
A Scalable Approach for the Description of
Dependencies in Hard Real-Time Systems?

Steffen Kollmann, Victor Pollex, Kilian Kempf and Frank Slomka

Ulm University
Institute of Embedded Systems/Real-Time Systems

{firstname.lastname}@uni-ulm.de

Abstract. During the design iterations of embedded systems, the schedulability
analysis is an important method to verify whether the real-time constraints are
satisfied. In order to achieve a wide acceptance in industrial companies, the anal-
ysis must be as accurate as possible and as fast as possible. The system context
of the tasks has to be considered in order to accomplish an exact analysis. As this
leads to longer analysis times, there is a tradeoff between accuracy and runtime.
This paper introduces a general approach for the description of dependencies be-
tween tasks in distributed hard real-time systems that is able to scale the exactness
and the runtime of the analysis. We will show how this concept can be applied to
a real automotive application.

1 Introduction

In the last years, designing embedded systems has become a great challenge because
more and more applications have to be covered by one system. As a special issue of this
development, many new features are only realizable by the connection of different con-
trollers. New cars, for example, have up to 75 ECUs (electronic control units) connected
by several buses, which leads to a highly networked system with many requirements,
like energy consumption, space or timing behavior.

One specific challenge for the design process are the hard real-time constraints of
many applications such as an engine management system or an ABS (anti-lock braking
system). Therefore it is necessary to verify in each design iteration whether the real-
time constraints of single applications are satisfied or not. A schedulability analysis
can be performed in order to determine the worst-case response times of the tasks in a
system. To achieve a wide acceptance of such real-time analysis techniques by industrial
software developers, tight bounds of the real worst-case response times of the tasks and
short runtimes of the analysis are important.

A possibility to get tight bounds is the consideration of dependencies of chained
tasksets. Previous work considers different kinds of dependencies, like mutual exclusion
of tasks, offsets between task stimulation, task chains or tasks competing for the same
resource. But the integration of many other types of dependencies is still unsolved.
Especially a holistic model as a new abstraction layer for dependencies is missing.
Approximation techniques can be used to achieve low runtimes of the analysis. But this
is in conflict to tight worst-case response time bounds.
? This work is supported in part by the Carl Zeiss Foundation.

Design
Iterations

An
aly
sis

Optimization

System
Model

SystemSpecification

mm2

Fig. 1. Design flow of embedded systems

The integration of such real-time analysis techniques into a design process is de-
picted in figure 1. Starting at the specification, the system model is extracted. The sys-
tem architecture is then analyzed regarding the different requirements and it is opti-
mized based on the verification results. In early design iterations many different solu-
tions should be considered and therefore it is necessary to have fast verification algo-
rithms. This can be achieved by approximation techniques. In each following iteration
the system model is refined and the possible design solutions are bounded. So more and
more information about the architecture is available and the verification can work more
accurately. While unfortunately this results in longer analysis runtimes, the runtime in-
crease is reasonable because less design solutions have to be considered in consecutive
iterations. So it is necessary to have a scalable model which can exploit this tradeoff
between runtime and accuracy.

We present such a new holistic model that integrates different types of dependen-
cies into real-time analysis and enables to adjust the level of detail. We show how this
general model can be integrated into the schedulability analysis of fixed-priority sys-
tems and outline how this approach can be used to approximate the consideration of
dependencies in the system and therefore improve the analysis time.

This paper is organized as follows: In section 2 an overview of the related work is
given. The model and the corresponding real-time analysis are defined in section 3. Sec-
tion 4 defines the limiting event stream model and shows how it can be used to describe
dependencies in a system in a scalable way. The impact of the introduced analysis is
illustrated by a real automotive case-study. The work closes with a conclusion.

2 Related Work

The real-time analysis for distributed systems was introduced by Tindell and Clark [16].
In this holistic schedulability analysis, tasks are considered as independent. This idea
has been improved by the transaction model [15], which allows the description of static
offsets between tasks. Gutierrez et al. [3] extended this work to dynamic offsets so that
the offset can vary from one job of a task to another. Furthermore they have introduced
an idea about mutual exclusion of tasks [4] which bases on offsets between tasks. Since

Gutierrez et al. have considered simple task chains, Redell has enhanced the idea to tree-
shaped dependencies [13] and Pellizoni et al. applied the transaction model to earliest
deadline first scheduling in [12].

Henia et al. used the SymTA/S approach [14] to extend the idea of the transaction
model in order to introduce timing-correlations between tasks in parallel paths in dis-
tributed systems [5]. This idea has then been improved in [6]. Recently, Rox et al. [7]
have described a correlation between tasks caused by an non-preemptive scheduler.

A scalable and modular approach to analyse real-time systems is the real-time calcu-
lus (RTC) as presented by Wandeler in [17]. Unfortunately it is not possible to describe
dependencies like offsets or mutual exclusion of tasks with the RTC.

