
ALMA MATER STUDIORUM-UNIVERSITY OF BOLOGNA

FACULTY OF ENGINEERING

2nd LEVEL DEGREE COURSE IN
COMPUTER SCIENCE ENGINEERING

THESIS IN ARTIFICIAL INTELLIGENCE

ONTOCREATOR: DESIGN AND
IMPLEMENTATION OF A TOOL

FOR THE AUTOMATIC CREATION
OF OWL1.1 ONTOLOGY

CANDIDATE: COMMITTEE OF ULM UNIVERSITY:

Cappa Sebastiano Prof. Dr. Friedrich von Henke
Timo Weithöner

COMMITTEE OF BOLOGNA UNIVERSITY:

Prof. Paola Mello
Eng. Federico Chesani

Academic Year [2007/08]

Session II

18 July 2008

to all the people
who have accomplish me

to realize this thesis

3

Owl
Ontology

Java Web Start
Reasoner-Benchmark
Semantic application

4

Contents

1 Problems and motivation 7

2 Introduction 9
2.1 OWL . 9
2.2 Ontology . 11

2.2.1 Concepts 13
2.2.2 Properties 21
2.2.3 Individuals 24
2.2.4 Consistency 25

2.3 DL reasoners . 26
2.3.1 FaCT++ 26
2.3.2 OWLIM . 26
2.3.3 Racer . 27
2.3.4 Pellet . 27
2.3.5 KAON2 . 28
2.3.6 Summary 28

2.4 Benchmarks . 29

3 Implementation 31
3.1 Goal . 31
3.2 Requirements . 33

3.2.1 Metadata 33
3.2.2 GUI . 33
3.2.3 Output . 33
3.2.4 Engine . 34

3.3 Problems . 35
3.4 Design . 36
3.5 Architecture . 41

3.5.1 GUI . 42
3.5.2 Core engine 50

3.6 Implementation 51
3.6.1 UML . 56
3.6.2 Java Web Start 63
3.6.3 Libraries . 66

5

4 System Evaluation 67
4.1 Analysis . 67
4.2 Performance . 73
4.3 Consistency Tests with Racer 83
4.4 Consistency tests with Pellet 91
4.5 Summary . 93

5 Conclusions and FurtherWork 94

A Medadata File 1 97

B Ontology 1 100

6

1 Problems and motivation

Today there are more than one billion (1,131 billion in 2006) users
[1] that use 168 million web servers [2] of the World Wide Web. There-
fore, there are some serious problems such as finding, extracting, rep-
resenting and interpreting the information. These problems are due
to the fact that information processing is almost purely syntactic.
This means that there is no understanding of the meaning of words
and sentences, that is the semantic.

The future of WWW is evolving from syntactic-mode to semantic-
mode using the meaning expressed by syntax. The solution proposed
by the World Wide Web Consortium (W3C1) for the next generation
of the web is the Semantic Web [3]. A key element of this tech-
nology is that applications can determine the meaning of text and
create connections between the entities. In semantic applications the
information is well defined and depends on the context; so, people
and computers can work in cooperation toward the same objective.
To combine information from different applications, the data must
be compatible and intelligible by machines and applications. Con-
sequently, it is necessary to have a standard language to represent
semantic information of ontologies2, like OWL.

OWL (Web Ontology Language [4]) is designed to exchange ontolo-
gies and to be used by applications that need to process the content of
information. With OWL, applications can apply automatic reasoning
over ontologies. Applications providing these reasoning services are
called ontology reasoners or reasoners.

Benchmarks3 check the soundness, completeness and performance
of reasoners. Obviously, they need to have many ontologies to verify.

Unfortunately, there is now a low quantity of ontologies available,
especially for huge ontologies with interconnected data and with all
types of possible entities. The problem is that writing a huge ontology
is complex and time-consuming. So, it is necessary to have a tool that
produces a solution to this problem.

Currently there are some tools able to create huge ontologies, e.g.

1http://www.w3.org/
2In computer science ontologies are representations of a set of concepts within a domain and

relationships between individuals.
3In computing, a benchmark is the act of running a computer program, a set of programs,

or other operations, in order to assess the relative performance of a system.

7

http://www.w3.org/

the Lehigh University Benchmark (LUBM4), but they have many
limits. For example, they have problems with sparsely interrelated
data, with memory allocation and with OWL DL full coverage. This
argument will be discussed in more details in Section 2.4.

These shortcomings motivated us to produce a new tool that re-
solves this problem.

This document is further structured as follows. In Chapter 2 the
thesis gives a background about theories on semantic area and espe-
cially on OWL.

Then, it explains the details of OntoCreator in Chapter 3. In par-
ticular, the thesis discusses the goal and the requirements of the tool.
Next, it introduces the problems encountered in the design phase.
After this, the thesis debates the choices regarding those problems.
Then, it explains the architecture of the tool and the implementation.

In Chapter 4 there is the evaluation of the tool through tests and
comparisons between the different possible implementations. The
goal of this section is to improve the computational performance. In
the last section of this chapter, the thesis discusses the consistency’s
evaluation of the ontologies created by the tool.

Finally, in Chapter 5, the document presents conclusions and pos-
sible future works.

4http://swat.cse.lehigh.edu/projects/lubm/

8

http://swat.cse.lehigh.edu/projects/lubm/

2 Introduction

This chapter presents an introduction on ontologies and OWL. It
describes the features of ontologies and different types of OWL. It also
deals with reasoners and benchmarks, explaining the distinctive char-
acteristics of them. The goal of this chapter is to give a background
on the subject of this thesis.

2.1 OWL

In computer science, ontologies are representations of a set of Con-
cepts within a domain and Properties between Individuals. Ontologies
can be written in many different syntactic forms. As already men-
tioned, OWL is the W3C standard for representing ontologies. The
OWL language is a semantic markup language for publishing and
sharing ontologies. It was developed as an extension of RDF (the
Resource Description Framework5).

RDF is a family of specifications to model a variety of syntax for-
mats. The RDF model is based on the idea of making statements
about resources in the form of subject-predicate-object expressions,
called triples in RDF terminology. RDFS or RDF Schema is an ex-
tensible knowledge representation language, providing basic elements
for the description of ontologies.

Figure 1: OWL, sub-languages hierarchies

5http://www.w3.org/RDF/

9

http://www.w3.org/RDF/

In Figure 1, it can be seen that OWL provides three increasingly-
expressive sub-languages: OWL Lite, OWL DL, and OWL Full. They
offer increasing levels of expressivity.

The Full version is the most complete (with maximum expressive-
ness) sub-language, but it has no computational guarantees.

OWL-DL, a variant that is based on a family of description logics
(DL), facilitates the description of complex concepts. In the OWL
DL, a class cannot be an instance of another class. It has computa-
tional completeness (all conclusions are guaranteed to be computable)
and decisiveness (all computations will finish in finite time). In other
words, a feature of OWL-DL is that reasoning tasks terminate after
a finite amount of time and that the inferences drawn are valid.

OWL Lite has a lower formal complexity than OWL DL. For ex-
ample, the cardinality constraints can only have the values zero or
one.

Each of these sub-languages is an extension of its predecessor. This
means that an OWL Lite ontology is also an OWL DL ontology (idem
for Lite to Full and DL to Full).

There are two versions of OWL DL; the first is OWL1.0[5] which
was released on 29 July 2002.

From December 19th 2006 the W3C has been working on new
OWL1.1[6] specification to produce a W3C Recommendation.

OWL1.1, like OWL1.0, is compatible with OWL-DL and OWL-
Full. The important features of OWL 1.1 are that it has new DL
constructs (like qualified cardinality restrictions or reflexive, irreflex-
ive, anti-symmetric and disjoint properties).

On 11th April 2008, the W3C released a new document in which
it was explained that the name of the language had been changed
from OWL 1.1 to OWL 2[7] since the previous Working Draft (dated
8 January 2008).

The requirement for this thesis was to use OWL DL, in particular
OWL1.1.

10

2.2 Ontology

This section describes the features of ontologies in OWL.

Figure 2: OWL, entity hierarchy

Concepts, Properties and Individuals are the fundamental build-
ing blocks of ontologies. Their hierarchy is described in Figure 26.
Here it can be seen that Classes (that are Concepts), Properties and
Individuals are OWLEnties. An Entity has a URI that represents the
name.

A Class is a group of Individuals. Usually, the Individuals are in
the same Class because they have common features.

Classes can have Sub-Classes that represent a subset of Individ-
uals. Classes can also be related to other Classes by Equivalent or
Disjoint Axioms.

6like all figures in this section, its origin is: OWL 1.1 Web Ontology Language
Structural Specification and Functional-Style Syntax. Copyright 2006-2007 by the
Authors [Boris Motik, The University of Manchester; Peter F. Patel-Schneider, Bell
Labs Research and Lucent Technologies; Ian Horrocks, The University of Manchester].
http://www.webont.org/owl/1.1/owl specification.html

11

http://www.webont.org/owl/1.1/owl_specification.html

Figure 3 shows an example of a classes’ hierarchy.

Figure 3: OWL, classes hierarchy

All the Classes are a subclass of Thing(>) that represents the
general Concept. Then, a Class defines a group of Individuals of
Thing. In the other side, the class Nothing(⊥) represents the empty
Class which is the common subclass of all the Classes.

ObjectProperty is a Property which expresses a relation between
Individuals. The Domain of an ObjectProperty is the Class where the
Property is applied. The Range is the Class that is the destination
of the Property.

DataProperty is a Property connected with a simple data. The
Domain of a DataProperty is again a Class. Instead, differently from
ObjectProperty, the Rangeof a DataProperty is a xml datatype. We
are not concerned with in this thesis to DataProperty.

An Individual is a member of one or more Classes and it can be
described as equal to or different from other Individuals.

An ontology can also have Constants, Annotations and Datatypes,
but they are not dealt with this thesis.

12

2.2.1 Concepts

As explained in the previous section, ontologies are characterized
by Concepts that are expressed by Classes. Ontologies can have many
different types of Classes. For example, Classes can be further defined
by specifications such as Union, Intersection, One-Of or Complement
of other Classes.

The Classes connections are explained in Figure 4.

Figure 4: OWL, classes connections

13

In Figure 4 there are:

- UnionOf(C1, C2... Cn): is the aggregation of Individuals be-
longing to the set of Classes that are united in the Concept.
The number of Classes united is a minimum of two. UnionOf is
a Disjunction boolean combination.

- ComplementOf(C): are all Individuals of the ontology which do
not belong to a given Class C.

- OneOf(a1...an): is a list of one or more Individuals (Nominal
combination).

- IntersectionOf(C1, C2 ... Cn): are all Individuals which belong
simultaneously to all given Classes. Again the number of Classes
is a minimum of two. IntersectionOf is a Conjunction boolean
combination.

In Table 1 there is a pseudo-DL7 interpretation of Classes.

Table 1: Classes interpretation

ObjectComplementOf(C) > \ C
ObjectIntersectionOf(C1, C2 ... Cn) C1 ∩ C2 ∩ ... ∩ Cn

ObjectUnionOf(C1, C2... Cn) C1 ∪ C2 ∪ ... ∪ Cn

ObjectOneOf(a1...an) a1, ..., an

7C indicates a Class, R indicates a Property, a indicates an Individual, > is the Class Thing,
] means the number of instances that satisfy what it is inside the braces.

14

Then, there are Classes defined by restrictions on object Proper-
ties. They are explained in Figure 5.

Figure 5: OWL, Classes defined by Properties

As we can see here, unlike those previously mentioned, these Classes
use a Property to describe the Individuals who belong to them.

15

These Classes are:

- AllValuesFrom(R, C): indicates all Individuals that have refer-
ences, by a given Property R, only to instances of a given Class
C.

- ExistsSelf(R): indicates all Individuals connected to themselves
by a given Property R.

- HasValue(R, a): Defines a Class consisting of all Individuals
which are connected to a given Individual a through a given
Property R.

- SomeValuesFrom(R, C): indicates all Individuals having a min-
imum of one reference to an instance of a given Class C by a
given Property R.

In Table 2 there is a pseudo-DL interpretation of those Classes.

Table 2: Classes interpretation

ObjectSomeValuesFrom(R, C) x | ∃ y : (x, y) ∈ R and y ∈ C
ObjectAllValuesFrom(R, C) x | ∀ y : (x, y) ∈ R → y ∈ C
ObjectHasValue(R, a) x | (x, a) ∈ R
ObjectExistsSelf(R) x | (x, x) ∈ R

16

Sub-Class, Equivalent-Class and Disjoint-Class are Axioms. The
difference between entity description and Axiom is that a description
defines an entity (Class or Property or Individual), while an Axiom
identifies a statement about an entity.

Figure 6: OWL, Classes Axioms

Disjoint-Union Classes are not explicitly covered in this project
because they can be viewed as the combination of Disjoint Classes
and Union Classes.

17

In Figure 6 there are:

1. Equivalent Classes, when two or more Classes describe the same
concept;

2. Disjoint Classes, when two or more Classes have no Individuals
in common;

3. Sub Classes, when a class is a subset of the Individuals who
belong to another Class.

In Table 3 there is a pseudo-DL interpretation of Class Axioms.

Table 3: Class Axioms interpretation
SubClassOf(C,D) C ⊆ D
EquivalentClasses(C1 ... Cn) C1 = ... = Cn

DisjointClasses(C1 ... Cn) C1 ∩ ... ∩ Cn = 0

18

Another important restriction is the Cardinality.

