorithms using a Pareto approach. Both papers deal 
with genetic algorithms, but [2] do not consider real-time systems. The algo-
rithm described in [5] deals with real-time systems, but it disregards com-
munication synthesis. 

However, no paper deals with aspects for improving the quality of the 
optimization heuristic by information coming from the application domain, 
which in our case is embedded system design. The results of [1],[5], and [11] 
are based on an effective real-time analysis algorithm. In this paper, we pre-
sent a technique that uses the multiobjective nature of the problem as a 
chance for improving the optimization technique itself. In contrast to recent 
literature on tabu search, which uses randomly generated neighborhoods [1], 
[6], we revealed that a sorted multiobjective neighborhood can improve the 
optimization algorithm.  

2. EXPLORATION MODEL 

Our approach to the system synthesis is based on two input models, (1) 
the problem graph to specify the application, and (2) the architecture graph 
to describe the maximal available hardware [2]. To synthesize a system ar-
chitecture, the problem graph is mapped onto the architecture graph, along 
with the determination of additional parameters. A major difference of our 
modeling approach to related work is the use of different types of program 
nodes for modeling semantic aspects, e.g. to describe asynchronous commu-
nication between system-level tasks (processes) and other semantic peculi-
arities of languages based on the model of finite state machines. 

2.1 Problem Graph 

The problem model consists of two types of graphs: a control-flow graph 
(CFG) to model the behavior of the system (the control-flow of the specifi-
cation, given in a formal description technique, e.g. SDL [12]) and a set of 
data-flow graphs (DFG). The two types of graphs are combined to a control 

(c) 2004 IFIP



A Multiobjective Tabu Search Algorithm for … 
 

229

data flow graph (CDFG), or problem graph for short. Each DFG refines a 
node of the CFG to model computational tasks. 
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Figure 1. Optimization Modell 

In order to derive the problem graph, the behavioral description of the 
system, as given by e.g. an SDL description, is transformed to the problem 
graph. The problem graph is a directed graph, where the nodes may repre-
sent computation or communication tasks. The edges of the problem graph 
specify the control flow. In addition to the nodes of the CDFG, we define 
super nodes that allow to model system-level tasks. A system-level task 
represents an instance of code with its own memory, i.e. a process running 
on an architecture component. In our model, a super node is defined as a set 
of nodes, where each node has the same process identifier and the same pri-
ority. The priorities of system-level tasks influence scheduling decisions 
where two or more super nodes are mapped onto the same architecture com-
ponent, e.g. a processor. 

In order to define time constraints, labels are assigned to the nodes. All 
nodes of the graph marked with the same label are associated to the same 
timing constraint.  

2.2 Architecture Graph 

The architecture graph defines the maximal available configuration of the 
hardware. It contains different types of nodes to model different types of 
components. The node types are used to model different scheduling strate-
gies of processing elements: preemptive scheduling, nonpreemptive schedul-
ing, no scheduling and communication. In this terminology, no scheduling 
means that a resource can only be used by one task exclusively. 
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All architecture nodes contain a class attribute that specifies different 
classes of components (e.g. different processor types and technologies). Fig. 
1 outlines how the behavioral description — in our case an SDL description 
— is transformed to a problem graph, which in turn is mapped onto an archi-
tecture graph. In the problem graph, dotted nodes represent communication 
nodes. In the architecture graph, dotted nodes represent architecture nodes 
not yet allocated. 

2.3 Allocation, Binding and Scheduling 

As outlined above, our optimization algorithm for system synthesis de-
fines the allocation, the binding and the schedule. 

The allocation defines the selection of the architecture components from 
the available architecture components as defined by the architecture graph. 
The decisions are implicitly defined by the binding, i.e. each architecture 
node to which a program node is bound to is allocated. 

Binding: Each node of the problem graph is bound to exactly one archi-
tecture node. The binding of the nodes of the problem graph to the architec-
ture graph is achieved by edges between the two graphs.  

Scheduling: We assume that the derived implementation employs run-
time scheduling. Thus, decisions made by the system synthesis implicitly de-
fine the schedule. The factors influencing the schedule comprise 1) the 
scheduling strategies employed by the architecture nodes, 2) the binding of 
the program nodes on architecture nodes, 3) the priorities of the program 
nodes (super nodes). 

3. MULTIOBJECTIVE OPTIMIZATION WITH 
TABU-SEARCH 

3.1 Multiobjective Optimization 

Optimization of embedded systems is a multiobjective search problem. 
Different design parameters like time, area and power need consideration. 
Using a weighted cost function in a multiobjective optimization problem is 
questionable [5]. The weights are depending on the problem and finding the 
right set of weights could be as expensive as the optimization problem itself.  