Because of the lack of generality or exactness the RTC and the SymTA/S approach
are combined in [10], but the authors do not consider any kind of dependency. An-
other disadvantage of the combination of the models is that the transformation from
one model into the other model leads to inaccuracy.

3 Real-Time Analysis

3.1 Model of Computation

In this section we introduce the model necessary for the real-time analysis discussed in
section 3.2.

Task Model Γ is a set of tasks mapped onto the same resource Γ = {τ1, ...,τn}. A
task is a tuple τ = (c+,c−,b,d,ρ,Θ+,Θ̇+) consisting of : c+ the worst-case execution
time, c− the best-case execution time, b the blocking time, d the relative deadline of
the task, ρ the priority of the task, Θ+ the maximum incoming stimulation and Θ̇+ the
maximum outgoing stimulation.

Let τi j be the j-th job/execution of task τi. We assume that each job of a task gen-
erates an event at the end of its execution to notify other tasks. Furthermore we define
Γhp,τ as a taskset including only tasks having a higher priority than task τ .

Event Model Event streams have been first defined in [2]. Their purpose is to provide a
generalized description for any kind of stimulation. The basic idea is to define an event
function η(∆ t,Θ+) which can calculate for every interval ∆ t the maximum number of
events occurring within ∆ t (when speaking of an interval, we mean the length of the
interval). The event function needs a properly described model behind it which makes
it easy to extract the information.

The idea of the maximum event streams is to note for each number of events the
minimum interval which can include this number of events. Therefore we get an inter-
val for one event, two events and so on. The interval for one event is infinitely small
and therefore considered to be zero. The result is a sequence of intervals showing a
non-decreasing behavior. This is because the minimum interval for n events cannot be
smaller than the minimum interval for n− 1 events, as the first interval also includes
n−1 events.

Definition 1. An event stream is a set of event stream elements θ : Θ+ = {θ1,θ2, ...,θn}
and each event stream element θ = (p,a) consists of an offset-interval a and a period
p. The event stream complies to the characteristic of sub-additivity: η(∆ t1 +∆ t2,Θ+)
≤ η(∆ t1,Θ+)+η(∆ t2,Θ+) and is monotonically increasing: ∀∆ t1,∆ t2 : ∆ t1 ≤ ∆ t2⇒
η(∆ t1,Θ+)≤ η(∆ t2,Θ+)

Each event stream element θ describes a set of intervals {aθ +k · pθ |k ∈N0} of the
sequence. With an infinite (∞) period it is possible to define a single interval in order
to model irregular behavior. Event tuples having infinity as period are called aperiodic
elements and event tuples having a period less than infinity are called periodic elements.
The event function is defined as follows:

Definition 2. The event function denotes for an event stream Θ+ and an interval ∆ t the
maximum number of events1:

η(∆ t,Θ+) = ∑
θ∈Θ+

aθ≤∆ t

⌊
∆ t−aθ

pθ

⌋
+1 (1)

As pseudo-inverse function we define the interval function which denotes the mini-
mum interval in which a given number of events can occur.

Definition 3. The interval function denotes for an event stream Θ+ and a number of n
events the corresponding minimum interval in which these events can occur:

∆ t(n,Θ+) = inf
∆ t≥0
{∆ t|η(∆ t,Θ+)≥ n} (2)

A detailed definition of the concept and the mathematical foundation of the event
streams can be found in [1].

An event pattern can be described by the event stream model in several ways. For an
efficient implementation of the approach we normalize the event streams as introduced
in [8]. With this normalization, the interval function can be efficiently computed. For a
detailed description on how to transform an event stream to a normalized event stream
and how the interval function can be described efficiently see [8]. In the following we
use definition 4.

Definition 4. A normalized event stream Θ̃+ has the form

{(∞,a1), . . . ,(∞,am),(p,am+1), . . . ,(p,an)} : (1≤ m≤ n∧ai ≤ a j⇔ i≤ j∧an−am+1 ≤ p)

which means that the event stream has first an aperiodic part and then a periodic part
where each periodic element has the same period and the events occur within the same
periods. All elements are sorted by their offsets. We also define that N∞

Θ̃+ is the number
of aperiodic elements of an event stream and N p

Θ̃+ is the number of periodic elements of
an event stream. With this definition and the methodologies introduced in [8] and [9] an
efficient real-time analysis for distributed systems is possible. For the rest of the paper
we assume that we use only normalized event streams.

1 Since in this case study we consider a fixed priority non-preemptive scheduler, the floor oper-
ation is used. This is also a bound for preemptive schedulers, but for these, better bounds can
be given.

3.2 Holistic Real-Time Analysis

Based on previous work we define the real-time analysis with event streams. As de-
scribed in [16], in each global iteration step of the real-time analysis the worst-case
response time and the outgoing stimulation for each task in the system are computed
until a fix-point is found. The real-time analysis with event streams is described in [9].
In that paper the computation of the worst-case response time, the best-case response
time, and the outgoing stimulations are given. Since the paper at hand focuses on the
improvement of the worst-case response time of a task, only that part of the analysis
will be reproduced here.

