
A Multidisciplinary Design Methodology for
Cyber-physical Systems

Frank Slomka, Steffen Kollmann, Steffen Moser and Kilian Kempf ?

Institute of Embedded Systems / Real-Time Systems
Ulm University

{frank.slomka, steffen.kollmann, steffen.moser, kilian.kempf}@uni-ulm.de

Abstract. Designing cyber-physical systems is a challenge originating
from the multidisciplinary and mixed-signal requirements. In order to
handle this challenge, many design languages have been developed, but
none is able to connect different application domains adequately. This
paper proposes a new system based view for cyber-physical system de-
sign which can be easily adapted by MARTE or SysML, as it uses a
model based design technique. Instead of defining another UML profile,
we present an intuitive idea for the development of cyber-physical sys-
tems by refinement and introduce new abstraction layers that help to
describe operating system and mixed-signal issues. Using new abstrac-
tion layers, it is now possible to support all views of the platform based
design by using one consistent language. The approach explicitly dis-
tinguishes between the physical system and the computational system.
The benefit of this new approach is presented in a case study where a
cyber-physical system is designed.

1 Introduction

The design of cyber-physical systems [14] – consisting of software as well as
digital and analog hardware – is still a great challenge that is caused by the in-
creasing complexity and the multidisciplinary requirements which are typical for
mixed-signal applications. One issue is to connect different application domains
of the system in a whole design process. To cope with this, many different design
languages have been developed.

Model-based design with the Unified Modeling Language (UML) [20] is a
common way to model software systems. During the last years it has been
adapted to embedded systems. For this, UML has been extended by the pro-
files Modeling and Analysis of Real-Time and Embedded Systems (MARTE)
[18] and OMG Systems Modeling Language ((OMG) SysML) [19]. A lot of dif-
ferent functional and extra-functional1 diagrams and models are defined in both
modeling languages. UML diagrams in MARTE are defined for embedded sys-
tem design and support a lot of different views. However, a closer look at the
specification of MARTE shows that the authors are software oriented. System
aspects like the description of physical behavior with differential equations are

? This work was supported by the German Research Foundation.
1 Extra-functional is similar to non-functional. But in our opinion, each requirement

is needed for the functionality of a function. Therefore, requirements like time are
considered as extra-functional.

marginal. However, for both, MARTE and SysML, the platform-based design is
not considered well. Certainly it is possible to define hardware architectures as
well as the binding of computational elements to processing elements, but the
language does not support hierarchical bindings and does not support operating
system issues and physical design aspects needed in mixed-signal design. There-
fore the system view in the Y-diagram of platform-based design [6] is poorly
implemented in MARTE and UML. SysML does not support graphical repre-
sentations for different types of physical and logical flows [19]. In SysML, the
attribute of a flow is described by using flow properties. However, to support en-
gineering of cyber physical systems, a clear distinction between different classes
of types is needed. Such an approach is presented in this paper.

Another possibility to specify cyber-physical systems is the use of process
models like the ANSI/ISA-5.1-1984 (R1992) standard [11] to describe measuring
and control devices. For example, it allows the modeling of devices used by
control room operators. Such a process model is able to describe different aspects
of the physical environment and the connection, but the design of the computer
architecture is not covered in detail.

It is inherent to the design of cyber-physical systems that the design process
has to cover different application domains like automotive, avionic, industrial
control, mobile communication, etc. Each domain has different views on tech-
nical and physical details. As a consequence to cyber-physical systems design,
the design methodology has to consider all these different aspects. To cope with
this problem, domain specific languages have been developed to cover the de-
sign challenges of specific systems. For example, the tool PREEvision of the
company aquintos [3] can be used as design entry in the automotive domain.
Unfortunately, other domains are not covered.

To handle the problems discussed above, we introduce a new approach for
system modeling. We supply a new idea to support cyber-physical system de-
sign by introducing new symbols. These symbols are independent from UML,
MARTE, or SysML but can be easily adapted to them. The goal of the methodol-
ogy is to give the designer the opportunity to refine a system during design. The
approach extends the object-oriented philosophy of designing software systems
to multidisciplinary, multi-technology hardware/software systems. Therefore the
methodology supports application design as well as platform design in a single
view. This approach is only suitable if the methodology supports the refine-
ment process and a refinement history. It should be possible to move in both
directions of the refinement process, an approach that could be compared to the
possibilities of version control tools.