Figure 7: OWL, cardinality restriction

Figure 7 shows the three different types of cardinality restriction:
Min, Max and Exact.

Min Cardinality Concepts assume that all the Individuals belong-
ing to them have a minimum number of relations through the given
Property with the given Class. By contrast, Max Cardinality requires
that the number of relations are less than a maximum number.

Exact Cardinality restriction is the combination of Min Cardinality
restriction and Max Cardinality restriction. Indeed, the number of
relations must be equal to the value of Cardinality.

19

In Table 4 there is a pseudo-DL interpretation of Classes defined
by Qualified Cardinality restriction.

Table 4: Qualified Cardinality restriction interpretation

ObjectMinCardinality(n, R, C) x |] y | (x, y) ∈ R and y ∈ C ≤ n
ObjectMaxCardinality(n, R, C) x |] y | (x, y) ∈ R and y ∈ C ≥ n
ObjectExactCardinality(n, R, C) x |] y | (x, y) ∈ R and y ∈ C = n

If the cardinality restriction is not defined in a Class, the range of
the Property is all the ontology, i.e. the class Thing (>). In Table 5
there is a pseudo-DL interpretation of Classes defined by Unqualified
Cardinality restriction.

Table 5: Unqualified Cardinality restriction interpretation

ObjectMinCardinality(n, R) x |] y | (x, y) ∈ R and y ∈ > ≤ n
ObjectMaxCardinality(n, R) x |] y | (x, y) ∈ R and y ∈ > ≥ n
ObjectExactCardinality(n, R) x |] y | (x, y) ∈ R and y ∈ > = n

20

2.2.2 Properties

Another important element in ontologies is the Property. It ex-
presses relationships between Individuals. A Property has a Domain
that indicates the Classes to which it can be applied. A Property also
has a Range that is the destination of the Property.

An important difference between Classes and Properties is that all
Classes have similar ancestor (the top Class Thing) and similar Sub
Class (the bottom Class NoThing), while the Properties do not have
a constraint legacy.

Figure 8: OWL, Properties Axioms

21

In Figure 8, there are Functional, InverseFunctional, Symmetric,
Asymmetric, Reflexive, Irreflexive and Transitive Properties. As we
can see, these entities are Axioms and they have a connection with
one Property.

A short description of them follows:

1. Inverse: if P1 is the inverse of P2, all pairs of Individuals that
are connected by P2, are also connected by P1 with Domain and
Range reverse;

2. Functional : if it is applied to two pairs of Individuals and these
two pairs have the same Individual in the Domain, this means
that the two Individuals of that Range are the same Individual.
So, a Property connects Individuals of Domain with no more
than one Individual of Range (the Max Cardinality is one);

3. Inverse-functional : if it is applied to two pairs of Individuals
with the same Individual of the Range, this means that the two
Individuals of the Domain are the same Individual;

4. Reflexive: this means that the Individuals are connected with
themselves;

5. Irreflexive: this means that the Individuals are not connected
with themselves;

6. Symmetric: if applied to a pair of Individuals (x,y) this means
that also the pair (y,x) has this Property;

7. Antisymmetric: if it is applied to a pair of Individuals (x,y) this
means that the pair (y,x) does not have not this Property;

8. Transitive: if it is applied to two pairs of Individuals (x,y) and
(y,z) this means that the pair (x,z) also has this Property;

22

There are also:

1. Sub-Properties : all the pairs of a Sub-Property are also con-
nected by another Property that represents the super-set of the
Sub-Property;

2. Equivalent-Properties : if a Property is equal to another Prop-
erty;

3. Disjoint-Properties : if P1 is disjoint with P2, all pairs of Individ-
uals connected by P1 are not connected by P2, and conversely;

The semantic of the mentioned elements is shown in Table 6.

Table 6: OWL, interpreting Properties

ObjectPropertyDomain(R, C) x | ∃ y : (x, y) ∈ R ⊆ C
ObjectPropertyRange(R, C) y | ∃ y : (x, y) ∈ R ⊆ C
InverseObjectProperties(R, S) R = (x , y) | (y , x) ∈ S
FunctionalObjectProperty(R) (x , y1) ∈ R and (x , y2) ∈ R → y1 = y2
InverseFunctionalObjectProperty(R) (x1 , y) ∈ R and (x2 , y) ∈ R → x1 = x2
ReflexiveObjectProperty(R) x ∈ > → (x , x) ∈ R
IrreflexiveObjectProperty(R) x ∈ > → (x , x) is not in R
SymmetricObjectProperty(R) (x , y) ∈ R → (y , x) ∈ R
AntisymmetricObjectProperty(R) (x , y) ∈ R → (y , x) is not in R
TransitiveObjectProperty(R) (x , y) ∈ R and (y , z) ∈ R → (x , z) ∈ R
SubObjectPropertyOf(R, S) R ⊆ S
EquivalentObjectProperties(R1 ... Rn) R1 = ... = Rn

DisjointObjectProperties(R1 ... Rn) R1 ∩ ... ∩ Rn = 0

23

2.2.3 Individuals

The third important element in ontologies is Individual. Individu-
als are instances of Classes and they are related to other Individuals
by Properties.

Figure 9: OWL, Individuals

An Individual can be the same (SameIndividual) as other Indi-
viduals and different (DifferentIndividual) from other Individuals. In
Figure 9 we can see that SameIndividual and DifferentIndividual are
Axioms and that they need at least two Individuals.

A Class Assertion declares that one Individual belongs to a Class.

24

2.2.4 Consistency

An ontology is consistent if it is not contradictory, or if we can-
not demonstrate an Axiom and its negation. Inconsistent ontologies
have a contradiction between their entities, such as an instance of an
unsatisfiable/incoherent Class.

The consistency depends on the relationship between Concepts,
Properties, Individuals. These dependencies must be respected and
they should not introduce contradictions to ensure the consistency
of the semantics. Therefore, the risk of inconsistency increases with
the number of Axioms because they add relationships between the
entities.

An ontology can be consistent but it can have unsatisfiable Classes.
Unsatisfiable Classes are those that cannot have any possible individ-
ual. They must be equivalent to the empty set, otherwise the ontology
is inconsistent.

25

2.3 DL reasoners

In this section, the thesis discusses the state of the art of Descrip-
tion Logic reasoners, namely: FaCT++, RACER, Pellet, OWLIM
and KAON2. The goal of this section is to evaluate which reasoners
we can use in this thesis.

2.3.1 FaCT++

FaCT++8 is a reasoner for Description Logic languages. It was
developed at the University of Manchester.

FaCT++ is a C++ re-implementation of the DL reasoner FaCT9,
which has been implemented in Lisp. This new version of FaCT is
more effective and portable thanks to the programming language and
a different internal architecture[8]. FaCT++ uses optimised tableaux
algorithms.

The latest available version (1.1.11) was released on March 28,
2008 and it is distributed under GPL10 license.

It supports OWL1.1, but the data types supported by FaCT++
are just strings and integers. Therefore, it has no full data types
support.

2.3.2 OWLIM

OWLIM11 was developed by OntoText Lab and the first version
appeared in 2005. It is a high-performance semantic repository de-
veloped in Java and it is based on TRREE12, a native RDF rule-
entailment engine.

OWLIM is an efficient tool for querying the Sesame13 RDF database.
Indeed, developers benefit for high level of query languages bundled
with the Sesame platform.

The latest available version is the 2.9.1, released on September 10,
2007. It is is an open-source Java library available under LGPL14

8http://owl.man.ac.uk/factplusplus/
9http://www.cs.man.ac.uk/ horrocks/FaCT/

10The General Public License is a free software license originally written by Richard Stallman
for the GNU project.

11http://www.ontotext.com/owlim/index.html
12http://www.ontotext.com/trree/index.html
13http://www.openrdf.org/doc/sesame2/2.1.2/users/index.html
14The Lesser General Public License is a modified, more permissive, version of the GPL.

26

http://owl.man.ac.uk/factplusplus/
http://www.cs.man.ac.uk/~horrocks/FaCT/
http://www.ontotext.com/owlim/index.html
http://www.ontotext.com/trree/index.html
http://www.openrdf.org/doc/sesame2/2.1.2/users/index.html

license.
The most important advantage of OWLIM is that it can manage

huge ontologies with millions of entities.
A disadvantage of OWLIM is that it supports only OWL Lite, and

not OWL DL.

2.3.3 Racer

Racer15 (Renamed Abox and Concept Expression Reasoner) was
developed by Prof. Dr. Volker Haarslev at Concordia University of
Montreal and by Prof. Dr. Ralf Mllerat at Hamburg University of
Technology. The project began in 1997 and the first version of the
tool appeared in 2002. In fact, Racer was the first OWL Reasoner.

Racer is now called RacerPro and is being continuously improved.
It is written in Common Lisp and it incorporates all optimization
techniques of FaCT.

RacerPro supports all types of OWL, including OWL1.1 and it can
handle datatypes, namely natural, integer, real and complex numbers,
and strings. It can also be used by TCP communication.

RacerPro is only provided free of charge for universities and re-
search labs, and the source code is not publicly available.

The latest version available is the 1.9.2, released on October 24,
2007.

2.3.4 Pellet

Pellet16 was developed at the University of Maryland. It is im-
plemented in Java, and the source code is freely available. It has an
open source version and one commercially supported by Clark-Parsia
LLC17.

Pellet supports OWL DL and from the version 1.4 it includes
OWL1.1. It is based on the tableaux algorithms.

On 1st May 2008 a new version of Pellet (1.5.2) was released under
MIT license18.

15http://www.racer-systems.com/
16http://pellet.owldl.com/
17http://clarkparsia.com/
18The MIT license is a particular free software license. It permits the reuse and the redistri-

bution of a software without warranty of any kind.

27

http://www.racer-systems.com/
http://pellet.owldl.com/
http://clarkparsia.com/

The main advantage of Pellet is its support of xml Schema data
types.

2.3.5 KAON2

KAON219, which it means Karlsruhe ontology, was developed at
the University of Karlsruhe by Boris Motik and it has now based at
the University of Manchester. It is a successor to the KAON project.
KAON used a proprietary extension of RDFS, whereas KAON2 is
based on OWL-DL and F-Logic. It is a completely new system, and
is not backward-compatible with KAON.

In 2005, the first version of KAON2 was released; while the latest
version was released on January 14, 2008. The tool is available under
Pay Licensed Closed Source20.

Contrary to most currently available DL reasoners, such as FaCT,
FaCT++, Racer or Pellet, KAON2 does not implement the tableaux
calculus. Rather, reasoning in KAON2 is implemented by novel al-
gorithms which reduce a SHIQ(D) knowledge base to a disjunctive
datalog program.

The disadvantages are that KAON2 cannot currently handle nomi-
nals. So, if an ontology contains an owl:oneOf class or an owl:hasValue
restriction, each reasoning task will throw an error. In addition,
KAON2 cannot currently handle large numbers in cardinality state-
ments.

2.3.6 Summary

In this chapter, we presented the most important OWL reasoners.
This introduction was necessary to understand which reasoners we
can use and which problems we are going to encounter using them.

In the thesis, we are going to use Racer and Pellet to check the on-
tology produced by the tool. The reasons for this choice are that they
support OWL1.1, are open source and have a good documentation.

19http://kaon2.semanticweb.org/
20Pay Licensed Closed Source is a category of commercial software licenses. It presupposes

to pay to use the software and it prohibits to view the source code.

28

http://kaon2.semanticweb.org/

2.4 Benchmarks

In the previous section, the document discussed reasoners, which
special reference to their problems. In this section, the thesis presents
the benchmarks and their limits.

The scope of benchmarks is to check applications and then to pro-
vide helpful hints for developers to improve the software. Benchmarks
check the soundness, completeness and performance of reasoners.

One of the most popular benchmarks for OWL Knowledge Base
Systems is LUBM21 (Lehigh University Benchmark). LUBM is in-
tended to evaluate the performance of huge OWL repositories. It can
also create realistic ontology over university domain.

The limits of LUBM[9] are that its ontologies have sparsely interre-
lated data and inference on cardinality and allValueFrom restrictions
cannot be tested by the LUBM. In fact, the inference supported by
this benchmark is only a subset of OWL Lite.

A direct extension of the LUBM in terms of expressiveness is Uni-
versity Ontology Benchmark (UOBM). It includes a covering of OWL
Lite and OWL DL.

Figure 10: LUBM, ontologies graphs

21http://swat.cse.lehigh.edu/projects/lubm/

29

http://swat.cse.lehigh.edu/projects/lubm/

The advantage with respect to LUBM is that, as we can see in
Figure 10, UOBM enriches the ontology produced by LUBM (original
graph) by interrelations between Individuals [9].

The disadvantage of UOBM is that it is too difficult for most
systems to answer correctly within reasonable time [10].

Other projects have the aim to promote ontologies with a spe-
cific domain. They are used in benchmarking because they are huge
ontologies.

One of these is GALEN, which consists of a translation of the full
Galen ontology (from the original OpenGALEN22 project) into the
OWL description logic. The goal of GALEN is to promote healthcare
through collecting experience in this area of study.

Another important ontology is Gene Ontology (GO)23. Since 1998
three ontologies have been developed which describe gene products
in terms of their associated biological processes, cellular components
and molecular functions in a species-independent manner.

Another project, that has the same goal as GO, is SEMINTEC24.
The SEMINTEC project is an ontology about financial information.

