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Abstract
A new approach for the translation of SDL specifica-

tions to a mixed hardware/software system is presented.
Based on the computational model of communicating
extended finite state machines (EFSM) the control flow
is separated from data flow of the SDL process. Hence
for the first time it is possible to generate a mixed hard-
ware/software implementation of an SDL process. This
technique also reduces the complexity for high-level and
register-transfer synthesis tools for the hardware parts
of the system. The advantage of this methodology is
shown by a design example of a wireless communication
chip.

 1 Introduction
Since several years the Specification and Description Lan-

guage SDL is widely used for the specification of large distrib-
uted communication systems. SDL is popular in the
communication industry because it provides language con-
structs needed for protocol development and systems engi-
neering. The computational model of SDL is based on
asynchronous communication between extended finite state
machines which allows the specification of distributed concur-
rent embedded systems. The increasing communication aspect
of modern automotive systems makes SDL also feasible for
the design of car control systems.

SDL allows the designer to specify electronic systems inde-
pendent from the implementation. Communication systems
like routers, switches and the complete mobile telephone net-
work are typical hardware/software systems. Therefore SDL
becomes popular as a language for hardware/software co-de-
sign. To support the co-design process some tools have been
developed to generate automatically VHDL descriptions from
SDL specifications in addition to commercial software code
generators. Integrating these tools together is only possible
when the partitioning is performed on the grain level of pro-
cesses.

In common cases the designer has this in mind during the
specification phase. As a result the designer intuitively creates
small SDL processes with less functionality because he takes
into consideration that the specification will be partitioned.

Such a disadvantageous approach leads to a large communica-
tion overhead after synthesis.

After partitioning the SDL processes are synthesized sepa-
rately. The current approach for hardware generation is to
translate each EFSM to one VHDL process and to connect this
process to a run-time support system (RTSS) which imple-
ments the communication. The resulting hardware description
contains a complete finite state machine with data operations
which is difficult to translate by high-level synthesis to the reg-
ister transfer level. Mixing a large control flow dominated de-
scription with only a few data operations leads to inefficient
results of the high-level synthesis. On the other hand in data-
flow dominated applications the control-structure of SDL
leads to a large amount of overhead.

As a solution for the aforementioned problems this paper
presents an integrated approach for the translation of SDL
specifications to mixed hardware/software systems. First the
explicitly formulated control-flow of the state machine is sep-
arated from the data operations of the transitions. The separate
control flow can be translated to a software or hardware de-
scription. The hardware description can be given at register
transfer level because the scheduling of the operations is al-
ready defined. In the next step every SDL transition is translat-
ed on its own. Using separate VHDL processes for the
transitions with complex data operations simplifies high-level
synthesis. Resource sharing between the different transitions is
supported by multi-process high-level synthesis.

Using this approach it is possible to perform a fine grain
hardware/software partitioning where the control-flow is per-
formed by software and high-performance data-operations are
performed by hardware.

 2 Related Work
Translating designs described in SDL [10] to implementa-

tion languages was first made for software. The commercially
available case tool TAU [16] allows the generation of C and
Chill code. The main application area for TAU is the emula-
tion of the SDL system on a host computer. New code genera-
tors of the TAU framework also allow the implementation of
embedded software systems. But when performing an integra-
tion on commercial real-time operating systems a lot of SDL
constructs are not supported by these code generators.

The TAU framework only supports the server model ap-
proach when generating an implementation. During the last
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years a new application model has become more popular: the
activity thread model [11] which eliminates signal queues
from time critical paths of the SDL specification. Tools which
translate hardware implementations from SDL are generally
using the server model. With the server model approach the
EFSM is directly translated to hardware while the communica-
tion model is selected from a library [9].

In [3] the control flow is also separated from the data flow
while for the transitions an application independent data pro-
cessor is used which was manually designed before. For many
cases the application independency of the data processor leads
to an unnecessary amount of gates.