Based on the worst-case response time analysis in [11] we can define the analysis
for event streams as follows:

Lemma 1. The worst-case response time of a task is bounded by:

r+(τ) = max
k∈[1,...,m]

{r+(k,τ)−∆ t(k,Θ+
τ)} m = min

k∈N
{k|r+(k,τ)≤ ∆ t(k+1,Θ+

τ)}

r+(k,τ) = min{∆ t|∆ t = bτ + k · c+τ + ∑
τi∈Γhp,τ

η(∆ t,τi) · c+τi
} (3)

Proof. The proof is given in [9].

4 Considering Dependencies

The lack of the previously discussed model is that dependencies between stimulations
caused by the system context are not considered during the real-time analysis. Therefore
we will extend the model introduced in section 3 by the limiting event streams. Via this
extension we are able to describe different kinds of dependencies with a single holistic
model.

The idea of this new technique is depicted in figure 2. Four tasks are mapped onto
a resource that is scheduled non-preemptively with fixed-priorities. For each task we
determine the worst-case response time. Assume task τ4 as the analyzed task. If no
correlations between the stimulations are considered the worst-case response time of
the task is computed by equation (3). This means the interference produced by the tasks
τ1 to τ3 is maximal concerning τ4.

Now assume that the stimulations have an offset dependency to each other. In order
to model such a correlation, the stimulations can be considered as vertices in a graph
and the correlation between them as edges. For each maximal clique in the graph of
size 2 or bigger, a set Si is build which contains all stimulations that are represented by
the nodes of the clique. Note that these cliques are usually given as input and are not
being searched for. To consider every possibility which is described by the correlations,
the power set P(Si) of such a previously mentioned set is taken. For each element
M ∈P(Si) of such a power set a limitation for the number of events that can occur by
the combined stimulations in M is computed.

This very modular concept permits to consider correlations in a scalable way by
choosing only a subset of the power set which should be considered in the analysis. See
the three possibilities in figure 2. In part a) only one limitation over all stimulations is

τ1

τ2

τ3

τ4

τ1

τ2

τ3

τ4

τ1

τ2

τ3

τ4

a) b) c)

Θ1

Θ2

Θ3

Θ4

Θ1

Θ2

Θ3

Θ4

Θ1

Θ2

Θ3

Θ4

FPNP FPNP FPNP

Fig. 2. Possible consideration of relations by limiting event streams

used. Out of all stimulations of the corresponding power set P(Si) the second example
uses only those that contain exactly the stimulations of the k-highest priority tasks that
are mapped on the resource, where 2 ≤ k ≤ n and n is the number of tasks mapped
on a resource. The last one c) considers only the pairwise correlations. That way the
developer has the chance to determine the level of detail in the analysis. Next we will
formulate the limiting event streams formally.

Definition 5. The limiting event stream is an event stream that defines the maximum
occurrence of events for a set of event streams. The limiting event stream is defined as
Θ = (Θ+,

−→
Θ). Θ+ describes the limitation for a set of event streams

−→
Θ . The limiting

event stream fulfills the condition:

η(∆ t,Θ+
Θ
)≤ ∑

Θ∈
−→
Θ

Θ

η(∆ t,Θ)

Example 1. If no correlations between event streams are defined, the limiting event
stream is definded by: Θ = (∪

Θ∈
−→
Θ

Θ ,
−→
Θ).

Example 2. Assume Θ
+
A =Θ

+
B = {(20,0)} and an offset of 10 t. u. between these two

event streams. The cumulated occurrence of events when the offset is not considered
is described by η(∆ t,Θ+

A ∪Θ
+
B). The cumulated occurrence considering the offset

of the events can be described by the limiting event stream Θ = ({(20,0), (20,10)},
{ΘA,ΘB}). If we consider the event streams as independent, two events occur in an in-
terval ∆ t = 5 t. u. (η(∆ t,Θ+

A ∪Θ
+
B)). In contrast, in the same interval only one event

occurs if the dependency is considered (η(∆ t,Θ+
Θ
)).

Next we define how a limiting event stream can be calculated.

Definition 6. Let ∆β : N→ R be a limiting interval function which assigns a minimal
time interval from a given number of events in subject to a relationship of event streams−→
Θ := {Θ1, . . . ,Θn}, then a limitation for a limiting event stream Θ can be determined
by:

Θ
+
Θ

:= ν(
−→
Θ

Θ
,∆β (n))

τ1

τA

τB

τC

τA

τB

τ1

τ2

a) b)

CPU

bus

mode(A,B,C)

mutual exclusion offset

ΘA

ΘB

CPU bus

Fig. 3. Two possible dependencies in a system

Note that ν(
−→
Θ

Θ
,∆β (n)) and ∆β (n) are abstract functions which have to be con-

cretized for the different types of dependencies. Next we will show how it is possible to
describe two completely different kinds of dependencies with this new technique.