GALEN, GO and SEMINTEC are used in benchmarks through
queries which analyze the number of various entities. For example
we can check whether the total concepts of ontology calculated by a
benchmark is correct. We can do this type of tests for any character-
istic of an ontology.

Naturally, when we want to check if the results are correct, we need
to know the real number of different entities. Therefore, it is very
important that OntoCreator can create huge ontologies from given
inputs; this is something of new in the area of semantic applications.

Another reason to use these ontologies is to test the time that the
benchmarks need to answer for analyzing huge ontologies.

In summary, current benchmarks must still be improved to get
complete coverage of OWL DL and to able to answer correctly within
reasonable time.

Regarding OntoCreator, it can contribute in general to the de-
velopment of the semantic applications area and it can be useful to
implement reasoners and benchmarks.

22http://www.opengalen.org/
23http://www.geneontology.org/
24http://www.cs.put.poznan.pl/alawrynowicz/semintec.htm

30

http://www.opengalen.org/
http://www.geneontology.org/
http://www.cs.put.poznan.pl/alawrynowicz/semintec.htm

3 Implementation

This chapter presents a description of the details of OntoCreator,
from design phase to the implementation. In the first part are intro-
duced the goal and the requirements of the tool. Then the document
describes some possible problems, the architecture and the implemen-
tation. Finally an overview of libraries used by the tool is given.

3.1 Goal

In the previous chapters we have seen that, to evaluate semantic
applications, it is necessary to have some ontology of different size,
depending on the number of entities, and of different complexity,
depending on the number of relations. Therefore, it is necessary
to develop a tool that is able to generate automatically synthetic
OWL1.1[11] ontologies from a set of parameters.

For example, the input of this tool would be the number of Con-
cepts, Properties, and Individuals. Then there are more specifications
like Unions, Intersections, Complement, or Cardinality (Exact, Min
or Max) and the kind of Properties. Other inputs would be Axioms
like Sub-Concepts, Equivalent-Concepts, or Disjoint-Concepts.

Figure 11: TOOL, use case

31

As explained in the use case of Figure 11, the user can utilize a
graphic interface (GUI) to set the inputs, to store or to load infor-
mation, to select the language or to create an output file. The part of
the tool, which must take care of all creation’s processes, is an engine.

Another goal of this thesis is to easily share huge ontologies, with-
out being required to send a file with the size of gigabytes. The
problem is that the creation of relations between the entities of the
ontology is random, but, to share the ontology, the tool must always
produce the same output file from the same inputs. Consequently,
we must save all the information (metadata) of the creation’s process
necessary to have the possibility to rebuild the ontology on another
computer or in another moment.

The last feature of the tool is that it is multilingual.

Figure 12: TOOL, packages design

Figure 12 shows the four blocks which belong to the tool and which
have just been introduced.

This is generally the scope of the project; it will be further ex-
plained in the following sections. In particular, the next session deep-
ens the requirements for the four blocks.

32

3.2 Requirements

After having understood in previous chapters what is OWL and
what is the scope of this thesis, we can now deal with the details of
the requirements of this project.

3.2.1 Metadata

The tool must create a text file of metadata, containing the infor-
mation of the inputs in the GUI.

The metadata file is necessary to share ontologies. In fact, it must
be possible to send only this file, which must be around some KB in
size, and a link to the tool to share huge ontologies with million of
entities, which are usually around some GB in size.

The metadata file must be usually saved with the same name and
in the same folder of OWL file. However, the user must be able
to specify a different name and output path for the output file by
command line.

The metadata file can be created separately from the OWL file.
In addition, it must also be possible to load a metadata file through
the menu. By this way, all the inputs must be checked before setting
all the parameters of the GUI.

3.2.2 GUI

Throught the Graphic User Interface (GUI), the user must be able
to save and load metadata file and also to start the OWL1.1 creation.

In the GUI the user can also set the inputs that characterize the
ontology. The inputs, which are not the ontology’s features, should
not be edited by the user.

In addition, the GUI must be multilingual.

3.2.3 Output

The tool must generate OWL1.1 code as a final output. It must
always generate the same OWL1.1 code from the same metadata file.
This is necessary in order to share ontologies.

The tool must be able to create ontologies with million of entities.
This is the most important requirement.

33

The consistency of the ontology is not a requirement; so, the tool
will not guarantee it. Consequently, the engine must not check the
consistency of the ontology during the creation of the OWL1.1 file.

The names of instances of Concepts, Properties and Individuals
are not important. The only important point is that there is no limit
on the number of instantiations. For example, they can be indicated
by acronym like C#, P# or I# (where # is a growing number without
limits).

3.2.4 Engine

The tool must be implemented in Java (J2SE). It must be usable
from a user interface and from command-line.

The tool must allow multiple ontologies are created simultaneously.
It must be possible to easily add other output modules for different

final output formats in the future.
The tool must use only external open source libraries.

34

3.3 Problems

In this section we introduce the difficulties that we need to resolve
before starting the implementation.

The most important problems of this thesis concern the limits of
memory and the limits imposed by the parser25.

Memory

The memory in computer applications is managed by heap. A
Heap is a quantity of memory assigned to a specific process for storing
data structures.

If necessary, the process may require additional heap to the operat-
ing system and usually gets double the memory previously allocated.
When the memory allocated for a process is unused, the garbage col-
lector can free it.

The JVM has 64 megabytes as default heap, which means that
when the process finishes with them it issues an ”out of memory”
exception. The quantity of default heap is not insignificant, but it is
not sufficient to cope with an array with the size of several million
objects. So, it is necessary to set the JVM with a certain amount of
memory through the option ”-Xmx”.

Parser

Reasoners need a parser to analyze the syntax of ontologies. In
particular, a parser determines the grammatical structure with re-
spect to a given formal grammar. Usually, a parser is a component
of an interpreter or a compiler.

OWL1.1 API is the state of art of procedures to manage OWL1.1
ontologies. The OWL1.1 API26 uses a SAX parser27 which has a
default limitation about the number of entities. This limit is 64000.
We need to increase this limit to work with huge ontologies; so, it is
necessary to set the parser option relatively the number of entities. It
is possible to do this with the command ”-DentityExpansionLimit”.

25In computer science, parsing is the process of analyzing the syntax with a given formal
grammar. The most common use of a parser is as a component of a compiler or interpreter.

26http://owlapi.sourceforge.net/
27http://www.saxproject.org/

35

http://owlapi.sourceforge.net/
http://www.saxproject.org/

3.4 Design

In the previous section, we presented some problems of the tool.
Here we introduce different possible choices to determine the design
of the tool. The goal of this section is to evaluate advantages and
disadvantages of the various possibilities to choose the best solution
and to avoid as much as possible to have problems in implementation
phase.

Programming Language

The programming language was established by the requirements
of the project. In particular, Java language was required. There are
several advantages of using Java, for example it is object oriented, it
has a greater possibility to reuse code, it is a multi-threaded language,
and it is an independent platform. A disadvantage is a slightly lower
speed if compared to languages like C and C++.

Metadata

Regarding the metadata file, there are many possibilities to save
the inputs; one is to save them in an xml file.

The advantages of xml technology are that it is portable and it
includes its significance in the tags. The xml technology is also ca-
pable of representing data structures in form of a hierarchical tree.
For these reasons xml is designed to exchange data between different
platforms. In fact xml documents are text files, so do not require
proprietary software to be interpreted.

In this project xml is used only in the OWL1.1 code. For the
metadata file we decided that a simple text file to save the inputs
is sufficient. This file has the same name and the same path as the
OWL file if it is created through the GUI. While, through command
line, the user can choose a different name or folder for the file.

The information in the file are stored as a couple of terms repre-
senting name and value of the inputs. This is necessary in order to
add new inputs in the future. In fact, in this way it will be possible
to change the order of inputs in the metadata file without problems.

In Appendix A there is an example of a metadata file; here we can
see how the information about inputs are stored.

36

Engine

Considering OWL1.1 file, the system can use OWL API or, having
already created Classes that describe Concepts, it can directly use
them to generate OWL code.

The problem of OWL API is that it needs to load all the ontology
in memory during creation. This is a memory limit to the creation
of huge ontologies.

The best solution is to use generic java classes that take care of
the output syntax. In this way, it will be possible to easily extend
the tool adding other classes in the future. In fact, other classes can
represent the semantic with another syntax.

For these reasons we are going to use java classes instead of OWL
API.

Command Line

OntoCreator can be launched, along with graphical interface, even
from the command line. As explained in Section 3.2.1, the tool must
accept some specific options from command line such as the name of
the output file.

The tool also needs to receive the inputs relative the ontology’s
features. Concerning this, we must choose which parameters to insert
from the command line.

One solution is to pass all inputs from the command line, but it
is inconvenient because in this way, there is a higher risk of writing
mistakes and it is not a good engineering solution.

Our choice is that the user must insert the metadata file’s path.
In this way, the tool can read all the inputs from the file. In addition,
this metadata file has the same structure as the file produced with
the GUI (in which the order of inputs does not matter). This solution
is obviously more expandable and secure.

37

Concepts Creation

Different ways have been examined for the Concepts creation. The
first was to manage all Concepts as Equivalent Axioms.

<EquivalentClasses>

<OWLClass URI="&ns;C500"/>

<ObjectOneOf>

<Individual URI="&ns;I455"/>

<Individual URI="&ns;I128"/>

<Individual URI="&ns;I173"/>

<Individual URI="&ns;I775"/>

</ObjectOneOf>

</EquivalentClasses>

In this way, every Class is described by an identifier (C500 in
the example) and it can be used in the following Axioms without
repeating the body of the Class, but using only the identifier.

<SubClassOf>

<OWLClass URI="&ns;C500"/>

<OWLClass URI="&ns;C44"/>

</SubClassOf>

This avoids problems of congruence and it allows computational
advantage. The disadvantage is that in this way the number of Equiv-
alent Axioms is more than the user inputs expectations.

Another possibility is to use an array. In the array, the tool can
directly save the xml code of all Concepts. Otherwise, the system can
put in the array objects which represent Concepts.

Figure 13: Concepts array with pointers

As Figure 13 shows, the objects can use pointers to reference the
other Classes that are members of the Concept.

38

The advantages of this second solution are a greater reusability
and a better implementation through the objects.

There is also an advantage in terms of memory because it does
not need to replicate the body of a class in the other cells of the
array. The disadvantage is that after having filled the array of Classes
and pointers, the tool needs to examine the array another time to
resolve dependencies. This requires a higher degree of computational
complexity.

Our choice for the project is a combination of the previous two.

Figure 14: TOOL, Concepts array

As Figure 24 displays, we can uses an array of objects without
using pointers, but by copying the body of the Class in the other
objects that have it like a member. This can be realized through a
recursive function.

Unused Concepts

Concerning unused Concepts, the tool must create the Concepts
and it must use them in the Axioms. Only the Axioms are inserted
in ontology, but the user requires a total number of Concepts and the
system must meet this input. Consequently, the tool must add all
the Concepts that are not used in the ontology. Therefore, the tool
must store the information about used Concepts during the creation
of Axioms and insert the unused Concepts at the end of the process.

A solution for storing this information is to use an array of boolean
values. This implementation looks like an optimizing occupation of
memory, but we must seek other solutions.

We know that the tool needs to create an array of Concepts. There-
fore, another possibility is that the system manages the Concetps
information directly into the Concepts array. For example, the first
character of each Concept can be equal to ”0” if the Concept is un-
used, while it can be equal to ”1” in the other case.

In this way the tool knows which Concepts are unused at the end
of Axioms creation. Then, it can insert them in the ontology like

39

SubClass Axioms of the Class Thing.
In this way, a benchmark is able to recognize them because they

are the only SubClass of Thing that the tool adds in the ontology.
These different implementations will be analyzed in Section 4 with

extensive tests to find out which solution involves a greater saving of
memory.

Unused Inverse Properties

With unused Inverse Properties, in OWL1.1 there are Inverse Prop-
erties defined as Object Property Expressions and Inverse Properties
defined as Object Property Axioms. The user wants that the ontol-
ogy has a certain number of Inverse Properties and that they are used
in Property Axioms.

As for the Concepts, the problem is that in the ontology sometimes
it is not possible to use all Inverse Properties Expressions in Property
Axioms. So, we must add unused Inverse Properties in the ontology;
but it is not possible to insert declarations of Inverse Properties Ex-
pressions in the ontology.

The solution can be, like for Concepts, to insert the unused Inverse
Properties like Property Axioms. But a general entity Thing does not
exit for the Properties, then we must create one, for example PThing.

<SubObjectProperties>

<InverseObjectProperty>

<ObjectProperty URI="P436"/>

</InverseObjectProperty>

<ObjectProperty URI="PThing"/>

</SubObjectProperties>

In this way, the tool can insert in an ontology the exact num-
ber of Inverse Properties requested by the user and benchmarks can
recognize them.

40

3.5 Architecture

The tool consists of two parts, the first part is a user interface
(GUI), that allows the insertion of the inputs. The second part is a
core engine that uses the inputs (or the metadata file) to generate
OWL1.1 code based on the defined parameters.

The core engine must also be usable from the command line.

Figure 15: TOOL, architecture

In Figure 15, we can see the presentation layer, which is the user
interface, where the user can see the results of a computation, and
the processing layer, which is the core engine. This one takes care of
all the processes and produces the output files.

Currently the request is to create OWL1.1 file, but in future the
tool should be able to create other types of files or other formats that
do not exist yet.

