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Abstract
The present paper describes an extension to real-time

analysis of earliest-deadline first (EDF) scheduled em-
bedded systems to allow design space exploration with
different intertask communication. The event stream ap-
proach for real-time analysis is generalized to unbuf-
fered task communication. Adding this analysis
technique to a well known cost model for system level
synthesis, it becomes possible to explore different com-
munication architectures of embedded systems by exist-
ing optimization algorithms.

 1 Introduction
Real-time analysis is an important task during the de-

sign of an embedded system. Such a system must guar-

antee that the occurrences of computational results are in

a timed relationship to the context in which the system

is embedded. Examples are time slotted communication

systems, automotive controllers and fly-by-wire sys-

tems.

An other important aspect is the analysis of different

possible system implementations to find an minimal so-

lution for the three main design parameters time, cost

and power. Such an design space exploration can be sup-

ported by different optimization techniques to define a

separate system level synthesis step during system de-

sign.

In the last years a lot of work considering system syn-

thesis for real-time systems was published [1], [3], [4],

[5], [9] and [13]. To find cost optimal solutions in em-

bedded real-time systems, real-time analysis is com-

bined with standard optimization techniques. The

quality of the system synthesis approach depends on the

used real-time analysis algorithm.

In embedded systems often a heterogeneous multipro-

cessor architecture is implemented. If data dependencies

between tasks are needed to be considered, the original

approach given by Liu and Layland [10] is not adequate

anymore. Additionally, in multiprocessor systems some

anomalies happen, e.g. a system with a feasible schedule

is not correct anymore if the number of processors in-

crease or the execution time of tasks would be decrease

[8].

Because of this fact we have not only to deal with the

worst case execution time (WCET) of tasks but also with

their best case execution time (BCET) ([12] and [13]). In

[13] an analysis method for this problem is described.

To consider BCET and WCET leads to a state space ex-

plosion during the analysis of the system [12].

However, all previous discussed approaches are only

dealing with periodic system stimuli, but real systems

have to react on aperiodic stimuli, too. As it is shown in

[8] aperiodic events can also be mapped on periodic

server tasks. To describe all kinds of different system

stimuli in a formal way, Gressers event stream model

was developed [7] (see also [6]). Gresser defines an

analysis technique for EDF scheduling. Because data

dependencies easily can be resolved in EDF scheduled

systems, the approach is a good candidate to analyze

heterogeneous multiprocessor systems. Gressers model

is limited to buffered task communication to make the

system analyzable. The approach described in [11] also

includes buffers to the systems implementation only to

make real-time analysis possible. But such an approach

leads to cost intensive implementations.

After giving a short introduction to the event stream

model and Gressers analysis technique, an extension to

analyze unbuffered task communication is presented. It

is shown how this extension can be integrated into a gen-

eral methodology for design space exploration of em-

bedded systems. A short case study shows how the

approach works.

 2 Real Time Analysis
 2.1 Event Streams

The event stream model describes the worst case tim-

ing relationships between events. The idea is to define a



minimal distance in time between one, two, three or

more events in a formal specification of input stimuli.

The model defines the maximum number of events in

different given time intervals. Each event stream con-

sists of a fixed number of event tuples:

with a given cycle or period z and an interval a. An

event stream is then defined as an ordered set of event

tuples with a fixed meaning of each tuple:

The meaning of each tuple is defined by its position in

the event stream. In this notation i ∈ N represents the

number of events which occur in the interval ai. This

means a2 is the minimal distance between two events, a3
the minimal distance between three and an is the mini-

mal distance between n events. The reader may be con-

fused, but in this notation the minimal distance between

one and one event has to be defined, too.

Consider now the examples given in Fig. 1: The first

example describes a periodic event as known from stan-

dard real-time analysis. The minimal distance between

one and one event is 0 and the period of the stimuli is z.

The second example shows a periodic event which jit-

ters. The box in the figure gives the time interval in

which the event jitters. This interval is not interesting for

the analysis algorithm, because an event stream has to

describe the worst case of timing relationships of events.

