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Abstract

Based on the methodology for the development of com-
munication systems, a framework for early performance
evaluation and hardware/software codesign of such sys-
tems is presented. We describe how performance re-
quirements can be formulated in a formal way during
the analysis phase of a project and how these require-
ments are used by the synthesis tools for hardware/soft-
ware codesign during the design and implementation
phase of the development cycle. Additionally, the con-
cepts of our codesign tools and a heterogeneous rapid-
prototyping environment are described. It is shown, how
our prototyping board can be used for validating the re-
sults of the early performance evaluation. We demon-
strate the approach on an example of a real-time
communication system.

 1 Introduction
The development of heterogeneous communica-

tion systems for performance critical applications
as real-time video-conference and multimedia re-
quires to bridge the gap between specification-lev-
el analysis techniques for communication
protocols and the synthesis of embedded systems.
This leads to an integrated, tool-supported devel-
opment cycle from the analysis to the design phase
[6][11] and the automatic implementation of for-
mal specifications on configurable rapid-prototy-
ping platforms. To validate as many design
alternatives of the real-time communication system
as possible, fast synthesis and integrated measure-
ment techniques are needed. This includes the au-
tomatic formulation of constraints from the early
analysis phase in the specification language used in
the design phase. The resulting specification then
will automatically be synthesized to the hardware
description and software implementation of the
system.

In the remainder, we describe a development pro-
cess and tools for supporting the rapid development

of communication systems. To support the com-
plete development cycle from beginning to the end,
we use the formal specification languages SDL
(Specification and Description Language [13]) and
MSC (Message Sequence Chart [14]). We extend-
ed these standardized languages with annotations
that support performance evaluation in early design
phases and integrate the hardware/software code-
sign of embedded systems [19] in the methodolo-
gy. Our extension of MSC is called PMSC [7] and
our extension of SDL is called SDL* [28]. The
specification of design constraints in PMSC and
SDL* are compatible, so it is possible to transfer
constraints from the PMSC specification to the cor-
responding SDL* specification during the develop-
ment of the system. The support of the complete
design cycle is the difference to the SDL based ap-
proaches for codesign described in [2] and in [10].
The main focus of this papers was the semiauto-
matic [2] or automatic implementation [10] of
hardware/software systems described with SDL.
Early design phases, the specification of perfor-
mance constraints with MSC, and the integration of
the measurement of constraints in a rapid-prototyp-
ing environment are not considered in the papers
described above.

This paper continues with a short introduction to
the design methodology. In section 3 we describe
the different codesign tools used in our design pro-
cess and section 4 regards the rapid-prototyping
hardware and the measurement tools. Finally, a
short overview of a case study of a multimedia sys-
tem is presented in section 5.

 2 Design Process

 2.1 Designing Communication Systems
As introduced in section 1, the design process of

a communication system starts with the analysis
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phase. In this phase, the functionality and the re-
quirements of the system are determined. Using the
language MSC, the interaction between different
system components is described formally. This de-
scription is augmented by performance require-
ments, stated in the extension PMSC. Therefore,
PMSC allows to describe the estimated timing be-
havior of system components to perform an early
performance analysis of the overall system [7].
This can be a stochastic graph analysis using the
analysis tool PEPP [3] or a real time schedulability
analysis as described in [15] and [27].

Figure 1 shows the fraction of fullfilled require-
ments over the time of a complete design process
within our framework. In addition it is shown in
figure 1 which tool of figure 2 is used at the differ-
ent phases of the design cycle. As discussed above,
the designer first specifies the systems interaction
and the performance requirements using PMSC.
After the system components and its communica-
tion relationships are specified, the engineer starts
to develop an SDL specification. During the analy-
sis and the design phase of the system the designer
often refines the PMSC and the SDL specification
[19], e.g. if the current PMSC does not keep the
systems requirements and the system components
or communication mechanisms in the specification
were changed.

This phase results in a complete PMSC specifica-
tion and an SDL specification that contains the
block and processes structure. Next the designer
specifies the complete functional behavior of the
different SDL processes. At his time, the SDL
specification contains more detailed information
than the PMSC specification: In the PMSC specifi-
cation, only requirements of the system and the
communication interactions are described. In con-
trast to that, the SDL specification determines the
complete functional behavior.