41

3.5.1 GUI

The implementation of a prototype for the GUI has required con-
siderable time. Much work has been done on the structure to create
a design divided into semantic groups. In particular it was necessary
to decide which inputs to include, which default values to set, which
checks to do on the inputs and which engineering features to give to
the tool. Some engineering features are, for example, the automatic
resizing of the percentages and the checkboxes for the fixing of the
value of the respective sliders.

The GUI was divided into six sections. The first two concern the
Concepts, with the various percentages and the ranges of Concepts’
members. The default ranges’ values are set to the numbers that can
most often occur. In particular, OneOf, IntersectionOf and UnionOf
have a minimum value equal to 2 and a maximum equal to 5. For
Exact and Max Cardinalities, the range is equal between 2 and 5.

In the other hand, for Min Cardinalities, the range is between 0 and
2. It was decided voluntarily to set this minimum value to 0 because
it highlights the fact that it is possible to have Min Cardinality with
a value equal to zero.

The next Section considers the Concepts Axioms. After this, there
are the Properties and the Properties Axioms. According to OWL
semantic, with the Properties Axioms there are also the Range and
Domain Axioms.

In the last section there are Individuals, the Individuals Axioms,
the Assertions and the information necessary to build an ontology.
These inputs were grouped together for a matter of space.

In Figure 15, we can see that the GUI presents three menus. In the
first menu there is the possibility of creating the metadata file (item
”Save MetaDataFile”), specifying the name of the file. This function
is also accessible by a button under the menu. Another possibility is
to retrieve a metadata file (item ”Load MetaDataFile”).

The second menu concerns the languages, where the user can
choose the language of the labels used by the GUI. At the present,
the user can choose between English, German and Italian.

The last menu contains only helpful information like the documen-
tation and the thesis details.

With the button ”START” the user can start the output creation
process.

42

Concepts I

Figure 16: TOOL, Section concepts I

The inputs concerning Concepts are split in two forms. As we can
see in Figure 16, in the first there are the total number of Concepts
and the percentages of various types of Concepts. Each percentage
refers to the total number of Concepts and defines the number of
different kinds of Concepts that must be present in the ontology.

For Complements, Intersections, Unions, SameValue and AllValue
Concepts, the user can decide if they are combinations of only Atomic
Concepts. While, for SameValue, AllValue, HasValue and ExistsSelf
Concepts, the user can decide if they are combinations of Atomic
Properties.

43

Concepts II

Figure 17: TOOL, section concepts II

In Figure 17 there is the second section concerning the Concepts.
Here, the user must insert a minimum and a maximum number of
members for Unions, Intersections and OneOf Concepts. After there
are two subsections for Qualified and Unqualified Cardinality restric-
tions. For the Cardinality restrictions the user must specify a range
between the minimum and the maximum values.

The Qualified and the Unqualified Cardinality percentages are
split into three different types: Min, Max and Exact Cardinality.
The user can decide with all types of Qualified Cardinality restrictions
whether they are combinations of Atomic Concepts and Atomic Prop-
erties. For Unqualified Cardinalities there is not the ”only Atomic

44

Concepts” checkbox because the Range is the Class Thing.
If the user sets the percentage of a Concept kind to zero in the pre-

vious section of the Concepts, the details of this Concept are hereby
disabled.

Concept Axioms

Figure 18: TOOL, section concept Axioms

In Figure 18 there is the section of the GUI concerning the Concept
Axioms. Here the user can insert the numbers of sub, equivalent and
disjoint Axioms.

To emphasize the difference between Axioms and the entity’s de-
scriptions, the user must define a number for the different types of

45

Axioms that must be present in the ontology. In the other side, for
entity’s descriptions he shall set the percentage respect to the total
number of Concepts.

Properties

Figure 19: TOOL, section Properties

In the section concerning Properties (Figure 19), the user can in-
sert the total number of Properties. The Properties are divided into
Atomic and Inverse types.

Inverse Properties can refer to Atomic Properties or to Inverse
Properties. So, it is possible to have Inverse Properties of Inverse
Property.

46

Properties Axioms

Figure 20: TOOL, section Properties Axioms

In Figure 20 there are all types of Property Axioms.Here, the user
can specify if they are combinations of only Atomic Properties. The
user can also specify if they use only Atomic concepts for Domain
and Range.

Every number of Properties Axioms, except for Sub, Equivalent
and Disjoint Properties Axioms, must be less than the total number
of Properties. If the Axiom uses only Atomic Properties the number
must be less than the number of Atomic Properties.

47

Individuals

Figure 21: TOOL, section Individuals

In the last section of the GUI (Figure 21), the user can insert the
inputs on Individuals and Assertions.

Here there are the total number of Individuals, the number of
Same Individuals and the number of Different Individuals.

The number of total Individuals must be greater than zero. Onthe-
contrary, there are no checks on the size for the numbers of Same and
Different Individuals, but the tool always tries to insert a different
couple of Individuals.

48

Then there is the number of Class Assertions. A Class Assertion
specifies which Individuals belong to which Classes. If the checkbox
only Atomic Concept is active, the Individuals can belong only to
Atomic Concepts.

After that, there is the number of Property Assertions. A Prop-
erty Assertion specifies that one Individual is connected with another
Individual (or the same) by a Property. If the checkbox only Atomic
Property is active, the Individuals can only be connected by Atomic
Properties.

Ontology Information

In the Individual’s section there are also, for design reasons, the
ontology information.

In fact, there is the Name Space, that is the name path of Classes,
Properties and Individuals. It can be of http type (for example
http://www.co.ode.org/ontologies/) or of file type (for example file:/C:/).

The other input is the seed of the random function. As was re-
quested by requirements, the user can not insert this but he can
change it by a button.

Progress bar

The user may need to verify that the tool is working on ontology
creation, especially if he wants to create multiple ontologies simulta-
neously.

In order to keep track of active threads and of their progress, the
system uses a separate window to show the most important informa-
tion of the ontology and the progress bar of the thread.

One possibility could be to update the progress bar on the basis
of an estimated time, but this would be dependent on the machine
where the tool is running, on the allocated resources and on the other
active processes.

The progress bar updates its state at the end of different steps.

49

In particular, as we can see in Figure 22, there are 11 steps. These
steps will be further explained in Section 3.6. The end of the first
eleven steps increase the progress bar by 9%. A further last step,
concerning unused Concepts, adds the last 1%. This approximation
is congruent with the real time spent in these steps.

Figure 22: TOOL, progress bar

3.5.2 Core engine

As was explained in requirements, the tool must concurrently cre-
ate more ontologies. So, the user can start the OWL creation and
then work over the GUI to create another ontology.

A solution can be to have a thread that manages the whole pro-
cess. The problem is that in this way the system can create only one
ontology at a time. Instead, a good solution can be to create one
thread for every request of OWL creation. Therefore, the user can
launch more processes at one time.

50

3.6 Implementation

This section explains the operations that the engine carries out to
create the outputs. The OntoCreator process manages the creation
of metadata file and of OWL file.

In the implementation the tool creates before the metadata file
and after the output file. The reason for this is because if the system
crashes during the OWL code’s creation it is possible to recover the
inputs in the GUI.

Concerning the creation of the metadata file, the tool writes the
inputs into a text file like couples of input name and input value.

Regarding the OWL creation process, it is split into 12 steps.

1. The tool starts writing the Individuals because they are the sim-
pler part of an OntoCreator process due to lack of relations with
Concepts and Properties.

2. After the tool inserts the Same Individuals in the ontology. Each
Individual is defined by a number that is in the range of zero
to the total number of Individuals. So, the tool chooses two
random numbers to define in an Axiom that two Individuals are
equal. It is important to emphasize that the tool can add that
an Individual is equal to himself.

3. The next step concerns the Different Individuals creation. The
system monitors so as not to insert an Individual defined as
different from itself in an Ontology because this type of relation
may often occur and there is a high risk of inconsistent ontology.
This is the only check that the tool does before writing them in
the output file because the consistency is not sought.

4. After Individuals, the tool generates all Atomic and Inverse
Properties. Atomic Properties, like Individuals, are written in
the ontology like a declaration. This is necessary because they
are not Axioms.

5. Then it decides randomly which Properties are from a specific
kind of Property Axiom. A Property can be, as just explained in
Section 2.2.2, Inverse, Functional, Inverse-functional, Reflexive,
Irreflexive, Symmetric, Antisymmetric or Transitive. A Property

51

can belong to different types, also to all types; in fact, any combi-
nation is possible. Then, the system creates the Sub, Equivalent
and Disjoint Property Axioms. Every Axiom uses two different
random Properties.

6. In the next step, the tool creates and stores in the memory an
array of Concepts that has a size equal to the total number of
Concepts.

According to various percentages required for the different types
of Concepts and as explained by Figure 23, in the array they are
in the following order:

- Atomic Concepts,

- OneOf Concepts,

- ComplementOf Concepts,

- IntersectionOf Concepts,

- UnionOf Concepts,

- SomeValue Concepts,

- AllValue Concepts,

- HasValue Concepts,

- ExistsSelf Concepts,

- Exact, Min and Max Qualified Cardinality,

- Exact, Min and Max Unqualified Cardinality.

Figure 23: TOOL, Concepts array

The array contains the specific implementations of objects that
represent the different kinds of Concepts. Every object imple-
ments the java class ConceptOWL and specifics its own method
of getting the xml code.

In the first part of the Concepts creation the tool generates the
Atomic and OneOf Concepts because they are the easiest com-
ponents since they have no references to the other Concepts.

52

The tool stores every Concept in the respective cell of the array,
e.g. Class 1 is in cell 1, etc.

Then, it creates the ComplementOf Concepts generating a ran-
dom number in the range of the total number of Concepts. This
number represents the member of the ComplementOf Concept.
The tool needs it to determine the reference to the other Con-
cept. With this number it checks that the ComplementOf Con-
cept does not have a reference to itself because this would imply
an empty universe.

The tool starts to create the array from the first cell to the last,
i.e. from the first Atomic Concepts to the last Maximum Un-
qualified Cardinality Concepts. So, during the process, the tool
know that if the generated random number is less than the index
of the current object creation, the referred concept must neces-
sarily have just been created. In this case, the ComplementOf
Concept can directly copy the xml code inside. Otherwise, the
tool must check whether the Concept has already been created,
and if it has not, it must create and save it in the correct place
in the array. The creation of the Concept means that if it needs
references to other Classes, the system must create them with
the same procedure.

Figure 24: TOOL, Concepts array creation

In Figure 24 an example is shown to understand what happens if
a member of Concept has not yet been created. In the example
the tool has already stored all the Atomic and OneOf Concepts.
Also the first two ComplementOf Concepts have already been
created and they have just copied the xml code of their respec-
tive member. The tool is now creating the third ComplementOf
Concept and it requires the IntersectionOf Concept I39 as his
member. Concept I39 has not already been created; so the tool
must ensure this. In particular, I39 has two members; one is the
OneOf Concept I39 that has already been created. The other
one is the UnionOf Concept U13. The tool checks recursively for

53

each member if it has already been created in the memory and
in the negative case it provides for the generation of its members
and copies the xml code in its body. In the example, the Class
U13 is the union of the Class A2 and the Class C1. So, the
recursion can stop now and the ComplementOf Concept C3 can
be stored in the memory.

This recursive function can potentially lead to a stack overflow,
but for statistical probability and for the presence of Atomic and
OneOf Concepts this has never happened in tests that have been
carried out.

For IntersectionOf and UnionOf Concepts, the tool generates a
random number in the range between the minimum number of
members and the maximum number of members for each Con-
cept to determine the number of members. After this, the Con-
cept obtains the xml code from each member.

The system must generate a Property for SomeValue, AllValue,
HasValue, ExistsSelf and Cardinality Concepts. So, the tool
decides a random number in the range of the total number of
Properties and it inserts this Property in the xml code of the
Concept.

The tool also generates an Individual with a random number
in the range of the total number of Individuals for HasValue
Concepts.

For the Cardinality restrictions, the system generates the value
of the cardinality for each Concept.

7. Then, the tool creates Sub, Equivalent and Disjoints Concepts
Axioms using two different random Concepts, like for the Prop-
erty Axioms. In contrast to Property Axioms, in the case of Con-
cept Axioms the tool uses the array to obtain the two Classes.
The Axioms are directly written in the output file.

8. After this, it randomly defines Class Assertions. For a Class
Assertion the tool decides that a random Individual belongs to
a random Class.

54

9. The next step is the creation and the writing in the output file
of Property Assertions.

It decides for Property Assertions that a random Individual is
connected by a random Property to another (or the same) ran-
dom Individual.

10. The tool now creates the Domain Axioms. It must choose at
random a Property and a Class. We must remember that Do-
main Axioms are characterized by the checkboxes ”only Atomic
Concepts” and ”only Atomic Properties” simultaneously.

11. For the Range Axioms the process is similar to that of Domain
Axioms.

During the creation of the Concept Axioms, Class Assertion, Do-
main Axioms and Range Axioms the tool stores the information
about the using of the Concept in the java class that represents
the object.

12. Finally, the tool explores every Concept in the array to check if
it was used in the Axioms. In the negative case, the unused Con-
cept is added in the ontology like SubClass of the Class Thing.

If a typology of Concept has the checkbox only Atomic Concepts
active, the references are only to the pool of Atomic Concepts, which
are in the first part of array. The same idea is applicable for checkbox
only Atomic Property ; if it is active the class will only use Atomic
Property.