Using such a new description language, it is necessary to include it into the
design flow of cyber-physical systems. This is essential and often not sufficiently
considered when new languages are designed. For example, in [23] a generic de-
sign flow for embedded systems is presented, but the granularity is not sufficient
for our idea. A design flow for the automotive domain is presented in [26] and
is confirmed by a real example in [13]. But in that contribution, only the auto-
motive domain is covered. No adequate design flows exist that are suitable for
cyber-physical systems and therefore we introduce an appropriate design flow in
Sect. 2.

The remainder of the paper is as follows: The different abstraction layers are
presented in Sect. 3. In Sect. 4, the new system model is introduced. After this,
an exhaustive case study is given (Sect. 5), followed by a conclusion.

Technical
System

Requirement
Engineering

System
Analysis

System
Design

System
Implementation

System
Specification

System
Architecture

Requirement
Specification

Component
Specification

Platform
Design

Hardware Software

Parameter
Extraction

Constraint
Checking

Technology
Partitioning

Stability
Checking

Cyber-physical
System

1

2

3

4

5

Constraint
Analysis

Fig. 1. Generic design flow of cyber-physical systems

2 Design Flow

Figure 1 gives an overview of the proposed design methodology which adapts
object-oriented design methodologies as given in [12] to a multi-technology com-
ponent approach.

In the first step, well known from software system techniques, a require-
ment specification is conducted 1©. After finding the requirements, the system’s
functionality has to be worked out. For this, a system analysis based on the re-
quirements is performed. It will identify which subsystems are needed and how
the information, material, or energy flows between these subsystems. Note that
this step is in most cases not a software or information technology problem. It
is an engineering problem, and the information technology does not play an im-
portant role at this stage. The result is a small model-based system specification
which considers all aspects of the whole system.

Based on the resulting system specification 2©, the system design starts.
At this stage, the previously specified subsystems have to be refined and the
underlying technology has to be chosen. Both parts, system design and com-
ponent specification 3©, are done on the application view [8]. The system and
component design follow the well known steps of object-oriented methodolo-
gies, called system analysis and system design, where the design flow bases on a
refinement technique. This means an engineer can first verify the system’s sta-
bility independently from the computer platform which is designed later. This
is an important aspect of controller dominated applications. The next step is
to perform a technology partitioning. The subsystem has to be partitioned into
different technology domains. This means the designer has to assign which part
of the system has to be implemented in mechanical, electrical, or computational
hardware and which technologies are used to realize the implementation of the
hardware. Be aware that at this point in the design flow no decision concerning

software is made. At this stage we distinguish only between mechanical, analog
and digital.

The step after the technology partitioning is the platform design, where com-
ponents, tasks, or controllers are mapped to allocated computational resources.
The platform design contains several design steps like the allocation of process-
ing elements, communication elements, memory elements, scheduling spaces or
address domains, and the binding of tasks to scheduling spaces, tasks and buffers
to address spaces, scheduling spaces to processing elements, or address spaces to
memory components. The result is the system architecture 4©.

The next step is the constraint analysis 5©, which is well known as hard-
ware/software co-design or system synthesis. Further details can be found in
[25] and [7]. During this design step, a constraint checker verifies the chosen
computer architecture and the schedule of the chosen binding. It delivers plat-
form parameters for the component model.

After this, the system’s stability considering the influence of the platform
on the application and the technical system can be verified. Based on a design
space exploration step to find the cost optimal platform that allows a robust
operation of the whole system, the design of the hard- and software starts. After
implementing hardware and software, model parameters are extracted from the
implementation specifications and the model of the cyber-physical system is
checked against the specified constraints.

Considering the whole process, the system design usually starts with the plat-
form design immediately after the system specification. This means the global
view on the system design is still missing. In the following sections we will close
this gap with a new system view that allows to consider multidisciplinary design
criteria during the design process of cyber-physical systems. Thereby a refine-
ment process is supported to enable stability corrections at a high level.

3 Refinement

After introducing the design flow of cyber-physical systems, we now give a closer
look at the refinement process which is included. We distinguish between the
hardware, software, and system refinement. It will be discussed that the classic
abstraction layers of hardware and software are not sufficient for complex cyber-
physical systems.

3.1 Hardware Abstractions

From hardware design, six different layers of abstractions are known. These
layers are well established in the semiconductor industry and each is supported
by different models of computation and verification tools. The classification is
given in [8] and is divided into system level, behavioral level, register transfer
level, gate level, transistor level, and layout level. As hardware design is well
understood, we will not deal with these levels anymore. In the design flow given
in Fig. 1 we find these parts downwards from the platform design.