As can be seen in figure 1, it is not possible to
specify the complete functionality of the system
with PMSC. In addition to the dynamic behavior of
the system, the functional behavior must be speci-
fied with SDL.

To use the system synthesis tools described in
section 3, the performance requirements specified
with PMSC must be transferred to the SDL specifi-

cation. To describe such performance and other
system requirements we defined a few extensions
to SDL [19][28]. The new language is called
SDL*.

Using the SDL instrumentation tool described in
[4] all performance requirements given in the
PMSC specification are transferred automatically
to the SDL* specification. Additionally it is possi-
ble in SDL* to specify the mapping of SDL func-
tionality to hardware components to support a
semiautomatic hardware/software codesign. Now
the SDL* specification contains all informations
needed by the design tools described in section 3 to
implement the specification on the rapid-prototy-
ping platform described in section 4.

 2.2 Tool Flow for Codesign and Prototyp-
ing

In figure 2, a complete overview of the SDL*/
PMSC framework is given. To support the early
performance evaluation of the system, the frame-
work starts with the PMSC analysis (1). Based on
PMSC, different analysis techniques are possible:
A stochastic graph analysis for communication
systems [3], a real-time schedulability analysis
based on the event stream model for hard real-time
systems [15] and a schedulability analysis for het-
erogeneous systems [27]. To support all the differ-
ent analysis techniques, the PMSC specification is
translated to an internal graph representation [17].

On the other hand a complete synthesis path is
supported by the framework. As described in sec-
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tion 2.1, it is possible to transfer performance re-
quirements specified in PMSC to the
corresponding SDL* specification (see also figure
4 and figure 5). This is done by a SDL/MSC instru-
mentation tool (2). This tool also allows to use
PMSC for the definition of measurement points in
the implementation. This technique is called speci-
fication driven monitoring [4]. The data generated
by the measurement tools (9) are used to validate
the real-time constraints.

After all, performance requirements are trans-
ferred to the SDL* specification (3), which in turn
is translated into an internal graph representation.
The functional behavior of the SDL* specification
is translated to a cyclic control-flow (CFG) graph.
This graph is mapped on an architecture graph of
the rapid-prototyping hardware, which is loaded
from a library (4). Furthermore, the SDL* specifi-
cation may contain instructions about the mapping
of functional units to architecture modules. In the
model, this is described by the mapping of nodes of
the CFG to nodes of the architecture graph.

This internal representation of the SDL* specifi-
cation is used by different design tools: an estima-
tion tool (see section 3.1), which estimates the
costs and the timing behavior of graph nodes on
different architectures, a communication synthesis
tool (see section 3.2), which decides how commu-
nication links of the SDL* specification will be im-
plemented and an optimization tool based on tabu
search [22] to decide the mapping of the nodes of
the CFG to hardware- or software components (see
section 3.3).

The internal graph representation can be retrans-
lated to a SDL* (5) or PMSC specification. After
the optimization process, the SDL* specification
contains all mapping information needed by the
following implementation synthesis tool (see sec-
tion 3.4). Generating a PMSC specification with
estimated execution times for the allocated archi-
tecture components, it is possible to use the PMSC
performance analysis tools again.

The SDL* specification is translated into conven-
tional implementation languages as VHDL for the
hardware modules and C for the software parts of
the system. This is done by the implementation
synthesis tool.

The VHDL description is synthesized by the ar-
chitecture synthesis system CADDY [1] and spe-
cial FPGA synthesis tools (6). The software part of
the system is translated by conventional compilers
(7).

After the SDL* specification is implemented on
the rapid-prototyping hardware (see section 4) the
performance of the system can be measured by the
hardware monitor ZM4 [12]. The results of the
measurement will be evaluated by the tool SIM-
PLE [12] (9). Using this data, it is possible to back-

annotate the estimated values of the CFG and to re-
iterate the optimization loop.