It is important to emphasize again that the ontology may or may
not be consistent because it is not a requirement.

In Appendix B there is an example of an ontology with only few
Concepts, Properties, Individuals and Axioms. As we can see, al-
though its size is much smaller than an ontology of millions of entities,
the size of text files is just significant.

55

3.6.1 UML

This section presents the UML[12] representation of the tool im-
plementation. The Unified Modeling Language (UML), an Object
Management Groups (OMG) project, is an industry ”de facto” stan-
dard for modeling software. For this reason, generating code from
UML models is desirable.

UML is a graphical modeling language used for specifying, visu-
alizing, constructing, and documenting software intensive artifacts.
Generation of code from class diagrams is supported by most IDE
tools.

With UML diagrams it is possible to have an efficient understand-
ing of the system’s modules without having to read the code. In
engineering process, the systems code is specified and constructed
from the UML models. Moreover, UML has the power to hide un-
necessary details of the system with the ability to model its different
views.

UML helped to build a well-structured object-oriented applica-
tion, regardless of programming language that will be subsequently
used. When the UML models of a system are successfully built, we
can map them to a source code of some object-oriented programming
languages, such as C++, Java, Visual Basic, or tables in a relational
database. Mapping the models into a code is known as forward engi-
neering.

Forward engineering is not applicable to all UML graphs, but it
depends on language and on the level of abstraction of the model.
However, it is always possible to map the class diagrams in Java
classes.

In this project, UML was used to create the class diagrams for
Concepts, Properties, Individuals and Axioms.

We can start to analyze the UML graphs of the tool from the class
diagram for the Concepts because it has the greater expressiveness.

This diagram is too big to be shown on only one page, so it is split
in Figure 25 and 26.

56

Figure 25: UML, Concepts classes diagram I

57

Figure 26: UML, Concepts classes diagram II

58

In Figure 25 and 26 it is shown that all types of Concepts imple-
ment the class ConceptOWL.

A feature of all Concepts is that, except the Atomic Concepts, they
override the method getURI of ConceptOWL. In fact, every Concept
has its own particular syntax. All Concepts are characterized by a
name, by a name space and by a body. The body is the xml code
for the members of the Concept. For Atomic, HasValue, ExistsSelf
and Unqualified Cardinality Concepts, the body is void because these
concepts have no members. HasValue and OneOf Concepts have a
reference to Individuals. While SomeValue, AllValue, HasValue, Ex-
istsSelf and Cardinality Concepts have a reference to a Property.

Figure 27: UML, Concept Axioms classes diagram

Figure 27 shows the UML relations concerning Concept Axioms.
As we can see, there are the three kinds of Concept Axioms here, i.e.
Sub, Equivalent and Disjoint Concept Axioms.

In Figure 28 there is the class diagram of Properties. Here there
are only two possible descriptions of Properties: Atomic and Inverse
Property.

Property, as Concept, is characterized by a name, by a name space
and by a body.

59

Figure 28: UML, Properties classes diagram

As explained in section 3.4, there is a difference between Inverse
Properties defined as Object Property Expressions and Inverse Prop-
erties defined as Object Property Axioms.

For example, an Inverse Property Axiom may contain two Inverse
Properties, such as:

<InverseObjectProperties>

<InverseObjectProperty>

<ObjectProperty URI="P77"/>

</InverseObjectProperty>

<InverseObjectProperty>

<ObjectProperty URI="P76"/>

</InverseObjectProperty>

</InverseObjectProperties>

While an unused Inverse Property is added to the ontology like
an Sub Properties Axiom. This is because ontologies can not contain
declaration of Inverse Properties Expressions, but it can only contain
Inverse Properties in Properties Axioms.

60

An example of unused Inverse Property is:

<SubObjectProperties>

<InverseObjectProperty>

<ObjectProperty URI="P436"/>

</InverseObjectProperty>

<ObjectProperty URI="PThing"/>

</SubObjectProperties>

This features of Properties Axioms are shown in the class diagram
of Figure 29.

Figure 29: UML, Properties Axioms classes diagram

61

Figure 30: UML, Individuals classes diagram

Finally, in Figure 30 there is the class diagram of Individuals.
Here, we can see that Same Individuals and Different Individuals are
Individual Axioms. They have the same structure of Concept and
Property Axioms.

In this section we have seen the main features of tool’s implemen-
tation. Therefore, we have been able to deepen our understanding of
the system’s structure without having to read the code.

62

3.6.2 Java Web Start

The final phase of this thesis requires the online publication of
OntoCreator.

In this way, the user can share huge ontologies sending only the
metadata file, which is small in size, and the link of the tool’s web
page.

Java Web Start28 (JWS) was requested to avoid problems of ver-
sioning and uploading.

The technology JWS was presented for the first time in San Fran-
cisco at the JavaONE in the year 2000; it was created as an alternative
to the applet.

An applet is a software component that runs in the context of
another program, for example a web browser. Its disadvantage is
that we can use it only if we are connected to the internet.

With Java We Start, it is possible to download and use a stand-
alone remote application without the web browser. The most im-
portant advantage is that JWS takes care of the versioning of the
software, i.e. it provides an automatic updating.

One interesting feature of JWS is that the application is locally
installed. In fact, as a result of this, it is possible to have an icon
on the desktop (or an item on the Start menu) that allows for the
launching of the application. The exception being the first time when
we need to launch the application through a link to a JNLP file in a
web page.

Java Web Start uses JNLP (Java Network Launching Protocol) to
allow the download of the application from a server and to manage
the uploading of new versions. JNLP consists of a set of rules defining
how exactly this launching mechanism should be implemented. JNLP
files include information such as the location of the jar package file
and the name of the main class for the application.

With a properly configured browser, JNLP files are passed to a
Java Runtime Environment which in turn downloads the application
onto the user’s machine and starts executing it.

Another important feature of JWS is that it is free, so developers
are not required to pay a license fee in order to use it in programs.

28http://java.sun.com/products/javawebstart/

63

http://java.sun.com/products/javawebstart/

Figure 31: TOOL, Java Web Start

An example of JNLP file is:

<jnlp spec="1.0+"

codebase="http://localhost:8080/OntoCreator"

href=" OntoCreator.jnlp">

<information>

<title>OntoCreator</title>

<offline-allowed/>

</information>

<security>

<all-permissions/>

</security>

<resources>

<j2se version="1.4+" max-heap-size="512m" />

<jar href=" OntoCreator.jar"/>

</resources>

<application-desc main-class="src.Main" />

</jnlp>

64

The parameter codebase sets the server information with the loca-
tion of the file jar; offline-allowed indicates that we can launch the
file JAR even if we are not online. All-permissions means that we do
not need to be an administrator to launch the application. In j2se
there are the options for the JVM.

The JNLP file is downloaded by the user from a server and it is
necessary to start the application the first time.

With JWS, we can automate the versioning and the uploading of
the tool. In this way, when we share ontologies, we are sure that the
OWL files created with the tool by a metadata file are always the
same.

65

3.6.3 Libraries

This section deals with the libraries used in the thesis. A library
is a set of APIs with a particular purpose.

As was explained in Chapter 3.2.4, a goal of this project is to use
only open source libraries. The reason for this choice is to limit costs
and to have an easy distribution of the software.

The following are the three libraries mentioned that represent the
solution to the problems previously seen.

Swing Layout Extensions

Swing Layout Extensions29 library simplifies the creation of pro-
fessional layouts with Swing. This library was developed as an open
source project by Java.net. The Swing Layout Extensions library is
a set of classes extending the layout capabilities of Swing. The main
features are automatic aligning on baseline, platform independent
spacing and new layout managers.

JARGS

JArgs30 provides a convenient and compact suite of command line
options. The advantages of JArgs are that it is easy to use, well
documented and open source. Another advantage of JArgs is that
the package is small (only 200KB).

OWL1.1 API

OWL1.1 API 31 is a Java implementation of OWL. It is compatible
with OWL-Lite, OWL-DL and it has some elements of OWL-Full.
This library is open source and available under the LGPL License32.

The OWL API includes an in-memory reference implementation,
a RDF parser and a OWL parser.

This library was used to test the performances of the tool and to
analyze the results. It is not included in the last version of the tool.

29https://swing-layout.dev.java.net/
30http://jargs.sourceforge.net
31http://owlapi.sourceforge.net/
32The GNU Library General Public License (or LGPL) is a free software license.

66

https://swing-layout.dev.java.net/
http://jargs.sourceforge.net
http://owlapi.sourceforge.net/

4 System Evaluation

This chapter evaluates the performances and the output files of
OntoCreator.

First, we investigate the correctness of the tool. Then, we measure
the performances and overheads of OntoCreator to check the limits of
the project. The goal is to improve and to perform the tool. Finally,
we are going to estimate the consistency of ontologies to understand
the relations between the inputs and the output files.

4.1 Analysis

This section presents the analysis of the output files. Here we want
to analyze the ontologies producted by the tool. In particular we are
going to analyze the correctness, the congruence between inputs and
numbers of entities and the percentages of referenced entities.

We expect that the number of referenced instances are directly
proportional to the number of Axioms. We also expect that to ref-
erence all the instances of Concepts, Properties and Individuals is
necessary a number of Axioms greater than the number of instances.
This is because the Axioms can use the same entities several times.

The tests were performed with OWL1.1 API. Some clarifications
on how the ontology manager of OWL1.1 API counts the different
instances are necessary to understand the results of the tests.

Concerning the number of Same Individual instances, the system
also counts Individuals that are equal to themselves.

If a Class X equivalent (or disjoint) to a Class Y is defined in the
ontology, then the ontology’s manager does not count the definition
of the Class Y equivalent (or disjoint) to the Class X.

If in the ontology it is defined a Class X like Sub Class of a Class
Y and there is also the definition of a Class Y like Sub Class of a
Class X, the ontology’s manager counts both the instances because
they are different.

During the creation of the ontology, the tool tries to avoid the
writing of identical Axioms. To do this, the tool checks the entities
using only the numbers of the instances. For example, it writes only
one time that the Concept 98 is disjoint to the Concept 134, but there
are no checks on the possibility that the semantic of two different

67

Classes is the same. For example, the semantic of the Union of two
Equivalent Classes is equal to the two single Classes.

All the tests are a series of twenty repetitions on command line.
The repetitions were no more then twenty because these tests are
stressful and they require a considerable amount of time.

The tests were performed by an automatic suite. It creates the
metadata file, then it creates the OWL1.1 file from the metadata
file and finally it checks the ontology. The metadata file is always
different in every repetition.

The first test was to create an ontology with 10.000 Concepts (50%
Atomic, 5% for each other kind), 10.000 Properties (50% Atomic, 50%
inverse), 10.000 Individuals and without Axioms.

The results of the test are:

Unused Concepts: 9986
Properties Referenced: 6732
Individuals Referenced: 1991
Axioms: 0

As expected, there are no Axioms in the results. One interesting
information is that the total number of unused Concepts recognized
by the tests is 9986, approx 100% of the total number of Concepts.
This means that there are 14 identical Concepts. This is a result that
we expected from a ontology without Axioms and where the unused
Concepts are included.

Another interesting point is the number of referenced Properties.
It is equal to 6732, approx 67% of the total number of Properties. In
this case, the reason is that Properties are only used in unused Inverse
Property (50%) and in SomeValue, AllValue, HasValue, ExistsSelf,
Qualified and Unqualified Cardinality Concepts (30%, but about half
can be an unused Inverse Properties).

The last parameter is the number of referenced Individuals, which
is equal to 1991, approx 20% of the total number of Individuals. The
reason for this amount is that they are only used in OneOf (5% for
an average of three instances) and HasValue Concepts (5%).

The next tests were performed with the same number of Con-
cepts, Properties and Individuals, but with 1000 concept Axioms,
1000 Properties Axioms and 1000 Individuals Axioms used, i.e. 10%
of the total.

68

The results of the test are:

SubClassOf Axioms: 100
EquivalentClasses Axioms: 100
DisjointClasses Axioms: 100
Unused Concepts: 9043
ClassAssertion: 100
Properties Referenced: 7120
ObjectPropertyAssertion: 100
FunctionalObjectProperty: 50
ReflexiveObjectProperty: 50
TransitiveObjectProperty: 50
Sym Properties: 50
Inverse Properties: 50
InverseFunctionalObjectProperty: 50
AntiSymmetricObjectProperty: 50
SubObjectProperty: 33
Equi Properties: 33
DisjointObjectProperties: 33
IrreflexiveObjectProperty: 50
ObjectPropertyDomain: 150
ObjectPropertyRange: 150
Individuals Referenced: 2753
SameIndividual: 175
DifferentIndividuals: 175

Correctly, all the numbers of Axioms are congruent with the inputs
of the tests.

As expected, the numbers of referenced Properties and Individuals,
respectively 7120 and 2753, are slightly higher when compared with
the previous tests. Obviously, the number of unused Concepts is
slightly decreased and it is equal to 9043.

So, for now, the tests confirm what we had assumed at the begin-
ning of this Section.

The next tests were done with the double the amount of Axioms
compared to the previous tests.