3.2 Software Abstractions

Software development differs from hardware development. However, a closer look
shows that software development can also be separated into different abstraction

Technology Partitioned Level

System View

Platform ViewApplication View

Task Level

Module Level

System (Time & Space) Partitioned Level

Component Level

Operating System (Domain) Level

Module Level

Process.
Element

I/O
Element

Memory
Element

Comp.
Task

Physical
Task

Task

Module Module

Domain

S

M

Processing Element
with Threads

S

M

Thread

Thread

Processing Element
with Processes

S

Process M

Process M

MComputational Task
(Mathematical Model)

a
b

+x
.

x
..

= f

Physical Task
(Mechanical)

No Technology
(Converting Task)

Computational Task
(Digital Signal
Processing)

Physical Task
(SignalProcessing)

Physical Task
(Electrical)

Fig. 2. Abstraction levels in the design flow

layers. This classification is adapted from [24] and is divided into architecture
level, component level, algorithmic level and machine code level. The abstraction
starts at the platform design as well as in hardware design, because the platform
is needed to start the software design. The result is that the previous system
design as given in Fig. 1 is not covered by these abstraction layers. Therefore we
define a new approach to system abstraction on higher levels.

3.3 System Abstractions

Since the introduction of the system-on-a-chip paradigm, the conventional model
does not apply anymore. The common approach ends below the system level,
but systems have to be consistently explained in the whole. Therefore a new
paradigm has been developed to support system synthesis. This platform based
design is shown in Fig. 2 by a Y-structure. It is distinguished between the differ-
ent views Application, Platform and System, as further discussed in [22]. This
means the development of the application’s functionality is separated from the
development of the hardware platform. Hence, this approach takes into account
that in many projects, hardware platforms are used for different products. The
system axis describes the mapping or binding of application functions to the
hardware components. Although the application and the platform view is cov-
ered by UML and AUTOSAR [1], the system view is not supported well by these
techniques.

We introduce the abstractions top-down and start with the module level in
the application view. Normally, the mission level is the starting point as intro-
duced in [4], because many cyber-physical systems are part of larger distributed
systems. For example an autonomous underwater vehicle contains many differ-
ent subsystems which interact: the sonar system, the navigation, the actuator of

the vehicle, and the control unit. The interaction of all these components is con-
sidered on the mission level. For this paper, the mission level is not considered
any further.

Application View The application view is supported in three abstraction lev-
els: We distinguish between the module and the task level. The task level itself
is separated into two different levels: The first one is a level at which a designer
only concentrates on the functionality of the system. This models the middleware
abstraction of a system which is comparable to the AUTOSAR [1] standard for
the automotive domain whereby our middleware is not domain dependable. It is
done by the composition of the several tasks describing the behavior of specific
system parts. Each behavior is encapsulated by a task and tasks may communi-
cate with each other. Note that in this context a task does not mean an operating
system task or process. In other words, only entities of functions are composed.
In the second task level, the technology partitioned level, design decisions for the
mapping of tasks to technologies are described. At this stage of the development
process the designer documents the choice between digital hardware and analog
electronics or mechanical elements. The computational tasks are mapped to the
platform in a later stage described in detail in the step System View.

Platform View The platform view considers only the hardware for the com-
putational tasks. The process starts with the module level to describe the ap-
proximated platform. The refinement step Component Level defines the system
platform in more detail. At this level the processing elements (like CPU or
buses), I/O elements, and memory elements are specified. The resulting archi-
tecture from the component level can then be refined at the operating system
level. At this stage the different components are divided into domains, describing
the scheduling behavior and memory architecture of the platform.

Note that this is an abstraction to support space and time partitioned plat-
forms for the applications. For the application it is not important how the com-
ponents are connected, it is important which memory can be used and when
it gets resource time. Therefore this level supports an abstraction for operating
systems.

System View The system view unites the application and platform view. At
this level application tasks are mapped or bound to the elements of the platform.
Each computational task is assigned to a platform domain describing its schedul-
ing and memory architecture. Based on the mapping it is possible to classify if
a task is implemented as a thread sharing memory with other threads or as a
process having its own memory.