In multiobjective optimization, an effective method for ranking solutions 
is used: the Pareto approach. Consider a two dimensional objective space, 
e.g. area and power. For each solution, a value for each objective, power and 
area, can be calculated. This results in a point in the two dimensional objec-
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tive space. A point in the objective space is dominating when it is in all ob-
jectives at least equal or better then the dominated point. Pareto points are 
points which are not dominated by other points. Thus, all system implemen-
tations represented by Pareto points are equal in terms of their design qual-
ity. To further discriminate them requires additional constraints. An optimi-
zation tool can find the Pareto points by using an algorithm called Pareto 
ranking [5]. Pareto ranking sorts all solutions according to the number of so-
lutions that dominate them. The Pareto points are dominated by no other 
points, so they are on the top of the list. 

3.2 Tabu Search 

Tabu search is a heuristic optimization algorithm. In contrast to simulated 
annealing and genetic algorithms, tabu search represents a purely determinis-
tic approach. Similar to simulated annealing, tabu search is based on a 
neighborhood search. Thus, any new solution is derived from the previous 
solution. In order to support this, the definition of the neighborhood of a so-
lution and the definition of the moves to transform a previous solution to a 
new solution is of importance.  

Different from greedy algorithms, e.g. as gradient search, tabu search 
also allows moves to solutions with higher cost. This is important for escap-
ing from local minima. However, allowing non-improving steps may result 
in a cyclic search. To avoid cycles, tabu search employs a memory, typically 
called tabu list. The purpose is to prevent moves, which can lead to cycles. 
This list could have very different implementations. One possible way is to 
store a fixed number of previous moves, whose recurrence is inhibited.  

3.3 Structure of Multiobjective Tabu Search 

The idea of Pareto ranking can be used to construct a multiobjective tabu 
search algorithm. As tabu search defines moves for constructing new solu-
tions and all moves are put to a list, called neighborhood, it is easy to con-
struct a single neighborhood for each objective. The moves are evaluated 
only by the single objective of the neighborhood. Additionally, it is possible 
to use estimation techniques to find fast evaluation results. Such a fast esti-
mation technique may be the use of Liu and Laylands real-time analysis in-
stead of a computation expensive worst-case response time analysis or simu-
lation. By using this technique, it is possible to explore a lot of possible sys-
tem implementations or solutions. All neighborhoods will then be sorted 
separately. These lists are than merged with Pareto ranking. 

However, constructing an optimal solution requires an extended analysis 
of complex objectives, which is in our approach carried out by selecting the 
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N best moves given by the Pareto ranking. For the chosen solutions, an ex-
tended and precise evaluation is performed. 

3.4  Moves and Neighborhood 

3.4.1 Definition of Moves 

Priority Changing of Processes: To each process, a priority is attached. 
The priority defines the scheduling priority of a process. This means that all 
processes bound to the same component will be scheduled with respect to 
this priority. The actual priority of a process can be increased or decreased 
within a move. 

Partitioning of Processes: Each process can be partitioned. A process 
partitioning is supported by the super node concept. Each process can be 
split into a number of super nodes. If a process is split into different super 
nodes, it is possible to bind the super nodes to different components of the 
component graph. This is used to support fine grain hardware/software parti-
tioning in a hierarchical environment. 

Binding of Super Nodes: This move changes the binding of the super 
nodes to hardware components. Only the binding of super nodes can be 
changed. 
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Figure 2. Multiobjective Tabu-Search 

Allocation of Components: Moves to allocate and deallocate compo-
nents are very important. If allocation were implicitly performed by binding 
moves, in many cases it would take a few moves to deallocate a component. 
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These intermediate steps are problematical because the not yet deallocated 
component still needs area, while its workload is moved to other compo-
nents, which reduces their quality in other objectives like the performance. 
Deallocating moves prevent this overall stepwise degradation. 

3.4.2 Neighborhood 

The result of these moves is the neighborhood of a solution. In many 
cases, the resulting number of different moves is too high for a reasonable 
performance of the optimization process. Every move in a neighborhood is 
evaluated separately for each objective. Therefore, a separate list of moves is 
built for each objective. 

Allocation Cost: The total system cost consist of the allocation cost, 
which represent the fixed cost of architecture components and the binding 
cost that is caused by binding the program nodes on architecture nodes. Each 
allocated node of the architecture graph results in a fixed cost. The fixed cost 
of an architecture component depends on its type and its class. 