69

The results of the test are:

SubClassOf Axioms: 200
EquivalentClasses Axioms: 200
DisjointClasses Axioms: 200
SubClassOf Thing Axioms: 8242
ClassAssertion: 200
Properties Referenced: 7414
ObjectPropertyAssertion: 200
FunctionalObjectProperty: 100
ReflexiveObjectProperty: 100
TransitiveObjectProperty: 100
Sym Properties: 100
Inverse Properties: 100
InverseFunctionalObjectProperty: 100
AntiSymmetricObjectProperty: 100
SubObjectProperty: 66
Equi Properties: 66
DisjointObjectProperties: 66
IrreflexiveObjectProperty: 100
ObjectPropertyDomain: 300
ObjectPropertyRange: 300
Individuals Referenced: 3464
SameIndividual: 350
DifferentIndividuals: 350

Again, the numbers of Axioms are congruent with the inputs. The
total number of unused Concepts continues to decline, while the num-
bers of Properties and Individuals continue to increase.

The results of all the tests are shown in a compact way in Tables
7 and 8.

Table 7: Number of unused Concepts for different numbers of Axioms

Axioms 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

unused C. 9986 9043 8242 7432 6774 6149 5573 5058 4605 4110 3660

70

Table 8: Referenced Properties and Individuals for different numbers of Axioms

Concepts 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 20000 40000

Properties 6732 7120 7414 7658 7846 8085 8276 8452 8637 8750 8850 9660 9980

Individuals 1991 2753 3464 4096 4638 5157 5583 6003 6381 6770 7140 8800 9850

Axioms number

R
ef

er
en

ce
d

C
on

ce
pt

s
nu

m
be

r

Figure 32: TEST, analysis of concepts

Figure 32 shows the data of Table 7 as a graph. The horizontal
axis represents the number Axioms. The vertical axis represents the
number of referenced Concepts.

As expected, we can see that, if there are no Axioms, no Con-
cept is used. Obviously, this number decreases when increasing the
number of Axioms. So, the number of unused Concepts is inversely
proportional to the number of Axioms. The trend, as we expected, is
not linear because if the number of Axioms increases, the probability
that two Axioms use the same Concept also increases.

Figure 33 displays the graph for Table 8. We have here the num-
bers of referenced Properties and Individuals on the vertical axis. In
the horizontal axis there are, like before, the numbers of Axioms.

71

Axioms number

N
um

be
r

of
re

fe
re

nc
ed

in
st

an
ce

s

Figure 33: TEST, analysis of Properties and Individuals

As we expect, the values of referenced Properties and Individuals
goes up with the increasing of Axioms number. It is important to note
that all the instances are referenced when the number of Axioms is
around four times more than the total number of entities.

We can also note that, if there are no Axioms in ontologies, the
percentage of Individuals is near 20%. As we just explained, the
reason for this amount is that Individuals are used in OneOf Concepts
(5% of 10000 with an average of three members each instance) and
in HasValue Concepts (another 5%).

Regarding Properties, there are about 67% of referenced Proper-
ties without Axioms. This occurs because around 50% of the Prop-
erties are added like unused Inverse Properties. The rest is from the
other Concepts which have a reference to a Property.

Another important characteristic, which has emerged from the
tests, is that the values of referenced instances are quite independent
from the seed of the random function.

To conclude, the tests have shown the congruency between inputs
and output. The correlation between the number of Axioms and
number of referenced instances, which we assumed at the beginning
of this section, has been confirmed. This is the essential prerequisite
to study the performances of the tool in the next section.

72

4.2 Performance

In the previous section we checked the output of the tool. Now the
document presents the analyzis of the performances. The goal of this
section is to understand the critical points of the output’s creation in
order to make optimizations and accelerate the response of the tool.

Theoretically, we expect to see from the tests of this section that
the critical point of the tool is the creation of the Concepts array. In
fact, this array can have millions of cells and it is stored in memory.

The benchmarking tests were conducted on a machine with the
following configuration: Windows XP Workstation with Intel Core2
Duo T7300 2.0GHz Processor and 2 GB of physical RAM DDR2.

In the Test were used the following ontologies:

Ontology 1 (O1): 2 millions Concepts, 1 million Properties, 10 mil-
lions Individuals, 111000 Concept Axioms, 55000 Property Axioms,
5 millions Class Assertions and 0.5 million Property Assertions.

Ontology 2 (O2): the same characteristics as O1 but with 1 mil-
lion Concepts.

Ontology 3 (O3): the same characteristics as O1 but with 0.5 million
Concepts.

We chose these ontologies because we want to make stressful tests
for the tool. The goal is to check if the tool is able to respect the
requirement of creating ontologies with millions of entities and to
analyze the time that OntoCreator required to do it.

Table 9: Performance tests
O1 O2 O3

1 GB (Xmx1024M) 0:09:25 0:08:59 0:08:30
512 MB (Xmx512M) NO 0:11:12 0:09:55

In Table 9 there are the average times for the creation of the on-
tologies by command line. The option ”Xmx” specifies the maximum
size, in bytes, of the memory allocation pool. It is important to note
that ontology 1 requires more than 512 MB of physical RAM.

73

There is some important information about CPU occupation and
memory allocation which is explained in the following figure obtained
through Profiler 5.533 of the NetBeans IDE.

It is important to emphasize that java Profile requires resources
too, so the tests are not completely equal to the situation when the
tool is started from command line.

Time

H
ea

p

Figure 34: TEST, memory allocation I

Figure 34 shows the size of allocated memory and the size of the used
memory for the creation of Ontology 1. In this case the tool used
in runtime 1 GB of heap (JVM option ”-Xmx1024m”). In figure, we
can also appreciate that the maximum size of allocated memory is
around 1000 MB, so the tool uses almost all the heap to create an
ontology of two million Concepts.

33http://profiler.netbeans.org/

74

http://profiler.netbeans.org/

Time

H
ea

p

Figure 35: TEST, memory allocation II

In Figure 35 there is the memory allocation for the creation of
Ontology 2. As we can see, the maximum size of allocated memory is
around 700MB and it is around 400MB for the used memory. So, we
expect that it is also possible to create Ontology 2 with only 512MB
of dedicated RAM. In fact, the tests confirm it.

At the target point (marked with a circle) we can see that the
process of ontology creation requires more quantity heap even if it
does not have a real need. This is a factor that can lead to greater
speed because the garbage collector can works less.

In Figure 36 it is possible to see how the garbage collector works
during the creation of the Ontology 2.

The left vertical axis represents the number of the created object.
The right vertical axis represents the percentage of CPU time dedi-
cated to garbage operations.

75

Time

A
llo

ca
te

d
O

b
je

ct

C
P

U
ti

m
e

pe
rc

en
ta

ge

Figure 36: TEST, garbage collector

We can see here that the creation of Concepts array starts at
18:30:42. In fact, at this moment the garbage collector has a critical
point (marked with a circle) because it must delete all the references
to Properties and Individuals object. This is the reason because the
line of active objects has a significant drop down at this moment.
This is necessary so as not to exhaust the heap.

The garbage collector works hard during the creation of the ar-
ray (about from 18:30:42 to 18:30:55). After this, the tool uses the
Concept array to create the Axioms without storing them in memory.
This is why the line of active objects remains about constant.

76

Figure 37: TEST, CPU occupation

Figure 37 shows the CPU time of all methods of the OntoCreator
process to create the Ontology 1. This snapshot was taken just after
having created the Sub Classes and Equivalent Classes. Here, we can
see that the critical part of the OWL creation of Ontology 1 is, as we
expected, the construction of the Concepts, that at this moment is
already 73% of total time of the process.

As we can see, the most onerous parts after the array’s creation
are the PrintStream and the Garbage Collector. The first one requires
more than 50%, i.e. it is 17,1% plus 9,1% for Equivalent Classes and
17,6% plus 8% for Sub Classes. The second one requires 9.1%.

77

Consequences

As a result of these tests we can determine that the Concepts array
creation, the writing of the output file and the operations of garbage
colletor are the three critical parts of the tool that we must try to
improve.

We have seen that the tool can create ontology of two million
Concepts in ten minutes. We can define this result as satisfactory,
but we must do some tests to check if it is possible to improve it.

In the snapshot of the process time, we have seen that the method
PrintStream.pritnln requires more than 50% of total time. Concern-
ing this, we can do some tests to assess the different performances of
the following methods:

1. print a String with FileOutputStream;

2. write bytes with FileOutputStream;

3. write a String with OutputStreamWriter.

The times measured with ontology of 300 thousand Concepts are:

1. 9 minutes and 14 seconds;

2. 7 minutes and 41 seconds;

3. 55 seconds.

We can see that it is about ten times faster to write a String with
OutputStreamWriter than to print a String with FileOutputStream.

Consequently, the first optimization is to use an OutputStreamWriter
instead of a FileOutputStream.

Concerning the memory problem, we can now check different so-
lutions to achieve one with a lower employment of memory.

Two realizations are possible for the allocation of the unused Con-
cepts. One solution uses the array of Boolean to store the information
about them.

78

Time

M
em

or
y

al
lo

ca
te

d

Figure 38: TEST, memory allocation III

In Figure 38 there is the memory allocation for the creation of O2
through the first solution.

A different implementation is to store this information directly
into the array of Concepts.

Figure 39 shows the memory allocation of the creation of O2 with
this second solution.

As we can see, the two solutions have almost the same values of
used memory. The maximum value of the second deployment is minor
with respect to the first solution. For this reason it was decided to
implement the tool with this solution.

79

Time

M
em

or
y

al
lo

ca
te

d

Figure 39: TEST, memory allocation IV

Table 10 shows the results of the texts made on this new imple-
mentation.

Table 10: Performance tests
O1 O2 O3

1 GB (Xmx1024M) 0:01:34 0:0:59 0:00:48
512 MB (Xmx512M) 0:01:37 0:01:00 0:00:49

We can see in Table 10 that now the tool takes only 1 minute and
34 seconds to create Ontology 1. This is about seven times faster
compared with 9 minutes and 24 seconds for the first text.

80

Another important improvement is that now it is also possible to
create Ontology 1 with only 512 MB of heap.

The topic of the following snapshots are the memory allocation
and the garbage collector’s work to create an ontology of 2.5 million
Concepts. The aim is to see improvements of the tool for creating an
ontology which has more instances of ontology 1.

Time

H
ea

p

Figure 40: TEST, memory allocation V

In Figure 40 there is the memory allocation for the creation of the
ontology. As we can see, now the tool uses less memory in respect to
the used memory in the first test.

Concerning the time that the tool took to create the ontology,
we must consider that it is more that five minutes because the java
Profiler needs time and memory.

81

Time

A
llo

ca
te

d
O

b
je

ct

C
P

U
ti

m
e

pe
rc

en
ta

ge

Figure 41: TEST, garbage collector II

Figure 41 shows that the garbage collector works less now with
respect to the first test. In particular the critical point was around
90% in the first test, now it is around 70% of CPU time.

Summing up, we can consider these optimizations satisfactory be-
cause we have a great improvement of performance with respect to
the first implementation and because we can create ontologies with
millions of instances in less than a minute.

82

4.3 Consistency Tests with Racer

In this section we are going to analyze the consistency of ontologies
produced with OntoCreator to understand the impact of the inputs
on the consistency.

Given a syntactically correct OWL ontology, semantic defects can
be detected by a reasoner that checks the knowledge base.

As we have already explained in Section 2.3, there are currently
many reasoners, but almost none covers all the OWL1.1 specifica-
tions. We are going to use here two different reasoners to exploit the
different features that they offer.

In this section we use RacerPro, version 1.9.2. The disadvantage
of RacerPro was that when we made our tests the version of the
file JRacer that it is necessary to communicate with RacerPro did
not have full support for all types of Concepts. For this reason, we
made tests over ontologies with only Atomic Concepts and without
the unused Concepts (which can be not only Atomic Concepts).

For the tests of consistency we start to study small ontologies with
thousands of entities, and afterwards check huge ontologies. This
approach is necessary because it is very heavy for a reasoner to check
the consistency, in fact it requires a lot of resources and time.

We want check in this section the dependency of ontologies’ con-
sistency from the inputs. In particular, we expect to obtain that the
consistency depends mainly on the presence of Axioms such as Dis-
joint Classes, Disjoint Properties, Different Individuals because they
have, respect the other Axioms, more relations with the other Axioms
which can introduce inconsistency.

As a starting point, we can establish that the simplest ontology
has only Concepts, Properties and Individuals, without Axioms.

It is obvious that these kinds of ontologies are always consistent
because they do not presuppose possible contradictions. In fact, if
we do not add the unused Concepts, the ontology can only have
declaration of Individuals and Properties.

The ontology is still consistent when we insert Same Individuals,
Domain Axioms, Range Axioms, Properties Assertions and Class As-
sertions (always of Atomic Concepts and Properties).

All tests made with these characteristics found consistent ontolo-
gies, as expected.

83

Individuals

The next step is to insert Individuals instantiations in the ontology
to analyze the impact that they have on consistency.

Concerning Individuals, an ontology is inconsistent if it defines two
Individuals as different when they are equivalent. On this subject, it
is important to remember that the tool does not allow an Individual
to be different to itself. Therefore, the tool can only insert in the
ontology that an Individual is different to another Individual.

Table 11: Consistency test on Same Individuals and Different Individuals

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
1000 100 100 100 100 100 100 100 100 100 100 100
2000 100 100 90 85 85 80 80 75 70 65 50
3000 100 95 85 80 75 70 65 60 55 50 25
4000 100 90 80 75 70 60 55 50 45 40 0
5000 100 80 60 55 35 25 20 15 10 5 0
6000 100 25 0 0 0 0 0 0 0 0 0
7000 100 0 0 0 0 0 0 0 0 0 0
8000 100 0 0 0 0 0 0 0 0 0 0
9000 100 0 0 0 0 0 0 0 0 0 0
10000 100 0 0 0 0 0 0 0 0 0 0

In Table 11, we have axis the number of Same Individuals in the
horizontal and the number of Different Individuals in the vertical axis.
Inside the table we have the percentage of consistent ontologies with
these characteristics.