The SDL2VHDL tool described in [2] allows the generation
of VHDL code for different abstraction levels. For SDL pro-
cesses with a high amount of computational data operations
behavioral VHDL is generated. Automatically this behavioral
description can be connected to a hardware RTSS [6] which is
described at RT-level or which can already be presynthesized.
On the other hand the hardware of control flow dominated pro-
cesses can be synthesized directly from RTL VHDL descrip-
tions which can also be connected to the RTSS. In [13] and
[14] an extension of the SDL2VHDL code generator is de-
scribed. This extension allows the automatic implementation
of the activity thread model in hardware. The generation of
software parts is not supported by these tools. To support hard-
ware/software co-design they are used with commercial code
generators as described in [8] and [14].

The only integrated framework to generate hardware and
software from a SDL specification is COSMOS. It is based on
an intermediate system description format called SOLAR. The
framework allows the designer to split and to merge SDL pro-
cesses before starting the code generation process but does not
allow to split control- from data-flow or the use of different
synthesis techniques after partitioning. The hardware transla-
tor of COSMOS was described in [4] while a case study is pre-
sented in [5]. In this case study a partitioning of the SDL
process is not considered which leads to the disadvantages of
the discussed approach.

 3 Generating Mixed HW and SW Imple-
mentations from SDL

 3.1 Specification and Description Language
The language SDL was originally designed for the specifica-

tion of protocol automata in communication systems. These
automata are extended by data operations which leads to the
model of an extended finite state machine. The computational
model of SDL is based on asynchronous communication be-
tween the EFSM. Additionally to the specification of commu-
nicating automata SDL allows to describe the module structure
of a system. Each system can be partitioned into blocks, sub-
blocks, processes, and services. Each process or service con-
tains an independent EFSM and each process has an own FIFO
input queue. The communication structure of the system is de-
scribed by channels between blocks and signal routes between
processes or services. The communication is performed by
sending a signal from one process to another.

As mentioned before in SDL behavior can be described with
processes and with services. While all processes may run in
parallel, services are part of a process and are executed sequen-
tially. Each transition of a EFSM is triggered by the receipt of
an asynchronous signal, the change of a process local variable
(continuous signal) or both of them (enabling condition). Us-

ing services and continuous signals it is possible to specify
synchronous communication inside processes. These features
are important for the design of real-time systems with SDL.

 3.2 Architecture of the Tool
In fig. 1 the architecture of the integrated co-design code

generator for the implementation synthesis of SDL specifica-
tions is shown. The SDL specification is translated by a Java
parser to an internal representation. The syntax tree is based on
Java classes generated by the tree generator JavaTree. For the
semantic analysis of SDL some additional Java classes are im-
plemented to store e.g. variable lists, signal identifiers, signal
destination lists and process identifiers.

From that internal representation the software and the hard-
ware parts are generated. The code generator uses a template
which defines the structure of the final C or VHDL descrip-
tion. We have defined different templates for C and VHDL to
support different implementation strategies and to be flexible
to change the implementation strategies in the future. This
concept also allows to support the different code generation
strategies described in [2]. The hardware/software code gener-
ator only has to emit code for the application specific behavior
of the SDL system. The application independent functionality
like inter process communication or process scheduling is en-
capsulated in the RTSS which is connected to the application
by procedure or function calls.

 3.3 Generating Hardware
Generating Hardware from SDL specifications means to

translate the structural and behavioral SDL specification to a
hardware description language like VHDL or Verilog. Earlier
proposals as discussed in section 2 generate one VHDL pro-
cess for each SDL process. In the following we will call this
the monolithic approach. Normally the behavioral part of the
SDL specification is translated by system level synthesis to a
controller and a datapath which can be synthesized to a gate
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level circuit. The RTSS system comes from a library and con-
tains VHDL code at register transfer level.

The new approach of generating hardware from SDL fol-
lows the philosophy to separate control flow from data flow.
Therefore each SDL process is translated to at least two VHDL
processes. The SDL state machine is translated to a separate
VHDL state machine and for each SDL transition a separate
VHDL process is generated. The finite state machine of the
process will directly be synthesized by RTL synthesis to a con-
troller engine while the transitions containing data operations
will be synthesized by high-level synthesis or by RTL synthe-
sis depending on the number of data operations. The commu-
nication between all VHDL processes is performed by a small
communication interface which also contains shared memory
to store the variables of the SDL process. In fig. 2 the architec-
ture of the new approach is shown. The complete SDL process
is connected to a RTSS module as described in [6].