In MARTE, allocation means the mapping of application to a platform [5].
In system synthesis, allocation means to choose a component, while binding is
the term to describe mappings of tasks to allocated components. As described
in [5], MARTE distinguishes between structural and behavioral bindings. In this
paper we use the system synthesis terms instead, as the aim of the methodology
is to synthesize embedded systems. As shown in [5], the binding mechanism in
MARTE does not consider that a task needs both a computational resource
as well as memory resources. If this is modeled in a naive way, for each part
– computational binding and memory binding – different allocation arrows are

needed. In complex architectures this is not an elegant way because of the rising
complexity. This approach is given by MARTE (see pages 132 ff. [18]).

In this paper we introduce domains. Domains are an abstract model of re-
sources and can be modeled using the service construct in MARTE. However,
services are not the concept needed by synthesis, because services hide archi-
tectural aspects. Therefore domains are a special kind of modeling element, as
they allow an abstract formulation of architectures. Not in the detailed way like
component diagrams, but more in an abstract way. Using the concept of hier-
archical composition of domains, it is possible to describe complex hardware
architectures easily. Such a model is needed because a complex binding relation-
ship as proposed by MARTE is very hard to use if an automatic design space
exploration has to be designed and implemented because there exist a lot of de-
pendency rules between the different views. A comparable approach is presented
in [15]. However, the activity threads discussed in that paper are mappings of
the detailed architecture to the application. This is equivalent to modeling the
binding with application arrows and does not reduce the complexity. Addition-
ally, our approach explicitly supports the design refinement of cyber-physical
systems. In MARTE or SysML this is only supported by using attributes.

In UML, MARTE, or SysML it is only possible to describe the application
or platform view. Binding and mapping is only supported in a graph based
approach like in [25]. Memory is not considered in it. The whole system view is
also missing in all cases. This gap is closed in this paper by the newly introduced
system view.

4 System Description Language

In this section we introduce our new system description language as a design
entry for cyber-physical systems. As discussed in the last section, this view allows
to support the refinement process in the design flow as well as the connection
of different technology domains into one model. In contrast to other models, the
design of the computer system is still possible, because the methodology can be
easily adapted to UML/SysML and other techniques. Models given in a graphical
specification language have to be intuitively understandable. As mentioned, this
is one reason for the legitimacy of domain specific languages. Our intention is
to consider the domain of cyber-physical systems in general. Limitations of the
approach as described in this paper are a missing binding from constraints to
clocks. The analog part is just drafted in the paper to separate it from the digital
part. Therefore the presented methodology does not allow a compositional design
flow on the analog parts of the cyber-physical system.

4.1 Application View

To support a multi-technology model, different symbol types are defined for the
application view, which are depicted in Fig. 2. First of all it is distinguished
between modules and tasks. Modules are blocks containing other design enti-
ties such as modules and tasks. They are used to support a hierarchical design
methodology. A module may contain different tasks. However it is also possi-
ble that a module contains mathematical models, functions, or formulas. There
are different types of modules specified to support intuitive and readable sys-
tem models: modules keeping mathematical models, modules keeping electronic

Binary SignalMass Stream

Energy Stream

Signal

Message

Electrical

Pneumatical Hydraulical

Acoustical
(())

Radio

Examples:

Electrical Signal

Energy Stream (Electrical)

Optical Signal
Optical

Fig. 3. Symbols of communication

systems, modules keeping electrical models, and modules keeping mechanical
models. These types are supported in all abstraction levels as shown in Fig. 2.
So a task can be a converting task where the technology is not specified. But it
is also possible to have tasks with a technology binding and a type.

4.2 Platform View

The platform view also starts with modules to support a hierarchical design
methodology. The modules can consist of several modules or components. Com-
ponents are hardware elements such as memory, processors or processing ele-
ments and interface elements. Therefore components are model elements of a
hardware view. The components can then be refined by domains. A domain in
the platform view describes on the one hand the access to the resource through
a scheduling strategy and on the other hand the memory architecture in which
the domain is embedded.

4.3 Communication

To connect the different tasks in the application view, different types of com-
munication mechanisms exist. They are depicted in Fig. 3. As well known from
hardware description languages, the communication links are called signals and
messages. The following classes of signals are supported: 1. Mass stream: Trans-
port of mass. 2. Energy stream: Transport of energy. 3. Signal: Transport of
information. 4. Binary signal: Computational signals as known from hardware
description languages with the binary states, like true, false, undefined and high-
impedance. 5. Messages are only supported in computer systems. It is also pos-
sible to define message types with complex payload data unit structures, like
integer or string messages. Additional symbols are added to the communication
links to characterize the link: electrical, radio, optical, acoustical, pneumatical
and hydraulical types are supported. This is illustrated by three examples in
Fig. 3.