The tests were performed on ontology with 10.000 Individuals.
As expected, if the numbers of Same Individuals or the numbers
of Different Individuals, is equal to zero, the ontology is certainly
consistent.

Another characteristic that we expected is that, if the number of
Same or Different Individuals increases, the percentage of consistent
ontologies decreases.

Figure 42 is the three-dimensional representation of Table 11. As
we can see, the table is not diagonally symmetrical. This is because
there are more checks on the Different Individuals with respect to
the Same Individuals. In fact, an ontology cannot have an Individual
that is different from itself.

84

Same Individuals Different Individuals

P
er

ce
nt

ag
e

of
co

ns
is

te
nc

y

Figure 42: Consistency, Same Individuals-Different Individuals

Another possibility for inconsistency involving Individuals is if
there are simultaneously Same Individuals, Disjoint Classes and Class
Assertion in the ontology.

<SameIndividuals>

<Individual URI="&ns;I0"/>

<Individual URI="&ns;I1"/>

</SameIndividuals>

<DisjointClasses>

<OWLClass URI="&ns;C0"/>

<OWLClass URI="&ns;C1"/>

</DisjointClasses>

<ClassAssertion>

<Individual URI="&ns;I0"/>

<OWLClass URI="&ns;C0"/>

</ClassAssertion>

<ClassAssertion>

<Individual URI="&ns;I1"/>

<OWLClass URI="&ns;C1"/>

</ClassAssertion>

With this code, we expect the ontology to be inconsistent; in fact,
the tests confirm this. The same thing could occur with a Class, its
ComplementOf and an Individual that belongs to both the Concepts.

85

Table 12: Consistency test on Same Individuals and Disjoint Classes
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0 100 - - - - - - - - - -
1000 100 95 95 95 90 80 85 90 80 80 85
2000 100 90 100 95 100 95 90 95 90 85 90
3000 100 95 100 100 100 90 95 100 90 85 95
4000 100 90 100 95 95 95 100 95 100 90 95
5000 100 100 100 100 100 95 95 100 95 95 100
6000 100 95 100 100 100 100 95 95 90 100 100
7000 100 100 100 100 100 100 100 85 95 90 100
8000 100 100 100 95 100 100 100 100 100 95 100
9000 100 95 100 100 100 100 100 100 100 100 95
10000 100 95 100 100 100 100 95 100 95 100 100

Table 12 shows the results of the tests made on ontologies contain-
ing Same Individuals, Class Assertions and Disjoint Classes.

In the horizontal axis of Table 12 there are the number of Same In-
dividuals and in the vertical axis the number of Disjoint Classes. The
number of Disjoint Classes is equal to the number of Class Assertions
and the total number of Classes. The total number of Individuals is
equal to the number of Same Individuals multiplied by ten.

Same Individuals Disjoint Classes

P
er

ce
nt

ag
e

of
co

ns
is

te
nc

y

Figure 43: Consistency, Same Individuals-Disjoint Classes

Figure 43 is the three-dimensional representation of Table 12.

86

As expected, if the number of Classes is zero, the percentage of
consistent ontologies is 100%. If the number of Individuals is zero,
the ontology cannot have a Class Assertion. The results show that
the percentage of consistent ontology is always over 80%.

Properties

Concerning Properties, a possible cause of inconsistency can be:

<EquivalentObjectProperties>

<ObjectProperty URI="&ns;P0"/>

<ObjectProperty URI="&ns;P1"/>

</EquivalentObjectProperties>

<DisjointObjectProperties>

<ObjectProperty URI="&ns;P0"/>

<ObjectProperty URI="&ns;P1"/>

</DisjointObjectProperties>

<ObjectPropertyAssertion>

<Individual URI="&ns;I0"/>

<Individual URI="&ns;I1"/>

<ObjectProperty URI="&ns;P0"/>

</ObjectPropertyAssertion>

<ObjectPropertyAssertion>

<Individual URI="&ns;I0"/>

<Individual URI="&ns;I1"/>

<ObjectProperty URI="&ns;P1"/>

</ObjectPropertyAssertion>

Unfortunately, the results of tests show that the ontology is con-
sistent. In fact, all the tests on inconsistencies caused by Properties
gave the same answer. The reason is that RacerPro does not check
the possible inconsistency introduced by the relations between the
Properties.

87

Classes

The Classes are the most relevant cause of inconsistency. In fact,
there are many types of Classes that may be involved in contradic-
tions.

The problem is that at the moment we can only tests Axioms
of Atomic Concepts, so, the probability of inconsistency is less with
respect to ontologies that include all types of classes.

A possible cause of inconsistency is:

<SubClassOf>

<OWLClass URI="&ns;C0"/>

<OWLClass URI="&ns;C1"/>

</SubClassOf>

<DisjointClasses>

<OWLClass URI="&ns;C0"/>

<OWLClass URI="&ns;C1"/>

</DisjointClasses>

In this case, we expected the reasoner to show that the two Classes
are incoherent and the ontology is consistent. However, the tests show
that the ontology is inconsistent.

Table 13: Consistency test on Sub Classes and Disjoint Classes
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0 100 100 100 100 100 100 100 100 100 100 100
1000 100 95 85 80 80 80 80 80 80 80 80
2000 100 90 70 60 60 60 60 60 60 60 60
3000 100 85 55 55 45 45 40 40 40 40 30
4000 100 80 50 50 40 40 40 40 40 35 25
5000 100 75 45 25 20 15 10 10 10 10 10
6000 100 50 10 10 0 0 0 0 0 0 0
7000 100 45 0 0 0 0 0 0 0 0 0
8000 100 20 0 0 0 0 0 0 0 0 0
9000 100 0 0 0 0 0 0 0 0 0 0
10000 100 0 0 0 0 0 0 0 0 0 0

In the horizontal axis of Table 13 there are the number of Sub
Classes; in the vertical axis there are the number of Disjoint Classes.
Inside the table there is the percentage of ontology consistency. The
tests were made on ontology with 10.000 Concepts.

88

As expected, if the number of Sub Classes, or the number of Dis-
joint Classes, is equal to zero, the percentage of consistency is always
100%. Another feature that we expected is that, on increasing the
number of Axioms, the percentage of consistency decreases.

Sub Classes Disjoint Classes

P
er

ce
nt

ag
e

of
co

ns
is

te
nc

y

Figure 44: Consistency, sub Classes-disjoint Classes

Figure 44 is the three-dimensional representation of Table 13.
Again, the table is not diagonally symmetric because Disjoint Classes
introduce more contradictions with respect to Sub Classes.

Individuals, Properties and Concepts

Finally, we made tests on ontologies with Individuals, Properties
and Concepts together. We wanted to check the relations among
the different entities. The goal is to check how the Axioms interact
between themselves and understand which percentages of the different
entities guarantee consistent ontologies are obtained.

We expected the percentage of consistency for this ontology not
to be too big, since it depends on the percentage between Same In-
dividuals and Different Individuals (35%) and between Sub Classes
and Disjoint Classes (55%).

89

The tests were performed on ontologies made by a metadata file
with the following inputs:
Total number of Atomic Concepts: 1.000;
Number of sub Classes: 300;
Number of disjoint Classes: 300;
Total number of Atomic Properties: 1.000;
Number of functional Properties: 100;
Number of reflexive Properties: 100;
Number of symmetric Properties: 100;
Number of transitive Properties: 100;
Number of inverse functional Properties: 100;
Number of irreflexive Properties: 100;
Number of antisymmetric Properties: 100;
Number of sub Properties: 100;
Number of disjoint Properties: 100;
Number of inverse Properties: 100;
Number of domain Properties: 100;
Number of range Properties: 100;
Total number of individual: 1.000;
Number of same Individuals: 400;
Number of different Individuals: 400;
Number of class assertions: 300;
Number of property assertion: 350;

The tests showed that the percentage is 100%, but If any of these
critical inputs is increased by 50 (by 5% of total number of entities)
virtually all generated ontologies will be inconsistent. This means
that the Axioms are strongly correlated.

If we test the same ontology with the inputs multiplied by ten,
the ontology is still consistent. This means that, as expected, the
consistency is a characteristic that depends on the percentages of
relations and not on specific numbers of inputs.

The tests have shown that, to have a good percentage (greater
than 50%) of consistency, it is necessary for the number of Axioms
not to be greater than 30% of the total number of entities. This can
be considered satisfactory because it means that in ontologies with a
million Concepts there may be three hundred thousand of each kind
of Axiom.

90

4.4 Consistency tests with Pellet

After having seen the limits of Racer, we can now analyze On-
toCreator with Pellet. Pellet is another reasoner for OWL1.1. The
current stable version of Pellet is 1.5.1. Pellet has still problem to
support all possible Axioms of Concepts at the moment. The advan-
tage of Pellet, compared to Racer, is that it controls the relationship
between the Properties.

The first step was to check the same features tested with Racer.
We expected, for Pellet, the same results achieved with Racer. In
fact, the tests on Individuals and on Classes gave us the identical
results.

An objective characteristic, which was observed during the tests, is
the greater memory occupation and slower speed of Pellet compared
to Racer. In particular, with ontologies of one thousand Classes or one
thousand Individuals the tests responded with StackOverflowError.
For this reason we added, for the run-time of the JVM, the option
-Xss2048k, which increases the default size of the stack. Even with
this change, for tests with ontologies of ten thousand Classes, Pellet
consumes all the 1024MB of heap.

Unlike Racer, Pellet does not warn that the ontology is inconsis-
tent, but it launches an Inconsistent Ontology Exception.

Properties

Table 14: Consistency test on Disjoint Properties and Property Assertions

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0 100 100 100 100 100 100 100 100 100 100 100

1000 100 100 95 90 85 80 75 70 55 55 50
2000 100 95 90 80 65 65 60 30 25 20 15
3000 100 90 80 65 55 50 45 30 20 15 10
4000 100 85 70 55 50 50 35 25 15 10 10
5000 100 80 65 50 50 45 30 15 10 10 10
6000 100 75 60 50 45 30 20 10 5 5 5
7000 100 70 50 45 30 30 15 10 5 5 5
8000 100 65 55 35 30 20 10 5 5 5 5
9000 100 55 40 30 25 20 10 5 5 5 0
10000 100 50 35 30 20 15 10 5 5 0 0

91

In the horizontal axis of Table 14 there are the numbers of Disjoint
Properties; in the vertical axis there are the numbers Property Asser-
tions. Inside the table there is the percentage of ontology consistency.

As expected, if the number of Disjoint Properties, or the number
of Property Assertions, is equal to zero, the percentage of consistency
is always 100% (always consistent).

Another feature that we expected is that, when the number of
Axioms increases, the percentage of consistency decreases.

Figure 45 is the three-dimensional representation of Table 14.

Disjoint Properties Property Assertions

P
er

ce
nt

ag
e

of
co

ns
is

te
nc

y

Figure 45: Consistency, Disjoint Classes-Property Assertions

Concerning Properties, other causes that may introduce inconsis-
tencies are:

- If a property is symmetric and it is anti-symmetric, if they are
not empty Properties the ontology is inconsistent;

- If a property is defined as functional (or inverse-functional) and
it has an individual connected with more than one individual;

- If a property is irreflexive and it has an individual correlated to
himself;

92

Concepts, Properties and Individuals

The last step is to test ontologies with Concepts, Properties and
Individuals together. Again, the goal of these tests is to check which
percentage of Axioms can be certain to have consistent ontologies.
It is important remember that the consistency also depends on the
seed of the random function. Therefore, it is impossible to test the
application with all possible seeds because it would take a very long
time.

The results of these tests showed that all the various types of
Axioms should be around 3% of the total number of the respective
entities (Concepts, Properties and Individuals) to ensure a consis-
tent ontology. This result is so much lower with respect to the 30%
recorded by Racer. However, we must remember that with Racer we
could not check the relationship introduced by the Properties.

If we test ontologies without Functional, Antisymmetric and Ir-
reflexive Properties, the results of the tests show that all the various
types of Axioms should be 10% of the total number of the category’s
entities to have a consistent ontology. We can consider this result as
satisfactory because it means that, for example, with ontologies of one
million Concepts there are one hundred thousand Disjoint Concepts
(the same number for other Axioms).

It is possible to have consistent ontologies with a higher number
of Axioms. However, the percentage of consistency decreases quickly
mainly because of Disjoint Classes and Properties.

4.5 Summary

After these tests, we can now compare the solutions obtained with
RacerPro and Pellet.

The main difference between them is that with Pellet we were able
to test if Properties introduce inconsistency. For the other tests, we
have obtained a congruence of results with the two different reasoner.

Summing up, we have seen that the inputs are strongly connected
and the consistency of ontologies depends mainly on the presence of
Axioms such as Disjoint Classes, Disjoint Properties, Different Indi-
viduals because they have several relations with other kinds of Axioms
which can introduce inconsistency.

93

5 Conclusions and FurtherWork

In this thesis, a tool able to automatically create synthetic ontolo-
gies was discussed, justified and formally produced.