 3 Design Tools

3.1 Estimation of execution times and costs
For each node of the CFG, the software and hard-

ware execution time and the costs of the allocated
architecture components are estimated. The inter-
nal graph representation contains two different
types of nodes: Nodes with an underlying data flow
graph (DFG) and nodes which must be mapped on
library components, e.g. signal queues, timer mod-
ules and communication interfaces. The software
and hardware execution times as well as the costs
of elements are loaded from the component library
shown on the left hand side of figure 2.

For each DFG, the estimation tool calculates the
hardware execution time and costs by using the
LEFT-EDGE [18] algorithm. For a given DFG, the
number of resources needed is calculated to guar-
antee the shortest latency. Based on the calculated
hardware resources, the area of the application spe-
cific circuit is estimated. To map more than one
node of the control flow graph on one specific
hardware implementation, the estimation algo-
rithm described in [29] is used. For estimating soft-
ware execution times, a different algorithm
calculates the latency of the given data flow graph
based on a restricted number of resources (regis-
ters/ALUs) with fixed costs.

After synthesis and implementation on the proto-
typing board, the execution times calculated by
CADDY or measured by the SIMPLE monitoring
software are used to refine the estimation.

 3.2 Interface Synthesis
In heterogeneous architectures with parallel pro-

cessors and application specific hardware compo-
nents, communication synthesis is an important
task. The semantics of SDL allows different com-
munication models for the implementation of spec-
ifications: The processes can communicate via
signals, which will be supported by the run-time
environment. Another approach is to communicate
via common memory, e.g. sharing variables. This
model is called the data referencing model. For
each SDL channel, the communication synthesis
tool selects the cheapest and fastest implementa-
tion model. This is normally the shared variable
model, because the sending of a signal via the run-
time system needs many copy operations.

To select an implementation model for an SDL
channel, the communication synthesis tool works
on the internal control flow graph described in sec-
tion 2.2. Based on the CFG, the communication
synthesis tool selects all SDL channels, which can



be implemented by data referencing [26]. All other
channels must be implemented using the signal
mechanism of the run-time system. The results of
the interface synthesis are used to define a starting
solution for the optimizer.

 3.3 Optimization

The optimizer searches for a system architecture
with minimal cost that meets the given constraints.
To perform this the optimizer calculates the map-
ping of nodes of the CFG to nodes of the architec-
ture graph. Thus, the optimizer subsequently
modifies the system architecture to improve its
quality. The search for he optimal implementation
of the system is based on a tabu search method
[22]. If a solution does not meet the constraints, the
optimizer allocates new hardware components of
the prototyping environment and/or changes the
mapping of the SDL processes. If a ‘good’ solution
is found, the search algorithm exits and the system
architecture provides the guidelines to generate the
implementation of the system. To support a semi-
automatic codesign approach, it is possible for the
designer to specify a starting solution for the opti-
mization using the mapping construct of SDL*.

 3.4 Implementation Synthesis

To implement the optimized specification on the
rapid prototyping board, the SDL* specification
that contains all hardware and software mappings
is translated to the implementation languages
VHDL for the hardware components and C for the
software modules.

We developed a tool to translate SDL* specifica-
tions to VHDL [21]. It should be easy to modify the
back-end of the tool to generate the C description
for the software modules, too. Because the tool
generates a unique process identification for each
process (hardware or software) used in the SDL
specification, the synthesis of software-software,
hardware-hardware, hardware-software and soft-
ware-hardware communication is supported.

This tool generates a behavioral description of the
SDL process and a structural description in VHDL
based on the mapping information of SDL*. The
structure description includes the communication
links between the different modules of the resulting
hardware. From the resulting VHDL code the ar-
chitecture synthesis system CADDY [1] synthesiz-
es a register-transfer description of the hardware
modules. For each SDL process an application spe-
cific processor consisting of a datapath and a hard-
wired controller is generated. Using this
description, RTL and logic synthesis tools generate
the programming description for the FPGAs.

 4 Rapid Prototyping Environment

 4.1 FPGA Board and Multiprocessor Sys-
tem

The prototyping environment [5] consists of two
parts: a VME based multiprocessor system and an
FPGA board. Both parts are interconnected with
several parallel connections.