Signals of different semantics can only be connected by using transformers.
An example is given later in the paper: a transducer transforms an electrical
signal to an acoustical/mechanical signal. Therefore design tools have to check
the type of a language construct in order to separate different views and to avoid
connecting different incompatible components.

Triggered
Interface

Blocking
Interface

Non-blocking
Interface

Fig. 4. Symbols of interfaces

Event
Constraint

Clock

Power
Constraint

P

Energy
Constraint

W

Safety
Constraint

Utilization
Constraint

Timing
Constraint

t

Constraint

x
1

Probe

Probe
Connection

Fig. 5. Symbols of requirements

4.4 Interfaces

Figure 4 gives an overview of different graphical symbols that model interfaces
to computational tasks. An interface is generally specified by a rectangle with
round sides. It is distinguished between different types of interfaces that have
been partly inspired by the abstract communication channels presented in [9].
There are blocking, non-blocking, and triggered interfaces. Blocking means that
the sender is blocking until the data is received by the receiver. Non-blocking
means that the data is stored until the receiver is ready to receive the data.
Triggered means that the receiver task is triggered to receive the data. Other
possibilities for interfaces between computational tasks can be found for instance
in [10].

4.5 Constraints

To specify extra-functional constraints, graphical elements are defined. Such el-
ements are a diamond in a typical comment symbol defining the type of the
constraint as shown in Fig. 5. We distinguish between timing constraints, area
or cost constraints, power and energy constraints, and safety constraints. Due to
the compositional approach of the diagram types it is very easy to define addi-
tional constraints. Note that requirements are always specified between probes.

Assume that in this paper the time model presented in [17] is used instead
of the models given in MARTE. This is done because MARTE does not give a
formal semantic to its model and the MARTE model is just a syntactic extension
to the time model of [17].

5 Case Study

In this section, a design example is considered. The sonar system is part of a
larger project, an autonomous under water vehicle (AUV). The major task of the
sonar system is to detect objects in the water that will be used for navigation and
maneuvering of the robot. The sonar system sends acoustic waves into the water
and, if there is any object, receives the acoustic reverberation of that object.
Such a system is a typical example of mixed technology domains. It consists of
an electromechanical part to generate acoustic signals, an analog electronic part
to drive the electromechanical sound generator and to receive the reverberation,
and a digital electronic part with hard- and software for signal processing and
target detection. We divide the design process into three parts. The first one is

Low Pass
Filter

Transducer

M
E

Main
Controller

Range (50 m, 100 m, 200 m)TX

RX

Sound (200 kHz)
Signal Generator

Auto Correlation Target Detection

Fig. 6. Analysis components

the system design, starting with the requirements analysis. In the second step
the platform design is conducted. Finally, the system is implemented with well
known procedures for hardware and software design.

5.1 System Design

We start with the system design. The focus here is to perform the requirements
engineering and to conduct the system analysis. Based on this, the main com-
ponents are specified and the technology partitioning takes place.

Requirement Analysis The sonar has the ability to detect underwater objects
(targets) by using sound signals of in this case 200 kHz. It sends an acoustic signal
and then waits for echos from the targets. In order to accomplish that, the sonar
has to measure the time from the emission of the signal up to the reception
of the echos generated by several targets. The system should be able to detect
objects in the range from 2 m up to 200 m. To support a high resolution and a
fast detection of narrow targets, the range has to be chosen from three ranges:
2–50 m, 2–100 m, and 2–200 m. These ranges are available in different modes of
the sonar.

System Analysis The second step in the design process is the application
analysis, as shown in Fig. 6. In this step, the main functionality of the system is
specified. The design of an actor oriented system starts with its design entities.
In the case of the sonar system, the following analysis objects are defined: A
signal generator that forms the sending signal, a transducer that transforms the
electrical signal into an acoustic signal, and a receiver that filters the received
signals. This step is mandatory because the signal strength of the received signal
is very low compared to the strength of the sending signal. After receiving the
echos of detected objects, an auto correlation function detects the echos of the
sending pulse (see Fig. 6). This means that the pulse form of the received signal
must be the same as the pulse form of the sending signal. After filtering, only
signal echos remain. A target detection then analyzes the echos and determines
the target’s destination. The whole system is controlled by a main controller.
In this phase, the main controller, the low pass filter, and the transducer are
modeled as tasks, while the signal generator, the auto correlation, and the target
detection are drawn as blocks. These blocks will be divided into subtasks during
the following design steps.