 3.4 Generating Software
Generating software from SDL is a well known area. The

SDL extended finite state machine is translated to a case- or if-
structure of a high-level programming language and the com-
putational model is supported by an operating system with pro-
cesses and asynchronous message passing. Another approach
to translate SDL to software is table driven: Each transition of
the state machine is encapsulated in a function. The identifier
of the next signal and the state of the SDL process are indices
in a two dimensional array which contains references to the
functions implementing the transitions.

In dependency from the application area of the final system
the documentation of TAU [16] differentiates between two im-
plementation strategies: One where all SDL processes are lo-
cated in a single operating system process and the
communication and scheduling of processes is managed by a
RTSS also belonging to this process, and another strategy
where one operating system process is used for each SDL pro-
cess. In the second case the complete RTSS is implemented by
system calls to the operating system. While TAU does not sup-
port important language constructs like continuous signal or
enabling conditions when mapping SDL to a real-time operat-
ing system, the SDL2VHDL code generator was extended to
generate software implementations especially for embedded
real-time systems. Such constructs are very useful to perform
synchronous communication, which reduces the overall com-
munication overhead.

 3.5 Mixing Hardware and Software
Using the new concept it is possible to mix hardware and

software on a fine level of granularity. A software implemen-
tation for the state machine of the SDL process can be imple-
mented while the transitions will be implemented on an
application specific coprocessor which was synthesized by
high-level synthesis. Using a new approach for multi-process
high-level-synthesis as described in [1] it is possible to share
resources of the hardware over all transitions. In fig. 3 and fig.
4 two different mixed implementations are shown. In fig. 3
only the state machine is implemented in software while in fig.
4 also a transition is implemented in software. All communi-
cation between the different implementation entities is sup-
ported by a generic hardware/software interface described in
the next section of the paper.

 4 Run-Time Support System

 4.1 Hardware Interfaces and Hardware
Library

The RTSS for SDL processes implemented in hardware is
built as described in [6]. Scalable modules containing message
queues, timer modules, and communication infrastructure are
instantiated by the compiler. For data passing the SDL compil-
er emits procedure calls which are resolved by a behavioral
compiler. As an alternative in case of not using high-level syn-
thesis, the compiler is also able to emit code fragments given

 Figure 2: Hardware architecture of a EFSM

Finite-State
Machine

Interface

VHDL-Process 1

VHDL-Entity

Variables
Transition 1

Data-Operations

VHDL-Process 1

Transition 2
Data-Operations

VHDL-Process 2

Transition 3
Data-Operations

VHDL-Process 3

RTSS
Hardware

Finite-State
Machine

Variables
Transition 1

Data-Operations

fsm.c

VHDL-Process 1

VHDL-Entity

efsm.h

Transition 2
Data-Operations

VHDL-Process 2

Transition 3
Data-Operations

VHDL-Process 3

 Figure 3:  HW/SW Partitioning: Control Flow in SW

RTSS
Software

Hardware

HW/SW-Interface

Finite-State
Machine

Variables
Transition 1

Data-Operations

fsm.c

VHDL-Process 1

VHDL-Entity

efsm.h

Transition 2
Data-Operations

VHDL-Process 2

 Figure 4:  HW/SW Partitioning: Mixed Implementation

Transition 3
Data-Operations

data3.c

RTSS
Software

Hardware

HW/SW-Interface



as templates, e.g. the body of the aforementioned procedures
themselves.

 4.2 Software Interfaces and Real-Time Operat-
ing-System

To implement the RTSS the code generator focuses on the
real-time operating system RTEMS [15] which is available for
a broad range of processors and target boards. The limitation
to a single kernel allows a strong optimization of the generated
code and the exploration of new implementation strategies for
relevant SDL constructs.