Binding Cost is caused by the need for memory (software) or cost for 
registers, ALUs, etc., on ASICs. Similar to allocation cost, binding cost de-
pends on the type and class of the architecture component to which the pro-
gram node is bound.  

Timing Constraints: In order to evaluate meeting of time constraints, 
the actual execution schedule has to be derived. This schedule not only de-
pends on the allocation and the binding of the processes but also on the dis-
tribution of the priorities. In this work, a simple event-driven simulation ana-
lyzes the temporal behavior of a given system (for more information see 
[10]). The problem to verify a given system and scheduling is NP-complete 
[5]. For that reason, it is problematic to verify a large neighborhood in an 
exact manner. As a rough estimation about the real-time behavior, the utili-
zation formula in Liu und Layland [8] is used. The calculated utilization is 
then used as a metric to sort the solutions into the neighborhood.  

3.4.3 The Tabu List 

A new approach combines a problem independent sizing of the tabu list 
with a reduction of program memory size: It uses the multiobjective nature 
of the problem to implement an effective tabu list. The evaluation parameter 
of each neighborhood is stored separately. Although the used data structure 
is very compact, it describes a solution very exactly: Let us assume e.g., a 
system implementation needs 100 mm2 allocation area, 50 mm2 program 
memory (binding cost) at 70% processor utilization. In such a case, the set 
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{100, 50, 70} completely describes the system. As equivalent solutions have 
the same evaluation parameter, they can be mapped to the same description.  

4. EXPERIMENTAL RESULTS 

Using a multiobjective search for hierarchical problems in combination 
with neighborhood estimation reduces the run-time and the cost of the final 
system implementation. We verified this by experiments based on given ex-
amples from the literature [11]. Fig. 3 gives an idea about the quality im-
provement achieved by sorted neighborhoods. The figure shows the two ob-
jectives, number of real-time violations and total system cost. The total sys-
tem cost is the sum of binding and allocation cost. The figure shows the ef-
fect of sorted neighborhoods for the examples random1 and random2. Tab. 1 
gives a detailed overview, how the algorithm’s run-time depends on the size 
of the neighborhood. 

The table shows three experiments with a small neighborhood and a large 
neighborhood to find an optimal value for the length of a sorted neighbor-
hood. The first number in the neighborhood size row gives the number of es-
timated moves and the second number gives the number of total evaluated 
(using a detailed real-time simulation) moves. This number is equivalent to a 
neighborhood size in standard tabu-search. The given run-time is the com-
plete run-time for 10,000 iterations fixed given by starting the program. The 
number in the brackets gives the number of iterations after which the best so-
lution was found. As can be seen, a neighborhood of 6000 yields better re-
sults than a small neighborhood of 600 moves. In detailed experiments, we 
found that a size of 4000 is a break-even in run-time and quality. A 
neighborhood with a size larger than 8000 again increases the run-time of 
the algorithm, without improving quality. However, a neighborhood size be-
tween 4000 and 8000 is a good value for optimization with sorted neighbor-
hoods. 

The experiments reveal that the result from tabu search literature, which 
states that the quality of optimization is independent from the neighborhood 
size, only holds for unsorted or randomly generated neighborhoods. Our 
newly found result allows the design of fast system synthesis algorithms 
based on tabu search. Note that the experiments in [1] show that the quality 
of tabu search is as good as the quality of genetic algorithms. Sorting the 
neighborhood gives the possibility to include embedded system designers 
knowledge to the heuristic search algorithm and to improve the results given 
in [1], [2], and [5]. 
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Figure 3. Results 

       Table 1. Results: Different Sizes of the Neighborhood 
Small  Neighborhood Large Neighborhood Experiment 
Size Cost run-time[ms] Size Cost Run-Time [ms]

Random-1.20 600/20 310 424212 (4652) 6000/20 195 133910 (36) 
Random-2.20 600/40 2192 2421560 (3397) 6000/40 222 4671360 (789) 
Random-3.100 600760 500 6194830 (631) 8000/20 417 73440 (11) 

5. CONCLUSION 

In this paper, a new multiobjective tabu search heuristic is presented: In-
cluding domain-specific heuristics into a general optimization algorithm im-
proves the quality of the optimization results and reduces the algorithm’s run 
time. For that reason, the heuristic was extended to work with both estima-
tion and evaluation algorithms for the different objectives. This enables the 
use of large neighborhoods without loosing quality of the optimization re-
sults. It also combines for the first time tabu-search with Pareto-ranking.  
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