4.1 Mutual Exclusion

The first dependency we will consider is the mutual exclusion of event streams. Assume
a task is transmitting different messages over a bus as depicted in figure 3 a). The
transmission mode of the task depends on its input data. Only one message type can be
sent in a transmission mode. In this case the message types exclude each other. Such a
behavior can be described by the following lemma.

Lemma 2. Let
−→
Θ

Θ
be a set of event streams having a mutual exclusion relation to each

other. The limiting interval function is given by:

∆β (n) = min
Θ∈
−→
Θ

Θ

{∆ t(n,Θ)} (4)

Proof. Mutual exclusion of event streams means that only one event stream Θ ∈
−→
Θ

Θ
is

active at the time. Since the activation of these event streams is switching arbitrarily in
a time interval it is necessary to determine for each time interval ∆ t which event stream
delivers the most events in this interval. Therefore the maximum number of events in
an interval is bounded by η(∆ t,Θ+

Θ
) = max

Θ∈
−→
Θ

Θ

{η(∆ t,Θ)}. This can be transformed

using equation (2) as follows:

η(∆ t,Θ+
Θ
) = max

Θ∈
−→
Θ

Θ

{η(∆ t,Θ)}

∆β (n) = inf
∆ t≥0
{∆ t| max

Θ∈
−→
Θ

Θ

{η(∆ t,Θ)} ≥ n}

∆β (n) = min
Θ∈
−→
Θ

Θ

{ inf
∆ t≥0
{∆ t|η(∆ t,Θ)≥ n}}= min

Θ∈
−→
Θ

Θ

{∆ t(n,Θ)}

Therefore the assumption holds. �

After defining the limiting interval function we will formulate how the concrete lim-
iting event stream can be derived. Note that mode changes of tasks result in different
execution times and have influence on the outgoing event streams. Therefore the outgo-
ing event streams of one task are not necessarily identical in their aperiodic behavior.
Only the periodic behavior is the same for all.

Lemma 3. Via lemma 2 the limiting event stream for mutual exclusion for event streams−→
Θ

Θ
having the same period and equal parameters concerning N∞ and NP can be de-

rived as follows:

ν(
−→
Θ

Θ
,∆β (n)) =

N∞
Θ⋃

i=1

(∞,∆β (i))∪
N∞

Θ
+NP

Θ⋃
i=N∞

Θ
+1

(p,∆β (i)) (5)

where Θ ∈
−→
Θ

Θ
.

Proof. Let the minimum of two event tuples be defined as:

min(θ1,θ2) := (min(pθ1 , pθ2),min(aθ1 ,aθ2))

Furthermore let θi, j be the i-th event tuple of the j-th event stream and Θ ∈
−→
Θ

Θ
. Ac-

cording to [8] each event stream Θ ∈
−→
Θ

Θ
can be transformed so that ∀Θi,Θ j ∈

−→
Θ

Θ
:

|Θi|= |Θ j| holds. From this it follows that

|Θ |⋃
i=1

min
Θ j∈
−→
Θ

Θ

{
θi, j
}

is a general upper bound for mutual exclusion.
As we consider only event streams produced by the same task, all outgoing event

streams have the same periodic behavior. Therefore in conjunction with [8] all event
streams in

−→
Θ

Θ
can be transformed so that N p

Θ
and N∞

Θ
are equal for all Θ ∈

−→
Θ

Θ
. From

this we can follow:

|Θ |⋃
i=1

min
Θ j∈
−→
Θ

Θ

{
θi, j
}
=

N∞
Θ⋃

i=1

min
Θ j∈
−→
Θ

Θ

{
θi, j
}
∪

N∞
Θ
+P∞

Θ⋃
i=N∞

Θ
+1

min
Θ j∈
−→
Θ

Θ

{
θi, j
}

=

N∞
Θ⋃

i=1

(∞,∆β (i))∪
N∞

Θ
+P∞

Θ⋃
i=N∞

Θ
+1

(p,∆β (i))

Therefore the assumption holds. �

With the lemma stated above it is possible to consider mutual exclusion in dis-
tributed systems.

4.2 Offsets

In order to show the generality of our new approach we show how static offsets between
tasks can be described by limiting event streams. For simplicity we consider here only
strictly periodic stimulations, which are used in our case study. The methodology can
also be used for arbitrary stimulations.

See figure 3 part b) where two different tasks are depicted each sending a message
on a bus. All sending tasks have an offset to each other in order to prevent a peak load
on the bus. This kind of modeling is often used for CAN bus communications. First of
all we give a definition of the offsets.

Definition 7. When a set of event streams
−→
Θ

Θ
has an offset based relation to each

other, each event stream has an offset attribute φΘ+ describing an offset to a specific
point in time.

Next we define how the limiting interval function can be derived.

Lemma 4. Let
−→
Θ

Θ
be a set of event streams having an offset relation to each other.