Multiplication

*Transducer

M
E

Voltage
Source

Level
Converter

Voltage
Multiplier

U
U

FT

t
s

 Envelope
Filter

 Threshold
Filter

t

FT

s
t

t

IFT

t
s

Signal
Generator

Main
Controller

Pulse
Response Time

4 Hz

Range (50 m, 100 m, 200 m)
TX

RX

Sound

Low Pass
Filter Amplifier

Fig. 7. Design components

System Design In the next step, the application design has to be refined. How
is the auto correlation and the target detection implemented, and how does the
signal generator work? The resulting application design is shown in Fig. 7.

Signal Generator: The sonar signal will be generated by a signal generator
which forms digital pulses. A level converter transforms these pulses to the volt-
age level needed by the acoustic transducer, an X-cut crystal which transforms
electrical signals into acoustic waves. The transceiver sends pulses of 200 kHz as
given in the requirements. To prepare the signal detection, the sending signal
generated by the signal generator is transformed by a Fourier transformation.

Auto Correlation: After amplifying the signal, the echo detection is per-
formed by an autocorrelation function which can be implemented with a signal
convolution. The autocorrelation identifies the sent pulse in the received audio
spectrum. This step is necessary to be able to detect the received signal against
the background noise of the sea. A convolution contains an integration of the
received signal. However, it is known from signal and system theory that such
an operation in the time domain can be transformed into a multiplication in the
frequency domain. This transformation is performed by the Fourier transforma-
tion. The multiplication then may perform the convolution or the correlation
function.

Target Detection: After transforming the signal back into the time domain,
the targets are detected by an envelope filter and a threshold filter. The envelope
filter reduces the information of the signal to just the interesting envelope while
the threshold filter detects the received pulses and their timing. The timing
of the received pulses is then sent to the main controller which calculates the
range of the detected objects. The sonar data can then be sent to other system
components like the navigation module of the robot.

Technology Domain Binding The first step in system refinement is the do-
main binding. The system architect has to decide which parts of the system
are implemented in which technology. As seen in Fig. 8, the transducer and the
level converter are implemented in the physical electronic domain. The system
architect decides to implement the signal processing in digital electronics be-
cause the maintainability of digital systems is better and the design of digital
electronic is easier than the design of analog components. However, to support

Pulse
Response Time

4 Hz

21

1

2

Required Target
Detection Time

t

Maximal
Signal Delay

t

Transmit Signal
Detection Time

tLow Pass
Filter

Amplifier

Transducer

M
E Voltage

Source

Level
Converter

Voltage
Multiplier

U
U

FFT

t
s

 Envelope
Filter

 Threshold
Filter

t

FFT

s
t

t

IFFT

t
s

Main
Controller

Range (50 m, 100 m, 200 m)

TX

RX

Sound

A/D

A
D

Multiplication

*

Signal
GeneratorD/A

D
A

Sample
Time

1 MHz

Fig. 8. Technology binding with added probes and timing constraints

this decision, a new component must be added to the signal flow. An analog
digital converter is needed to discretize the received analog signal. As seen in
Fig. 8, the Fourier transformation, the signal multiplication the signal genera-
tor, the inverse Fourier transformation, the envelope and threshold filter, and the
main controller are now refined into digital processes. After binding tasks to a
technology domain, electrical signals are refined into binary signals or messages.

Timing Requirements Fig. 8 also shows the timing requirements, which are
added in this step. To sample 200 kHz signals, a sampling rate of twice that fre-
quency is needed. However, the sampling rate of the analog-digital conversation
is chosen to be 1 MHz, because the low pass filter is not perfect and the sig-
nal contains parts with frequencies above 200 kHz. So additionally, three timing
specifications are added: the sampling rate of the analog-digital conversion, the
required time for the target detection, and the overall computation time of the
system. The time required for target detection was calculated in the following
way: As given by the system specification, the sonar has three detection ranges.
A short range up to 50 m, a mid range up to 100 m, and a long range up to
200 m. According to the average signal speed in water, a signal from an object
in a distance of 50 m is received after 71 ms, so after sending a pulse, the system
has to wait for this time before sending the next pulse. Because the 50 m range
is the fastest system mode, a target detection time of 71 ms is needed. From
these considerations, the maximal pulse response time may be calculated. To
support the auto correlation, an additional timing requirement is needed, the
transmission signal detection time. The Fourier-transformed sending signal has
to be stored before the first echos are received. As stated in the AUV specifi-
cation, the minimal detection range is 2 m, which leads to a transmission signal
detection time of 3 ms.