To implement an SDL specification as a real-time system
every SDL process is started as an own operating system pro-
cess. Further the communication mechanisms of the real-time
operating system like message queues or asynchronous signals
are used for the implementation of the communication model
of SDL. Hence if a waiting process receives a signal in his
queue the operating system puts the process into the ready state
and schedules it according to its priority and the state of other
processes.

The handling of synchronous communication by using the
construct continuous signal in conjunction with variables
shared between SDL processes is a weak point of state-of-the-
art code generators. In a real-time operating system the state of
a process can only be changed in an active way triggered by a
system call or by an interrupt. So for the aforementioned con-
struct every write access to the shared variable has to be encap-
sulated by the code generator with a wrapper function. Inside
the wrapper function the kernel is called which itself calls a
continuous signal handler which was installed by the waiting
process. If the condition is fulfilled the waiting process is acti-
vated.

 4.3 Hardware/Software Interfaces
When implementing a SDL process in hardware and soft-

ware the RTSS has to be accessible from both parts. The com-
munication and synchronization between the hardware and the
software entities of the process is implemented by a generic
hardware/software interface. Two alternative implementations
are discussed: the control flow is implemented in hardware or
the control flow is implemented in software. For sharing the
variables of the process the interface contains a dual port mem-
ory.

For the implementation of the state machine in hardware a
generic structure like the one shown in fig. 5 is used. After
reading a signal from the hardware RTSS the state machine

places a transition code in a communication register. The write
access to the register triggers an interrupt on the processor. The
processor executes an interrupt service routine (ISR) which
reads the communication register and activates the according
transition. The end of the transition is signalled back to the
controlling state machine by another communication register
and the ISR finishes. The content of the second register is used
to calculate the new state of the state machine. Using a proces-
sor with hardware supported context switching like the
MSPARC described in [12] the execution delay after activa-
tion of a transition can be minimized.

In fig. 6 the state machine is implemented in software and
the transitions are implemented as application specific hard-
ware. The software state machine is activated by a non-empty
queue by means of the scheduler of the operating system. Ac-
cording to the current state and the received signal a transition
code is written into a register implemented in the interface. Af-
ter decoding the content the appropriate transition is started. At
the end of the transition the transition code register is cleared
by the hardware, the code for the next state is placed into a sec-
ond register and an interrupt is generated. The software state
machine is activated again by the ISR.

 4.4 Connecting External Components
To integrate ready designed intellectual property (IP) cores

for different application areas, e.g. analog line coders or phys-
ical data modems, a hardware component was designed which
allows asynchronous signal communication with the IP cores.
To instantiate IP cores it is possible to assign them to a gate of
the SDL specification. The compiler recognizes the instantia-
tion of the IP core and generates an interface component which
is parametrized with attributes of the IP core given in the li-
brary. The sending of a signal to the gate is converted to the ap-
propriate access of the interface component.

In case an IP core has an addressable memory-like interface
every signal has its own address in the memory space. For ev-
ery signal sent to the gate the signal header and parameters are
written to this memory address. This concept is implementa-
tion independent: It can be used by a software SDL system to
access a component connected to the processor bus or by a
hardware SDL system based on an application-specific com-
munication bus. For asynchronous communication based on
shared variables an IP core can also export register contents.
The communication interface is performed as shown in fig. 5.
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 5 Results
The two different approaches for the code generation of SDL

processes have been compared for a small typical example
from the application area of real-time communication systems:
The monolithic approach leads to an implementation of the da-
tapath which needs 2306 gates on an ALTERA FLEX10K100
device and a controller with 54 states.

Using the new approach the design was split in processes for
the data transitions and a separate RTL description for the state
machine. The synthesized datapath results in 2153 gates plus
28 additional gates for the controller of the data path while the
state machine has 30 states.

 6 Co-Design of a DECT MAC-Layer Chip
To demonstrate the usability of the approach for the specifi-

cation, design, implementation, and validation of a real co-de-
sign problem we consider a burst mode controller chip for the
wireless communication system DECT. The DECT example
was used because the system behavior is well known and we
already have experience developing DECT systems. Addition-
ally DECT is very similar to GSM or UMTS so the case study
covers most problems which will appear during the develop-
ment of future mobile communication systems. The case study
only considers the main functions of a DECT fixed part to
demonstrate how the approach works. Functions like connec-
tion management, measurement of radio signal strength, and
handover algorithms are not considered yet. The main focus of
the case study is to show how hardware and software for real-
time systems can be developed keeping a single description for
the whole system and how the implementation can be generat-
ed automatically.