However, the minimal distance between to events is t.
The interval t occurs if an event occur at the end of the

jitter interval and the next event is released at the begin-

ning of the jitter interval. The replication period is also

z. Note that z = 2T if T is the period of the occurrence of

the jitter boxes. The last example shows the release of

more then one event at one point of time. The minimal

distance between one, two and three events is 0, the min-

imal distance between four events is t. Note that these

formalism only considers the worst case scenario. It is

not necessary that all three events will occur at the same

time, but it could be. Within this model it is also possible

to describe aperiodic tasks. In such a case the period of

the task is infinite as shown in example two by the first

event tuple.

 2.2 Real-Time Analysis
In this section the idea of real-time analysis with event

streams is formulated. For a detailed formal discussion

see [7].

The algorithm to analyze the real-time behavior of an

embedded system depends on the scheduling strategy of

the operating system. Rate Monotonic (RMS) and dead-

line monotonic (DMS) are well known strategies to

schedule real-time tasks on one processor. However, the

utilization of the processor is very bad if these algo-

rithms are used. A strategy with high processor utiliza-

tion is earliest deadline first (EDF). Using EDF

scheduling the utilization of the processor is equal to

100%. In terms of scheduling analysis this means, if the

utilization U ≤ 1 the real-time system satisfies all its

deadlines [10].

Gresser uses this equation as a starting point to define

an analysis algorithm for event streams. The idea of the

analysis algorithm is to construct an event function E(I)
from the event stream and to use this function to build a

utilization function of the system. The function E(I) de-

scribes the number of events for a given event stream in

dependency of a given interval length I. If it is assumed

that each task has a worst case execution time c, it is pos-

sible to derive the utilization function C(I) directly from

the event function: Each event triggers a task with exe-

cution time c. This means that C(I) = c in the interval I.
Consider the example in Fig. 2: The gantt chart shows

three periodic tasks scheduled by EDF, each task with a

worst case execution time c = 2 time units (T.U.). The

utilization function is given by the dotted line on the

right side of the figure. An interval of 0 T.U. consists 1

event and a request of 2 T.U., and an interval of 1 T.U. a

request 4 T.U. to the processor of the system. Each task

has a deadline of 3 T.U. as shown by the boxes in the

gantt diagram. The deadline of a task moves the utiliza-

tion function of a task to the right. In the given example

the utilization function moves 3 T.U. to the right.

For each task triggered by an event stream a separate

utilization function has to be constructed, because dif-

ferent tasks may have different worst case execution

times and deadlines. However, the sum of all utilization

functions gives the utilization of the whole system.

In EDF scheduled systems the condition U ≤ 1 must

hold. This means that the utilization function of the sys-

tem shall be always under the bisecting line as shown in
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 Figure 1: Event Streams [7]
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Fig. 2. The analysis algorithm given in [7] has to check

if C(I) is always smaller or equal to the bisecting line for

all intervals I.

 2.3 Data Dependencies
The definition of the analysis of data dependencies be-

tween tasks is easy in EDF scheduled applications. Data

dependencies between tasks should not considered any-

more during analysis, if the deadline d2 of the successor

tasks is modified [7][8]: The new deadline of the succes-

sor is the sum of the deadline of the predecessors dead-

line and the original deadline of the successor as shown

in Fig. 3. It is now assumed that each of the booth tasks

can be triggered by the same event stream. The modifi-

cation of deadlines leads automatically to a correct

schedule: The predecessor is scheduled by EDF before

the successor, because of the earlier deadline.

The assumption that pre- and successor are triggered

by the same event stream only holds if the communica-

tion between the two tasks is buffered. To proof this, just

consider the case that the first instance of the predeces-

sor task finishes after its worst case execution time and

the second instance of the same task finishes after its

best case execution time (BCET). Now, the resulting

event stream used as input for the successor task has

shorter worst case intervals than the originally event

stream triggering the predecessor. All given minimal in-

tervals shrink. In other words, a buffer between two

communicating tasks restores the original minimal dis-

tance between different events of a event stream for the

analysis.

3 Extensions for Design Space Exploration
 3.1 Unbuffered communication

To consider buffer less communication between tasks,

the event stream for successors has to be recalculated.

For each event tuple a new minimal distance interval

and period is needed.

Fig. 4 shows how a new interval ai’ and a new period

zi’ are calculated. The minimal distance between two

events is ai. In a worst case situation the task instance

triggered by the first event finishes after its worst case

response time and the second task instance triggered by

the next event of the event stream finishes after its BCET
bi. The response time of a task is the sum of the execu-

tion time of the task and the overall waiting time for

tasks with higher priorities. However, the analysis algo-

rithm does not calculate the response time of the tasks.