The usage of a VME system [30] enables the use
of standard processor boards which lowers the cost
and also increases the flexibility by using several
types of processors for specialized functions. Cur-
rently, we have installed two Pentium-133 boards
with 32 MB of DRAM on each, an ethernet inter-
face, a video adapter and several serial and parallel
interfaces for debugging and monitoring purposes.
They are compatible to the PC/AT standard, disk-
less and booted via network.

Each FPGA on the FPGA board is connected to
an processor board through an own IDE interface.
This simple harddisk interface offers up to 16 MB/
s communication bandwidth and is flexible enough
to implement different communication methods
ranging from simple port accesses to high speed
DMA transfers without much processor interac-
tion. While the software side of the interface is in-
tegrated in the chipset of the VME processor
boards the hardware side is implemented in the FP-
GAs by the use of matching library components.

The FPGA board shown in figure 3 contains 4 Al-
tera Flex10k100 FPGAs [9]. They are intercon-
nected with 70 signals between every two chips,
which can be used to communicate between pro-
cesses in different FPGAs but also to split process-
es among multiple FPGAs. Additionally, each
FPGA is connected to a shared global bus. Via this
bus, a dedicated memory controller [31] for 512
MB DRAM and two PCI controllers [32] can be
reached. One of the PCI controllers connects the
board to a host PC with a bus extender, the other
one implements a local PCI bus with two slots for
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 Figure 3: The prototyping platform
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network interface cards. We have chosen this con-
figuration, because the implementation of the
shared bus with its protocol takes less FPGA gates
than the implementation of the memory controller
and the PCI interfaces in the FPGAs.

For the targeted application area, we have inte-
grated additional components to implement useful
functionality: a dedicated SRAM module and a
separate monitoring interface for each FPGA, a
programmable clock generator for up to 6 different
clocks with low-jitter buffers. The whole configu-
ration of the FPGAs and the additional components
is done by a microcontroller to support the remote
control from an integrated development platform.

 4.2 Runtime Support System
In addition to the prototyping hardware we have

developed a set of library functions which together
form the so-called runtime support system.

The runtime library of the parts of the SDL sys-
tem implemented in software is based on the real-
time operating system RTEMS [25]. All necessary
functions for the implementation of code generated
by the tools described in section 3.4 are resolved to
the corresponding functions of the operating sys-
tem. Also, the communication between hardware
and software parts is handled by this runtime sys-
tem. We have implemented a set of functions
which offer different communication methods with
different bandwidth and varying resource usage.
The optimization phase selects the appropriate
functions together with the corresponding hard-
ware functions.

The same way, the software parts are linked with
the library, the VHDL output of the tools is merged
with library functions. This happens at different
stages of the synthesis. The highest level contains
functions which are integrated in the architecture
generation of CADDY. The body of the function is
directly inserted into the high level description.
One level below are functions from which only the
interface is considered by CADDY while generat-
ing the appropriate behavior. At the lowest level,
between the high level synthesis of CADDY and
the RT synthesis, complete library entities are con-
nected to the entities generated by CADDY.

The functions used for hardware synthesis range
from computational elements optimized for the tar-
get architecture over components needed to fulfil
the semantic model of SDL like FIFO buffers to
simple interfaces connecting the SDL processes to
fixed components like the interface to the DRAM
or a PCI based network card.

 4.3 Measurement Tools
After code generation for the system, the applica-

tion is executed in the real environment under aug-

mentation of a performance monitor. For this, we
use the ZM4/SIMPLE environment [12]. With the
hardware monitor ZM4, a trace of timestamped
events is recorded. Single events are for example
the receipt of a signal at SDL level or the occur-
rence of an interrupt. Events in the runtime system
itself like scheduling or buffer overflow can be re-
corded, too.

The interface between the system under test and
the hardware monitor is implemented with func-
tions resp. components from the runtime support
system. After selecting interesting events in the
high level specification or deducing them from
nonfunctional constraints, the correct insertion
points of these instrumentation commands have to
be found in the functional specification. This is
done automatically using a technique called speci-
fication driven instrumentation developed by our
group [4]. The instrumentation is inserted in the
SDL specification before compilation and resolved
to functions in the runtime system.