M

t

IFFT

t
s

Transducer

Signal
Generator

Sound

Main
Controller

t

FFT

s
t

D
A

 Envelope Filter
 Threshold

FilterMultiplication

*

Sample
Time

 1 MHz

 4 Hz

Pulse
Response

Time

M

PRIORITYTDMA

FFT

t
s

M

M

A
D

Fig. 9. Architecture of the sonar

5.2 Platform Design

After the definition of the application, the platform has to be designed. In this
step, the hardware/software architecture of the system is devised. This means the
required circuit techniques are selected in the analog domain, while in the digital
domain, hardware technologies, hardware architectures, processing components,
and software architectures are designed.

The first step is to specify buffers in the form of non-blocking interfaces. Each
process has to be able to communicate with other processes through messages.
To model the message communication, buffers are added to the model. Their size
can not be specified at this first step because it depends on the scheduling and
binding of the processes. After adding the buffers, the scheduling and memory
spaces are selected. This step is an optimization process and will be performed
with the help of a design space exploration.

Binding and Allocation of Computation A typical example is shown in
Fig. 9. In this example, a hardware component which implements the signal
generation, an instruction set processor and a coprocessor are allocated. The co-
processor implements the fast Fourier transformation (FFT) and a subsequent
multiplication. The FFT coprocessor can also be used to execute the inverse
Fourier transformation. This is the reason why the IFFT is bound to its own
scheduling domain. All FFT operations are scheduled to the hardware copro-
cessor FFT that also performs the multiplication and on which a TDMA (Time
Division Multiple Access) scheduling is employed. The main controller and the
two digital filters are mapped onto the instruction set processor and are sched-
uled by a fixed-priority system. The hardware/software model is analyzed in
the next step. The architecture presented in Fig. 9 can be directly used as a
specification for Symta/S [21], the real-time calculus [27], or the event-spectral
calculus [2] by adding the required model parameters like the worst- and best-

case execution times. The event models necessary for the analysis can be derived
directly from the specification as well as the timing requirements.

Binding and Allocation of Memory In embedded systems, the platform of-
ten consists of more than one processor. In our example, two application specific
hardware processors and one instruction set processor are used. The data spaces
of the tasks and the message buffers for the interprocessor communication has
to be bound to the system’s address space. One solution could be the allocation
of one memory element and the binding of all buffers and process data areas into
one address space. However, there are several possible solutions. The FFT pro-
cessor may have its own memory and the buffers to and from the FFT processor
are bound to that memory. In order to perform a communication to the filters
implemented on the instruction set processor, the buffer between this task then
has to be implemented on a shared memory.

5.3 Implementation

The last step is to implement the system based on the embedded architecture.
From here, well known established methodologies can be used to implement
the software and hardware components as introduced in Sect. 3. For example,
the system can be defined in Matlab/Simulink [16], which will provide an ap-
propriate model for the verification. Based on code generation toolboxes it is
possible to generate the hardware description language and software code for
the implementation. Using automated back end processes leads to the desired
implementation.

6 Conclusion

In this paper we have presented a new methodology for the description of cyber-
physical systems. We have introduced a new way to model such systems in the
whole. The main focus was the definition of a new entry for the design process,
covering multidisciplinary design constraints. In contrast to other models, the
presented approach provides the possibility to model systems with their influ-
encing physical properties. A stepwise refinement of the system model has been
introduced. One advantage is that the developed methodology is not orthogo-
nal to the established standards MARTE or SysML and can therefore be easily
adapted by these. The future work will cover a detailed discussion of the plat-
form aspects and how domains are described at the component level. Another
open issue is to go into deeper details of the physical and analog concepts of the
methodology to better support the mixed-signal code generation and simulation.