On the other hand, a violated deadline results in an un-

feasible schedule and it is possible to assume that the

worst case response time of a task is equal to its deadline

di.The deadline is exactly the worst case response time

in a feasible schedule. The task instance triggered by the

second event is not interrupted by any higher priority

task and so it finishes after the BCET bi.
The interval xi in Fig. 4 illustrates the situation that the

first instance finishes after di and the second instance

finishes after bi. The interval xi is easily calculated by

simple geometric considerations given by Fig. 4:

It is not sufficient to consider only the interval xi to cal-

culate the new minimal distance between events.

An other relevant interval is yi: The last instance of the

first period finishes after its worst case response time di
and the first instance of the second period finishes after
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 Figure 2: Real-Time Analysis [7]

Deadline

d1
ES

ES

ES

d2

d1+ d2

c1 c1

c2

c1

d1

 Figure 3: The Transformation of Data Dependencies [7]

xi ai bi di–+=  (3)



the BCET bi. With the given period zi the interval yi is

calculated by:

The new minimal distance of the modified event tuple

ai’ is now the shortest distance of the two different cas-

es:

It could be easily seen that the period zi must not be re-

calculated in the most cases. To proof this, assume that

xi < yi. Then, in the worst case, a new xi occurs after zi
+ di. The new period zi’ is then given by

In the other case, if xi > yi then an new yi occurs also

after zi:

Only if xi = yi the period has to be recalculated. Then

a new yi occurs after

and a new xi after

Eliminating xi in equation (8) by using equation (3):

or

and substituting yi in equation (9) with equation (4)

leads to

Using

it could be shown that if xi = yi then zi = 2ai and there-

fore zi’ = ai.

To support a full design space exploration an addition-

al cost model is needed. The graph model introduced in

[2] is used as a general approach for system synthesis. In

the following section this model is described and then an

extension for buffer analysis is introduced.

 3.2 Model for Design Space Exploration
The model discussed in [2] consists of a specification

graph, which is split in two main parts, a problem graph

to model the behavior of the systems algorithms and an

architecture graph to describe the hardware architecture

of the system.

The problem graph is composed of two types of nodes,

nodes to model tasks and nodes to model communica-

tion. Edges in this graph are describing data dependen-

cies between the different tasks of the application.

The architecture graph also consists two different

types of nodes, processing elements as resources for

computation, and buses to perform communication be-

tween the computational elements. Each node of the ar-

chitecture graph is annotated by a number. This number

describes the cost of the node, or, the cost of the given

hardware element. This fixed cost may be interpreted as

 Figure 4: Calculation of the new Minimal Distance Intervals xi and yi
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the usage of silicon area of a processing or communicat-

ing element.

The problem graph and the architecture graph are con-

nected by binding edges. Each edge describes a possible

binding of a function of the problem graph to a hardware

resource. The two numbers annotated to a binding edge

are describing the time consumption of computation or

communication on the related hardware resource and an

additional cost. This additional cost models the con-

sumption of memory to perform the function of the re-

lated software task on the hardware.

A genetic optimization technique is used to explore

different allocations of hardware resources and different

bindings of problem graph nodes to architecture graph

nodes. After optimization each problem graph node is

related to exact one architecture node and the overall

system costs are minimized [2].

 3.3 Buffer Analysis
To explore the design space of buffered and unbuf-

fered communication a few modifications of the dis-

cussed model are necessary.

To each binding edge of the specification graph a

WCET and a BCET has to be assigned. Each computa-

tion node of the problem graph, or each task, additional-

ly has a deadline annotated when performing EDF
scheduling. To each edge of the problem graph an event

stream is added. The event stream at the beginning

nodes of a path of the problem graph are needed to be

specified by the system designer and all event streams of

successor nodes will be calculated by the analysis algo-

rithm as described in Section 3.1.

The most important modification of the model is the

extension of the cost model of communication nodes. As

seen in Fig. 6, four different implementation strategies

of one communication node are possible. It is possible to

implement a buffer before and/or after a communication

node. No modifications of the event stream are neces-

sary if both buffers are implemented in the final system.