The resulting event traces are analyzed with dif-
ferent methods implemented in our toolset SIM-
PLE. The necessary trace descriptions and query
commands are also generated automatically from
the specification. With the monitoring results, the
system under test can be judged, and measured du-
rations for each part of the system can be fed back
in analysis tools like PEPP and the optimization
step by using PMSC.

 5 Case Study: Implementation of
RTP

The methodology and tools mentioned above are
applied to implement a multimedia communication
system with stringent real time requirements also
known as Quality of Service (QoS) requirements.
One part of the system will be explained in the next
section to illustrate how the tools are applied.

The example illustrated below concentrates on
the transmission of voice data in the Internet using
the protocol RTP (Real Time Transport Protocol)
[24].

 Figure 4: PMSC Specification of RTP Data Transfer
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RTP is a light-weight application protocol which
is used to transfer time-sensitive data. It does not
guarantee the timely delivery of the data but pro-
vides mechanisms that allow the receiver to recon-
struct the ordering, to synchronize different media
streams and detect the loss of packets. Depending
on the application, appropriate recovery mecha-
nisms are executed. In addition to the data transfer
protocol, RTP contains a control protocol (RTCP).
Each participant of a session sends and receives re-
ports in order to estimate the quality of the trans-
mission and to perform adaption if the quality is too
low. RTP performs on top of UDP [20] or ATM
AAL5.

In the first phase of the software engineering pro-
cess, the global behavior of the system is specified
using PMSC in order to integrate performance as-
pects e.g. QoS requirements. In our example, we
use RTP for transmitting voice data. Therefore, the
PMSC specification in figure 4 consists of an in-
stance RTPSenderProcess which describes the
behavior of the sender. The sender receives period-
ically raw audio data from an audio process, which
is not described here in detail. The audio data is
packed into RTP packets and sent into the network
using the signal NDatReq. For this case, we spec-
ify the following performance and QoS require-
ments. The application generates audio data with a
rate of 64 kbps. The size of the payload is 160
bytes. The RTP protocol layer adds its own header
to the payload, yielding to a total packet size of 172
bytes. The time requirement for processing the
packets is 2 msec. (s. figure 4).

The PMSC specification describes the dynamic
behavior of our system, e.g. the exchange of sig-
nals. It does not describe the functional behavior.
For a complete functional specification we use
SDL* (figure 5). Since the SDL* specification is
the main input of the codesign tools all the dynamic
requirements in the PMSC specification (figure 4)
are transferred and matched.

In figure 6, some measurements for a software
implementation are displayed, e.g. the processing
time for the creation and sending of each RTP
packet. The timestamps were taken when the audio
data was sent to the SDL system and when the RTP
packets were sent to the UDP sockets. The process-
ing times of the RTP packets range from approxi-
mately 1.6 to 2.7 msec due to other concurrent
processes operating in the system at the same time.

Using the implementation synthesis tool dis-
cussed in section 3.4 a behavioral VHDL descrip-
tion of the RTP specification is generated. With the
architecture synthesis tool CADDY this descrip-
tion is transformed to a RT level implementation
(figure 7). Performing the sender process of RTP in
hardware the processing time to send a packet is
smaller then 100 ns. The RTP specification con-
tains one sender and one receiver process and
CADDY generates a architecture with 7400 gates
to implement one process.

The result of the experiment is that it is possible
to implement a fast solution for the RTP protocol in
hardware. A software solution is also possible if
only the RTP processes are running on the hard-
ware.

 6 Conclusion
In the paper we discussed the complete develop-

ment cycle of a communication system. We have
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extended MSC to include early performance analy-
sis in the design process and SDL to support HW/
SW codesign. The design phase of the develop-
ment process is supported by several codesign tools
and a rapid-prototyping environment. Presenting a
short case study of the development of the RTP
protocol we have shown how PMSC and SDL* are
used to specify non functional requirements and
how they are measured.
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