And let Θ̃
+
∪ =

⋃
Θ∈
−→
Θ

Θ

⋃
θ∈Θ (pθ ,aθ +φΘ) be the normalized union of the offset-shifted

event streams. Then the limiting interval function is given by:

∆β (n) = min
j=1,...,|Θ̃+

∪ |
(∆ t(j+(n−1),Θ̃+

∪)−∆ t(j,Θ̃+
∪)) (6)

Proof. Since only static offsets are considered, the union of the offset shifted event
streams describes the cumulated occurrence of the events. From this union we have to
extract the minimum interval for each number of events. So we have to search over all
possible combinations, which can be done by a sliding window approach. From this
consideration it follows:

∆β (n) = min
j∈N

(∆ t(j+(n−1),Θ̃+
∪)−∆ t(j,Θ̃+

∪))

So we have to show that the bound j = 1, . . . , |Θ̃+
∪ | in lemma 4 includes the minimal

interval for a number of events. The following condition holds:

∆ t(q,Θ̃+
∪)−∆ t(q−N p

Θ̃
+
∪
,Θ̃+
∪) = p

Θ̃
+
∪

: q > |Θ̃+
∪ |

So it follows for j > |Θ̃+
∪ | that ∆ t(j+n−1,Θ̃+

∪)−∆ t(j+n−1−N p
Θ̃

+
∪
,Θ̃+
∪) = p

Θ̃
+
∪

and ∆ t(j,Θ̃+
∪)−∆ t(j−N p

Θ̃
+
∪
,Θ̃+
∪) = p

Θ̃
+
∪

holds. From this we can follow:

∆ t(j+n−1,Θ̃+
∪)−∆ t(j,Θ̃+

∪)

= ∆ t(j+n−1,Θ̃+
∪)−∆ t(j,Θ̃+

∪)− p
Θ̃

+
∪
+ p

Θ̃
+
∪

= (∆ t(j+n−1,Θ̃+
∪)− p

Θ̃
+
∪
)− (∆ t(j,Θ̃+

∪)− p
Θ̃

+
∪
)

= (∆ t(j+n−1,Θ̃+
∪)−∆ t(j+n−1,Θ̃+

∪)+∆ t(j+n−1−N p
Θ̃

+
∪
,Θ̃+
∪))−

(∆ t(j,Θ̃+
∪)−∆ t(j,Θ̃+

∪)+∆ t(j−N p
Θ̃

+
∪
,Θ̃+
∪))

= (∆ t(j+n−1−N p
Θ̃

+
∪
,Θ̃+
∪))−∆ t(j−N p

Θ̃
+
∪
,Θ̃+
∪)

So we have shown that a minimum interval must also occur one period earlier and
therefore also in the bound of the search interval. �

After having shown how the limiting interval function can be defined we will now
introduce how the concrete event stream can be derived.

Lemma 5. With the help of the last lemma we can derive the concrete limiting event
stream for an offset-based dependency with j = N∞

Θ̃
+
∪

by the following equation:

ν(
−→
Θ

Θ
,∆β (n)) =

j⋃
i=1

(∞,∆β (i))∪

j+N p
Θ̃
+
∪⋃

i= j+1

(
p

Θ̃
+
∪
,∆β (i)

)
(7)

Proof. We have to show that the periodic behavior starts at the assumed value. Assume
the following variables: 1≤ j ≤ |Θ̃+

∪ |, e = N∞

Θ̃
+
∪
+m+ kN p

Θ̃
+
∪

and 1≤ m≤ N p
Θ̃

+
∪

and the
following equation giving the minimum interval for N∞

Θ̃
+
∪
+m events where j is chosen

accordingly:

∆β (N∞

Θ̃
+
∪
+m) = ∆ t(j+(N∞

Θ̃
+
∪
+m−1),Θ̃+

∪)−∆ t(j,Θ̃+
∪)

So we have to show that the following assumption holds for e events :

∆β (e) = ∆β (N∞

Θ̃
+
∪
+m)+ kp

Θ̃
+
∪

(8)

Assume 1≤ j1 ≤ |Θ̃+
∪ | and ∆ t(j1 +(e−1),Θ̃+

∪)−∆ t(j1,Θ̃+
∪) is the smallest inter-

val for e events then it follows:

∆ t(j1 +(e−1),Θ̃+
∪)−∆ t(j1,Θ̃+

∪)

= ∆ t(j1 +(N∞

Θ̃
+
∪
+m+ kN p

Θ̃
+
∪
−1),Θ̃+

∪)−∆ t(j1,Θ̃+
∪)

= ∆ t(j1 +(N∞

Θ̃
+
∪
+m+ kN p

Θ̃
+
∪
−1),Θ̃+

∪)−∆ t(j1,Θ̃+
∪)+

∆ t(j1 +(N∞

Θ̃
+
∪
+m−1),Θ̃+

∪)−∆ t(j1 +(N∞

Θ̃
+
∪
+m−1),Θ̃+

∪)

= ∆ t(j1 +(N∞

Θ̃
+
∪
+m−1),Θ̃+

∪)−∆ t(j1,Θ̃+
∪)+ kp

Θ̃
+
∪

But this cannot be smaller than assumption (8) because kp
Θ̃

+
∪

can not be smaller
than kp

Θ̃
+
∪

and ∆ t(j1 + (N∞

Θ̃
+
∪
+m− 1)− ∆ t(j1,Θ̃+

∪) cannot be smaller than ∆ t(j +

(N∞

Θ̃
+
∪
+m−1),Θ̃+

∪)−∆ t(j,Θ̃+
∪). So the assumption holds. �

After having derived how static offsets can be described by limiting event streams
we will now describe the worst-case response time analysis with the limiting event
streams.