References

1. AUTOSAR. http://www.autosar.org/
2. Albers, K., Slomka, F.: Event Stream Calculus for Schedulability Analysis. In:

Analysis, Architectures and Modelling of Embedded Systems, IFIP Advances in In-
formation and Communication Technology, vol. 310, pp. 102–114. Springer Boston
(2009)

3. aquintos: Preevision. http://www.aquintos.com/
4. Baumann, T., Salzwedel, H.: Mission Level Design using UML 2.0. In: Proceedings

of the NODe ’05, Object Oriented Software Design for Real Time and Embedded
Computer Systems (2005)

5. Boulet, P., Marquet, P., Piel, É., Taillard, J.: Repetitive allocation modeling with
marte. In: Forum on specification and design languages (FDL07) (2007)

6. Carloni, L., De Bernardinis, F., Pinello, C., Sangiovanni-Vincentelli, A., Sgroi,
M.: Platform-Based Design for Embedded Systems. In: The Embedded Systems
Handbook. R. Zurawski (Ed.) (2005)

7. De Micheli, G.: Synthesis and Optimization of Digital Circuits. McGraw-Hill Sci-
ence/Engineering/Math (1994)

8. Gajski, D.: High-Level Synthesis. Kluwer (1992)
9. Gerstlauer, A., Shin, D., Peng, J., Domer, R., Gajski, D.: Automatic layer-based

generation of system-on-chip bus communication models. Computer-Aided Design
of Integrated Circuits and Systems, IEEE Transactions on 26(9), 1676–1687 (2007)

10. Gladigau, J., Gerstlauer, A., Streubühr, M., Haubelt, C., Teich, J.: A System-
Level Synthesis Approach from Formal Application Models to Generic Bus-Based
MPSoCs. In: Proceedings of the International Conference on Embedded Computer
Systems: Architectures, Modeling and Simulation (SAMOS) (2010)

11. International Society of Automation: ANSI/ISA-5.1-2009. http://www.isa.org/
12. Jacobson, I., Christerson, M., Jonsson, P.: Object- Oriented Software Engineering.

Addison-Wesley Longman (1992)
13. Kollmann, S., Pollex, V., Kempf, K., Slomka, F., Traub, M., Bone, T., Becker,

J.: Comparative Application of Real-Time Verification Methods to an Automotive
Architecture. In: Proceedings of the 18th International Conference on Real-Time
and Network Systems (2010)

14. Lee, E.: Cyber physical systems: Design challenges. In: 11th IEEE Symposium on
Object Oriented Real-Time Distributed Computing (ISORC) (2008)

15. Liehr, A., Rolfs, H., Buchenrieder, K., Nageldinger, U.: Generating marte allocation
models from activity threads. In: Forum on Specification, Verification and Design
Languages (FDL08). pp. 215–220. IEEE (2008)

16. Matlab/Simulink. http://www.mathworks.de/
17. Münzenberger, R., Dörfel, M., Hofmann, R., Slomka, F.: A general time model

for the specification and design of embedded real-time systems. Microelectronics
Journal 34(11), 989–1000 (2003)

18. Object Management Group (OMG): Modeling and Analysis of Real Time and Em-
bedded systems, version 1.1 (MARTE). http://www.omg.org/spec/MARTE/1.1/

19. Object Management Group (OMG): OMG Systems Modeling Language, version
1.2 (OMG SysML). http://www.sysml.org/specs/

20. Object Management Group (OMG): Unified Modeling Langauge (UML).
http://www.uml.org/

21. Richter, K.: Compositional Scheduling Analysis Using Standard Event Models -
The SymTA/S Approach. Ph.D. thesis, University of Braunschweig (2005)

22. Sangiovanni-Vincentelli, A., Martin, G.: Platform-Based Design and Software De-
sign Methodology for Embedded Systems. In: IEEE Design and Test of Computers.
vol. 18, pp. 23–33 (2001)

23. Schliecker, S., Hamann, A., Racu, R., Ernst, R.: Formal Methods for System Level
Performance Analysis and Optimization. In: Proceedings of the Design Verification
Conference (DVCon) (2008)

24. Sommerville, I.: Software Engineering. Pearson Studium (2001)
25. Teich, J., Haubelt, C.: Digitale Hardware/Software-Systeme. Springer (2010)
26. Traub, M.: Durchgängige Timing-Bewertung von Vernetzungsarchitekturen und

Gateway-Systemen im Kraftfahrzeug. Ph.D. thesis, University of Karlsruhe (2010)
27. Wandeler, E.: Modular Performance Analysis and Interface-Based Design for Em-

bedded Real-Time Systems. Ph.D. thesis, ETH Zurich (September 2006)