In all other cases, one or two modifications of the suc-

cessor event streams must be calculated.

The buffer in front of the communication node is

called the input (I) buffer while the buffer after the com-

munication node is called the output buffer (O). Each

buffer implementation needs chip area. This is modelled

by defining a modification of the binding costs of the

edges of the specification graph.

The costs of a buffer are depending on the number of

messages maximal stored in the buffer. To compute the

number of maximal events stored in a buffer, the number

of events which occur during the maximum storage time

- the interval δ - of a event stream is calculated [7]:

For input buffers the maximum length of this interval

is given by the difference between the deadline of the

communication task and the BCET of the sender task

The number of events stored in an output buffer is cal-

culated as follows:

with dr as the deadline and trw as the WCET of the re-

ceiver task. The modified binding costs of a communi-

cation node are modeled by using the constant cbuf
which describes the costs to store exact one event mes-

sage in the buffer:

This equation substitutes the original binding cost cb
annotated to the binding edge of the communication

node. In other words, the cost of a buffer is the number

of the maximal stored messages multiplied with the cost

to store exactly one message. Such a calculation of buff-

er costs is performed by the real-time analysis algo-

rithm, while the allocation of buffers is done by the

optimization technique itself. To allow the optimizer the

access to the buffer model, two binary variables are add-

ed to equation (17), each as a multiplier for nI and nO.

An other way is to set nI and nO directly by the optimizer

and to recalculate all terms nI and nO unequal zero by the

analysis algorithm.

 4 Case Study
To illustrate the results of the previous sections a sim-

ple example is discussed in the following: Consider a

network router for digital telephone systems, a switch

for ATM or a router for quality of service connections in

the internet (QoS). In Fig. 7 a possible problem graph for

such a router is shown. The processes Pi are modelling

the input protocol functionality of the incoming lines.

The process C1 is modelling the overall control function,

while the processes Si are modelling the scheduler for

the QoS output lines. Communication is performed by

the tasks Ki. The event streams of Table 1 are given, if

it is assumed that P1 is connected to a SONET/SDH line
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and P2 is connected to an ATM line. Furthermore it is

assumed that only one processor type and one bus re-

source is available to implement the system. The pro-

cesses execution times and deadlines are given in Table

2.With this informations it is possible to calculate ES’

and ES’’ as shown in Table 1.

The system could be implemented by different hard-

ware architectures: 1) All processes Pi are implemented

on one processor or 2) each Pi is implemented on an ex-

clusive processor. It is also possible to implement the

processes Si on 3) one processor or 4) on three different

processors. The design space for system level synthesis

contains all combinations of 1) to 4).

However, if it is assumed that each communication

took 1 ms the shortest interval length without imple-

menting buffers becomes 0.78 ms. A real-time analysis

using this value shows that all processes can be sched-

uled without implementing any buffer on one output

processor.

This result holds only for three scheduler tasks. If just

one output line is added to the specification, it is not pos-

sible to schedule all scheduler tasks on one processor

anymore. Including buffers to the implementation

solves this problem without changing the processor allo-

cation.

The example shows that it is possible to explore the

design space and to find out if it is better to implement

faster and/or more processors or to include buffers by

using the same number of resources.

 5 Conclusion
The paper shows how a design space exploration of

buffered and unbuffered communication is added to sys-

tem level synthesis of real-time systems. The new meth-

od is based on a few extensions to an existing real-time

analysis model. This model is combined with an existing

synthesis approach for embedded systems.

The new concept of the paper is demonstrated by a

short real live example. However, the next step is to im-

plement the approach in an existing system synthesis

framework to validate the results by different complex

examples.
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ES ES’ ES’’

{(0.125 µs, 0)} {(0.125 µs, 0.25 µs)} {(0.125 µs, 0.25 µs)}

{(2.78 µs, 0)} {(2.78 ms, 0.78 ms)} {(2.78 ms, 0.22 ms)}

Table 1: Event Streams

Task BCET WCET deadline

P1 0.5 µs 1 µs 2 µs

P2 2 ms 2 ms 4 ms

Si 1 ms 2 ms 4 ms

Ki (P1) 0.5 µs 0.5 µs 1 µs

Ki (P2) 1 ms 1ms 2 ms

Table 2: Execution Times and Deadlines
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