4.3 Worst-Case Response Time Analysis with Limiting Event Streams

In order to use limiting event streams it is necessary to adapt this new concept to the
worst-case response time analysis from section 3.2. For this we have to determine the
worst-case interference of tasks in an interval ∆ t when limiting event streams are con-
sidered. Due to space limitation we show only the sketch of the proof.

Lemma 6. Let τ be the task under analysis and Θ be a limiting event stream and
Γ

Θ ,τ,τi
:= {τ j ∈ Γhp,τ |(c+τ j

> c+τi
∨ (c+τ j

= c+τi
∧ρτ j > ρτi))∧Θ+

τ j
∈
−→
Θ

Θ
}, then the worst-

case response time is bounded by:

r+(τ) = max
k∈[1,...,m]

{r+(k,τ)−∆ t(k,Θ+
τ)} m = min

k∈N
{k|r+(k,τ)≤ ∆ t(k+1,Θ+

τ)} (9)

r+(k,τ) = min{∆ t|∆ t = bτ + k · c+τ + ∑
τi∈Γhp,τ

η(∆ t,τi,k,τ) · c+τi
} (10)

η(∆ t,τi,k,τ) = min(max(min
∀Θ |Θ+

τi ∈
−→
Θ

Θ

{η(∆ t,τi,k,τ,Θ)},0),η(∆ t,Θ+
τi
)) (11)

η(∆ t,τi,k,τ,Θ) =

η(∆ t,Θ+

Θ
)− ∑

τ j∈Γ
Θ ,τ,τi

η(∆ t,τ j,k,τ) Θ+
τ 6∈
−→
Θ

Θ

η(∆ t,Θ+
Θ
)− ∑

τ j∈Γ
Θ ,τ,τi

η(∆ t,τ j,k,τ)− k Θ+
τ ∈
−→
Θ

Θ

(12)

Proof. Compared to (3), (10) differs only in the interference of the higher priority tasks.
Equation (11) describes the number of task activations in a given interval ∆ t of higher
priority tasks. It is the minimum of the amount described by the limiting event streams
max(min

∀Θ |Θ+
τi ∈
−→
Θ

Θ

{η(∆ t,τi,k,τ,Θ)},0) and the amount described by the regular event

stream of the task η(∆ t,Θ+
τi
). If none of the event streams of the higher priority tasks

is part of a limiting event stream, (11) is reduced to the regular event stream

min(max(min
∀Θ |Θ+

τi ∈
−→
Θ

Θ

{},0),η(∆ t,Θ+
τi
)) = min(max(∞,0),η(∆ t,Θ+

τi
)) = η(∆ t,Θ+

τi
))

resulting in (3) and (10) being identical.
So we have to show that the interference is maximal if limiting event streams are

considered. Let ∑τi∈Γhp,τ
η(∆ t,τi,k,τ) ·c+τi

be the maximum load of higher priority tasks

in an interval ∆ t. Since every Θ : Θ+
τi
∈
−→
Θ

Θ
is a valid bound for the number of events in

an interval of a task τi, and η(∆ t,Θ+
τi
) is the regular bound for the maximum stimulation

of a task in an interval ∆ t, we can follow:

η(∆ t,τi,k,τ) = min(max(η(∆ t,τi,k,τ,Θ),0),η(∆ t,Θ+
τi
)) (13)

where η(∆ t,τi,k,τ,Θ) is the maximum number of events limited by the liminting event
stream Θ for task τi. Since for one limiting event stream the condition η(∆ t,Θ+

Θ
) ≤

∑
Θ∈
−→
Θ

Θ

η(∆ t,Θ) holds we can follow η(∆ t,Θ+
Θ
) = ∑

τi|Θ+
τi ∈
−→
Θ

Θ

η(∆ t,τi,k,τ). From

this it follows: η(∆ t,τi,k,τ,Θ) = η(∆ t,Θ+
Θ
)−∑

τ j |Θ+
τ j∈
−→
Θ

Θ
/Θ

+
τi

η(∆ t,τ j,k,τ). This can

be inserted in (13) and we get:

η(∆ t,τi,k,τ) = min(max(η(∆ t,Θ+
Θ
)− ∑

τ j |Θ+
τ j∈
−→
Θ

Θ
/Θ

+
τi

η(∆ t,τ j,k,τ),0),η(∆ t,Θ+
τi
))