 6.1 DECT system architecture
The DECT protocol specification describes layer one, two

and three of the OSI reference model for wireless speech and
data services and supports high traffic loads. It is designed to
provide large cordless private branch exchange (PBX) instal-
lations or wireless LANs and is also available for domestic
consumers. The radio fixed parts (base stations) of the system
are connected to a PBX via a standard telephone line interface
(analog or digital). Portable parts, mobile phones or laptops
with a DECT interface are communicating with the telephone
system via the air interface. DECT supports seamless hando-
ver to change the radio fixed part being connected to a portable
part, or to switch the radio channel, if the quality of a connec-
tion gets worse. This may occur when the user leaves the area
of the current radio fixed part or the radio channel is interfered
by other radio signals. To support high traffic load, the air in-
terface is realized with time division multiplex access (TD-
MA) where each 10 ms frame is subdivided into 24 time slots.
Using 12 time slots for the uplink and 12 time slots for the
downlink, DECT supports 120 logical channels on 10 radio
frequencies.

 6.2 SDL Design Specification
The design of the DECT fixed part burst mode controller

starts with an abstract specification using SDL which de-
scribes the DECT MAC layer [7] shown in fig. 7. The design
is split in six different SDL processes. The process Lower Lay-
er Management Entity (LLME) manages the complete MAC

layer. Handover and broadcast management are performed by
the process Multi Bearer Controller (MBC) and the process
Broadcast Message Controller (BMC). The control of the radio
links is performed by the cell site function processes (CSF).
The process A_CSF performs the setup of the so called bearer
- the radio links - while the other two CSF processes perform
speech data transmission.

 6.3 Implementation
The SDL specification was validated by a functional simula-

tion using the commercial SDL tool TAU [16]. Afterwards the
specification was implemented on the rapid prototyping plat-
form Phoenix [17]. Phoenix contains four Altera
FLEX10K100 FPGAs which are used for the implementation
of the DECT burst mode controller and is linked to a Motorola
MC68060 microprocessor. The VHDL- and C-Code were gen-
erated using the concepts described.

A small manually developed IP core connects a Tenovis
DECT transceiver with the hardware RTSS. This VHDL mod-
ule contains a CRC generator, a digital PLL and a small radio
control logic. The hardware RTSS was fully developed in
VHDL and the software RTSS is based on the real time oper-
ating system RTEMS. The RTSS implements the complete
computational model of SDL in the application. For a manual
design space exploration each SDL substructure was imple-
mented in hardware as well as in software. A possible parti-
tioning of the system is shown in fig. 8. All time critical
modules of the DECT specification have been implemented on
the FPGAs in hardware. The protocol automata for the bearer
(MTCtrl) and the connection management (MBC), the LLME
and the BMC processes are implemented in software on the
Motorola microprocessor. The MAC application does not con-
tain large data operations, so the hardware/software partition-
ing was performed for the CSF processes. Only the A_CSF
was partitioned along the border between its synchronous
communicating services AMUX and MTCtrl. The other CSF
processes were completely implemented in hardware. The ar-
chitecture shown in the figure supports the setup of up to four
bearer. Larger base stations are easily implemented with this

 Figure 7:  DECT MAC: SDL specification
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approach because only more instances of the SDL processes
A_CSF, B_CSF1 and B_CSF2 have to be implemented.

 7 Conclusion
The paper presents a new approach for the code generation

of SDL specifications. The solution allows a fine grain hard-
ware/software partitioning of SDL processes by separating the
control flow from the data flow. As a result of this approach
high-level synthesis yields better results than the monolithic
approach presented in earlier work. Different interface tech-
niques for the communication of the hardware/software parts
and the communication with the environment are discussed.
Finally the specification and implementation architecture of a
typical application was discussed.
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