In order to achieve that the interference of the higher priority tasks Γhp,τ is maximal, the
events must be distributed so that the task with the greatest worst-case execution time is
triggered as often as possible then the task with the second greatest worst-case execution
time and so on. For tasks having the same worst-case execution time, the order for the
distribution is given by the priority. From this it follows that the task τi is subject to the
maximum interference when the available events η(∆ t,Θ+

Θ
) are first distributed on the

tasks in the taskset Γ
Θ ,τ,τi

:= {τ j ∈Γhp,τ |(c+τ j
> c+τi

∨(c+τ j
= c+τi

∧ρτ j > ρτi))∧Θ+
τ j
∈
−→
Θ

Θ
}

and the remaining events on task τi:

η(∆ t,τi,k,τ) = min(max(η(∆ t,Θ+
Θ
)− ∑

τ j∈Γ
Θ ,τ,τi

η(∆ t,τ j,k,τ),0),η(∆ t,Θ+
τi
))

Since all limting event streams are a bound for the number of events we have to take
the overall minimum and we finally get:

η(∆ t,τi,k,τ) = min(max(min
∀Θ |Θ+

τi ∈
−→
Θ

Θ

{η(∆ t,Θ+
Θ
)− ∑

τ j∈Γ
Θ ,τ,τi

η(∆ t,τ j,k,τ)},0),η(∆ t,Θ+
τi
))

Therefore the assumption holds. The proof of equation (12) case two includes only k
jobs, because the task τ under analysis is part of the limitig event stream. The proof for
this case is analog to the last one. �

As initial value for the fix-point iteration in equation (10) we take ∆ t(k,Θ+
τ)+ c+τ .

Note that the complexity of the response time analysis is still pseudo-polynominial.
The complexity to calculate the limiting event streams depends on the kind of the de-
pendency which is considered. The analysis, however, is not affected by this problem.
So it is reasonable to find upper bounds for the limiting event streams to improve the
runtime performance.

5 Example and Results

In order to show the impact of the introduced new technique we consider a 500 kBit/s
CAN bus. This automotive application is depicted in figure 4. The system comprises

ECU1

CAN
500 kBit/s

Tx: 15 Tx: 1 Tx: 12 Tx: 4 Tx: 3

Tx: 6 Tx: 2 Tx: 1 Tx: 3

ECU2 ECU3 ECU4 ECU5

ECU6 ECU7 ECU8 ECU9

Fig. 4. Can bus communication of an automotive architecture

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

37
38

39
40

41
42

43
44

45
46

47

0

2000

4000

6000

8000

10000

12000

Variation 1
Variation 2
Variation 3
Variation 4
Variation 5

CAN-messages ordered by descending priority

W
or

st
-c

as
e

re
sp

on
se

 ti
m

e
[μ

s]

Fig. 5. Absolute worst-case response times of the messages

nine electronic control units transmitting data on the CAN bus. The number of different
messages sent by each ECU is stated as ”Tx” in the illustration. There are 47 messages
in total, which all are transmitted periodically. All stimulations have an initial offset
to each other in order to prevent peak load on the bus and to provide smaller response
times of the messages. These offsets are defined by the designer of the system. Further-
more two pairs of messages (one pair on ECU3 and one pair on ECU6) have a mutual
exclusion dependency.

The system has been analyzed in five different levels of detail. In the first variation
we have analyzed the system without considering any dependencies. As second varia-
tion only the mutual exclusion of the messages has been considered. The third variation
additionally includes the offsets with only one limiting event stream over all message
stimulations from an ECU as depicted in figure 2 part a). The fourth variation increases
the level of detail of the offset consideration by the variation represented in figure 2
part b). The last and therefore the fifth variation increases also the level of detail of the
offset dependencies by the variation c) of figure 2. The results are depicted in figure 5.

As expected, including more dependencies and therefore increasing the level of
detail leads to better worst-case response times of the tasks. The consideration of the
mutual exclusion leads to a nearly constant improvement of the response times of all
messages, which can be seen in figure 5. This does not apply to the consideration of
the offset dependencies. As can be seen for variation 3, the impact on the messages

Variation 1 Variation 2 Variation 3 Variation 4 Variation 5

10020 µs 9528 µs 3618 µs 3126 µs 2142 µs
Table 1. Worst-Case response times of message 42

Variation 1 Variation 2 Variation 3 Variation 4 Variation 5

82 ms 92 ms 301 ms 821 ms 1428 ms
Table 2. Runtimes of the different variations

is different. The next level of detail leads to an improvement of the response times of
messages 10 to 47. The last curve describes the highest level of detail and leads to a
further improvement of the response times for messages with a small priority. So it can
be seen that the different possibilities to integrate the dependencies into the analysis
lead to very different results. For a better impression of the improvements we have
described the worst-case response times of message 42 in table 1.

Based on the discussion above we now consider the corresponding runtimes shown
in the table 2. All runs were performed on a machine with a 2.66 GHz Intel processor
and 4 GB of system memory. The runtime when considering no dependencies is the
shortest. The inclusion of mutual exclusion leads to almost no increase of the runtime.
The inclusion of offsets results in a noteworthy increase of the runtime. The simple
case of consideration of the offset dependency leads to nearly 209 ms of more runtime.
The next improvement gains an additional 520 ms of runtime with the benefit that many
messages have better worst-case response times. The last variation and therefore the
most detailed has a runtime of 1428 ms, but only some messages have a better response
time in this variations.

Variation 3 is best suited for a design space exploration because here the quotient of
the runtime increase and the average reduction of response times is minimal. As men-
tioned in the introduction, another possibility is to start the design process with nearly
no dependency correlation and to increase the level of detail in later design iterations
where more accurate results are necessary.

6 Conclusion

In this paper we have introduced a holistic model to describe task dependencies in
distributed real-time systems. The new approach has been applied to a real automotive
architecture. We have shown for two different dependencies how they can be described
by this new model. We have cut the complexity of the dependencies from the real-time
analysis, which has not been achieved in previous work. Additionally we have shown
how the consideration of dependencies can be approximated very easily by this new
concept.

Finally a case study has been conducted to show the improvements of the approach.
It has been shown that our model works for different kinds of dependencies. Further-
more we have shown that the introduced new approximation technique can lead to sig-
nificant improvements of the runtimes. In the future we will show how to integrate other
dependencies into this new model.

References

1. Albers, K., Slomka, F.: An event stream driven approximation for the analysis of real- time
systems. In: ECRTS ’04: Proceedings of the 16th Euromicro Conference on Real-Time Sys-
tems. pp. 187–195. IEEE (July 2004)

2. Gresser, K.: An event model for deadline verification of hard real-time systems. In: Proceed-
ings of the 5th Euromicro Workshop on Real-Time Systems (1993)

3. Gutierrez, J.C.P., Harbour, M.G.: Schedulability analysis for tasks with static and dynamic
offsets. In: RTSS. p. 26 ff (1998)

4. Gutierrez, J.C.P., Harbour, M.G.: Exploiting precedence relations in the schedulability anal-
ysis of distributed real-time systems. In: IEEE Real-Time Systems Symposium. pp. 328–339
(1999)

5. Henia, R., Ernst, R.: Context-aware scheduling analysis of distributed systems with tree-
shaped task-dependencies. In: DATE ’05: Proceedings of the conference on Design, Au-
tomation and Test in Europe. pp. 480–485 (2005)

6. Henia, R., Ernst, R.: Improved offset-analysis using multiple timing-references. In: DATE
’06: Proceedings of the conference on Design, automation and test in Europe. pp. 450–455
(2006)

7. Jonas Rox, R.E.: Exploiting inter-event stream correlations between output event streams of
non-preemptively scheduled tasks. In: Proc. Design, Automation and Test in Europe (DATE
2010) (March 2010)

8. Kollmann, S., Albers, K., Slomka, F.: Effects of simultaneous stimulation on the event stream
densities of fixed-priority systems. In: Spects’08: Proceedings of the International Simulation
Multi-Conference. IEEE (June 2008)

9. Kollmann, S., Pollex, V., Slomka, F.: Holisitc real-time analysis with an expressive event
model. In: proceedings of the 13th Workshop of Methoden und Beschreibungssprachen zur
Modellierung und Verifikation von Schaltungen und Systemen (2010)

10. Kuenzli, S., Hamann, A., Ernst, R., Thiele, L.: Combined approach to system level per-
formance analysis of embedded systems. In: CODES+ISSS ’07: Proceedings of the 5th
IEEE/ACM international conference on Hardware/software codesign and system synthesis.
pp. 63–68. ACM, New York, NY, USA (2007)

11. Lehoczky, J.P.: Fixed priority scheduling of periodic task sets with arbitrary deadlines. In:
Proceedings of the 11th IEEE Real-Time Systems Symposium. pp. 201–209 (December
1990)

12. Pellizzoni, R., Lipari, G.: Improved schedulability analysis of real-time transactions with
earliest deadline scheduling. In: RTAS ’05: Proceedings of the 11th IEEE Real Time on
Embedded Technology and Applications Symposium. pp. 66–75 (2005)

13. Redell, O.: Analysis of tree-shaped transactions in distributed real-time systems. In: ECRTS
’04: Proceedings of the 16th Euromicro Conference on Real-Time Systems (ECRTS’04). pp.
239–248 (2004)

14. Richter, K.: Compositional Scheduling Analysis Using Standard Event Models - The
SymTA/S Approach. Ph.D. thesis, University of Braunschweig (2005)

15. Tindell, K.: Adding time-offsets to schedulability analysis. Tech. rep., University of York,
Computer Science Dept, YCS-94-221 (1994)

16. Tindell, K., Clark, J.: Holistic schedulability analysis for distributed hard real-time systems.
Microprocessing and Microprogramming 40, 117–134 (April 1994)

17. Wandeler, E.: Modular Performance Analysis and Interface-Based Design for Embedded
Real-Time Systems. Ph.D. thesis, ETH Zurich (September 2006)