In this document, we have seen that there is a low quantity of
ontologies available at the moment, especially for huge ontologies.
The few tools that can produce ontologies have several problems; for
example, they produce data no interconnected or they do not use all
possible types of entities.

Furthermore, this paper presented an overview of several already
existing reasoners. They have been surveyed and evaluated.

Therefore, it is necessary to have a tool able to generate ontologies
from given characteristics. This is, as we saw reviewing the matter
in the first Chapters, something of new in the area of semantic appli-
cation and it is a need not covered.

These are some motivations to develop OntoCreator. In addition,
through this tool it is possible to create huge ontologies to be used
for benchmarking. This is one of the main results of this thesis.

OntoCreator was created on the specific request of the University
of Ulm. However, as explained, this work is useful in general to imple-
ment reasoners and benchmarks. Therefore, this tool can contribute
to the development of the semantic applications area.

Another goal of this tool is to easily share huge ontologies, without
being required to send a file with the size of gigabytes. So, we have
seen that a solution can be to share only a file of metadata where
are stored all the information of the creation’s process. We have
also introduced Java Web Start to avoid problems of versioning and
uploading. In this way, we have the possibility to rebuild the ontology
on another computer or in another moment because the tool can
always produce the same output file from the same inputs.

More, we discussed in this paper the possibility of using OWL
API and its problems. We have seen that it is a memory limit to the
creation of huge ontologies and then we have decided to use generic
java classes that take care of the output syntax. In this way, it will be
possible to easily extend the tool adding other classes in the future.
In fact, other classes can represent the semantic with another syntax.

94

In addition, during the analysis of tools, we described how to opti-
mize the performance of tools and, we especially studied the structure
of ontologies and the relationship between their entities.

During the evaluation of the tool, we saw that various kinds of
Axioms are strongly correlated. Indeed, we can only be sure of ob-
taining consistent ontologies with a percentage of 3% for the different
Axioms. We have also seen that the number of referenced instances
are directly proportional to the number of Axioms and that, to ref-
erence all the instances of entities, is necessary a number of Axioms
greater than the number of instances. This is because the Axioms
can use the same entities several times.

The main objective of possible future work is to expand the first
version of the tool with a different output file, such as OWL1.0.

Other future works could be to provide OntoCreator as a plug-in
for Protégé or to extend the tool in another language.

Concerning the future of semantic applications, the most impor-
tant requirement is to have reasoners and benchmarks that fully cover
the OWL specifications.

95

Acknowledgments

It is a great pleasure to acknowledge the sincere and helpful advice
of Prof. Dr. Friedrich von Henke and Timo Weithner, Ulm University,
who helped accomplish this thesis and finally assessed it as the chair
of the reviewing committee in Bologna University. The author also
thanks Prof. Paola Mello, member of the Italian committee, for her
help in carrying out this thesis. A special thanks to my family, for
the continuous encouragement they gave me. A special thanks to
Charlottina, who accompanied me for a year during the realization
of the thesis. I also want to thank all my friends in Bologna, for all
the times they were near me and all the friends that i found here in
Ulm for all the great time we had together.

96

Appendixes

A Medadata File 1

RangeProp 10
RangeOnlyAtomcConceptsCheckBox false
TransitivePropCheckBox false
InversePropPerc 20
DomainProp 10
ReflexivePropCheckBox false
SomeValueConceptsCheckBox false
ExactQCRPerc 60
AtomicPropPerc 80
MaxUnQCROnlyAtomcPropCheckBox false
DisjointPropCheckBox false
IntersectionOfCPerc 5
IndividualsNum 100
CardUnqualifCPerc 5
ExactQCROnlyAtomcPropCheckBox false
DisjointClasses 10
MinRangeEQC 2
MaxUnionMembers 5
PropertyAssertionsCheckBox false
MinRangeEUnQC 2
MinRangeMinQC 0
ReflexiveProp 10
MaxRangeEUnQC 5
MaxInterMembers 5
MaxQCROnlyAtomcPropCheckBox false
MaxRangeMinQC 3
MinOneOfMembers 2
CardQualifCPerc 5
ExactQCROnlyAtomcConceptsCheckBox false
MinQCROnlyAtomcPropCheckBox false
MaxRangeMaxUnQC 5
MaxQCROnlyAtomcConceptsCheckBox false
SubPropCheckBox false

97

EquivalentClasses 10
AntiSymmetricPropCheckBox false
MaxRangeMinUnQC 3
MinUnQCROnlyAtomcConceptsCheckBox false
IrreflexivePropCheckBox false
UnionOfConceptsCheckBox false
EquivalentProp 10
RangeOnlyAtomcPropCheckBox false
ExistsSelfCPerc 5
DisjointProp 10
SubClasses 10
MaxUnQCROnlyAtomcConceptsCheckBox false
OneOfCPerc 5
PropertyAssertions 10
DomainOnlyAtomcConceptsCheckBox false
ExactUnQCROnlyAtomcPropCheckBox false
IntersectionOfCheckBox false
InversePropCheckBox false
TotalNumC 100
TotalNumPro 100
MaxQCRPerc 20
SomeValueCPerc 5
IrreflexiveProp 10
TransitiveProp 10
FunctionalPropCheckBox false
SymmetricPropCheckBox false
MaxRangeEQC 5
ExistsSelfCheckBox false
MinUnionMembers 2
DomainOnlyAtomcPropCheckBox false
ClassAssertionsCheckBox false
SymmetricProp 10
MinQCRPerc 20
SomeValuePropCheckBox false
UnionOfCPerc 5

98

MinUnQCRPerc 20
AllValueConceptsCheckBox false
MinRangeMaxQC 2
ExactUnQCRPerc 60
HasValueCheckBox false
SameIndiv 10
MinRangeMaxUnQC 2
MaxRangeMaxQC 5
FunctionalProp 10
SeedRandomFunction 922337203
DifferentIndiv 10
EquivalentPropCheckBox false
MinInterMembers 2
AllValueCPerc 5
ClassAssertions 10
MaxUnQCRPerc 20
MinUnQCROnlyAtomcPropCheckBox false
AllValuePropCheckBox false
InverseProp 10
HasValueCPerc 5
ExactUnQCROnlyAtomcConceptsCheckBox false
MinQCROnlyAtomcConceptsCheckBox false
InverseFunctionalPropCheckBox false
InverseFunctionalProp 10
MinRangeMinUnQC 0
SubProp 10
AtomicCPerc 50
MaxOneOfMembers 5
ComplementOfCPerc 5
ComplementOfCCheckBox false
AntiSymmetricProp 10

99

B Ontology 1

<?xml version="1.0"?>

<!DOCTYPE Ontology [

<!ENTITY owl "http://www.w3.org/2002/07/owl#" >

<!ENTITY owl11 "http://www.w3.org/2006/12/owl11#" >

<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >

<!ENTITY owl11xml "http://www.w3.org/2006/12/owl11-xml#" >

<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >

<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >

<!ENTITY ns "http://www.co-ode.org/ontologies/onto.xml#" >

]>

<Ontology xmlns="http://www.w3.org/2006/12/owl11-xml#"

xml:base="http://www.w3.org/2006/12/owl11-xml#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:owl11="http://www.w3.org/2006/12/owl11#"

xmlns:ns="http://www.co-ode.org/ontologies/onto.xml#"

xmlns:owl11xml="http://www.w3.org/2006/12/owl11-xml#"

xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:owl="http://www.w3.org/2002/07/owl#"

URI="http://www.co-ode.org/ontologies/onto.xml">

<Declaration>

<Individual URI="&ns;I0"/>

<Individual URI="&ns;I1"/>

</Declaration>

<SameIndividuals>

<Individual URI="&ns;I0"/>

<Individual URI="&ns;I4"/>

</SameIndividuals>

<DifferentIndividuals>

<Individual URI="&ns;I3"/>

100

<Individual URI="&ns;I1"/>

</DifferentIndividuals>

<Declaration>

<ObjectProperty URI="&ns;P0"/>

</Declaration>

<FunctionalObjectProperty>

<InverseObjectProperty>

<ObjectProperty URI="&ns;P1"/>

</InverseObjectProperty>

</FunctionalObjectProperty>

<ReflexiveObjectProperty>

<ObjectProperty URI="&ns;P0"/>

</ReflexiveObjectProperty>

<SymmetricObjectProperty>

<ObjectProperty URI="&ns;P0"/>

</SymmetricObjectProperty>

<TransitiveObjectProperty>

<InverseObjectProperty>

<ObjectProperty URI="&ns;P1"/>

</InverseObjectProperty>

</TransitiveObjectProperty>

<InverseFunctionalObjectProperty>

<ObjectProperty URI="&ns;P0"/>

</InverseFunctionalObjectProperty>

<IrreflexiveObjectProperty>

<ObjectProperty URI="&ns;P0"/>

</IrreflexiveObjectProperty>

<AntisymmetricObjectProperty>

101

<InverseObjectProperty>

<ObjectProperty URI="&ns;P1"/>

</InverseObjectProperty>

</AntisymmetricObjectProperty>

<InverseObjectProperties>

<InverseObjectProperty>

<ObjectProperty URI="&ns;P1"/>

</InverseObjectProperty>

<ObjectProperty URI="&ns;P0"/>

</InverseObjectProperties>

<SubObjectPropertyOf>

<ObjectProperty URI="&ns;P0"/>

<InverseObjectProperty>

<ObjectProperty URI="&ns;P1"/>

</InverseObjectProperty>

</SubObjectPropertyOf>

<EquivalentObjectProperties>

<ObjectProperty URI="&ns;P0"/>

<InverseObjectProperty>

<ObjectProperty URI="&ns;P1"/>

</InverseObjectProperty>

</EquivalentObjectProperties>

<DisjointObjectProperties>

<InverseObjectProperty>

<ObjectProperty URI="&ns;P1"/>

</InverseObjectProperty>

<ObjectProperty URI="&ns;P0"/>

</DisjointObjectProperties>

<SubClassOf>

<ObjectHasValue>

<ObjectProperty URI="&ns;P1"/>

<Individual URI="&ns;I3"/>

</ObjectHasValue>

102

<ObjectHasValue>

<ObjectProperty URI="&ns;P0"/>

<Individual URI="&ns;I4"/>

</ObjectHasValue>

</SubClassOf>

<SubClassOf>

<OWLClass URI="&ns;C31"/>

<ObjectExistsSelf>

<ObjectProperty URI="&ns;P0"/>

</ObjectExistsSelf>

</SubClassOf>

<EquivalentClasses>

<ObjectHasValue>

<ObjectProperty URI="&ns;P0"/>

<Individual URI="&ns;I3"/>

</ObjectHasValue>

<ObjectAllValuesFrom>

<ObjectProperty URI="&ns;P1"/>

<OWLClass URI="&ns;C28"/>

</ObjectAllValuesFrom>

</EquivalentClasses>

<EquivalentClasses>

<ObjectExactCardinality cardinality="3">

<ObjectProperty URI="&ns;P1"/>

<OWLClass URI="&ns;C28"/>

</ObjectExactCardinality>

<OWLClass URI="&ns;C14"/>

</EquivalentClasses>

<DisjointClasses>

<ObjectUnionOf>

<OWLClass URI="&ns;C32"/>

<OWLClass URI="&ns;C12"/>

</ObjectUnionOf>

<OWLClass URI="&ns;C17"/>

103

</DisjointClasses>

<DisjointClasses>

<OWLClass URI="&ns;C7"/>

<ObjectExistsSelf>

<ObjectProperty URI="&ns;P0"/>

</ObjectExistsSelf>

</DisjointClasses>

<ClassAssertion>

<Individual URI="&ns;I4"/>

<OWLClass URI="&ns;C25"/>

</ClassAssertion>

<ObjectPropertyAssertion>

<Individual URI="&ns;I2"/>

<Individual URI="&ns;I0"/>

<ObjectProperty URI="&ns;P0"/>

</ObjectPropertyAssertion>

<ObjectPropertyDomain>

<ObjectProperty URI="&ns;P1"/>

<ObjectExistsSelf>

<ObjectProperty URI="&ns;P0"/>

</ObjectExistsSelf>

</ObjectPropertyDomain>

<ObjectPropertyRange>

<ObjectProperty URI="&ns;P1"/>

<OWLClass URI="&ns;C25"/>

</ObjectPropertyRange>

<SubClassOf>

<OWLClass URI="&ns;C0"/>

<OWLClass URI="&ns;Thing"/>

<SubClassOf>

<ObjectOneOf>

104

<Individual URI="&ns;I4"/>

<Individual URI="&ns;I2"/>

</ObjectOneOf>

<OWLClass URI="&ns;Thing"/>

</SubClassOf>

<SubClassOf>

<ObjectComplementOf>

<OWLClass URI="&ns;C30"/>

</ObjectComplementOf>

<OWLClass URI="&ns;Thing"/>

</SubClassOf>

<SubClassOf>

<ObjectComplementOf>

<ObjectUnionOf>

<OWLClass URI="&ns;C11"/>

<OWLClass URI="&ns;C6"/>

<OWLClass URI="&ns;C14"/>

</ObjectUnionOf>

</ObjectComplementOf>

<OWLClass URI="&ns;Thing"/>

</SubClassOf>

<SubClassOf>

<ObjectComplementOf>

<ObjectHasValue>

<ObjectProperty URI="&ns;P1"/>

<Individual URI="&ns;I2"/>

</ObjectHasValue>

</ObjectComplementOf>

<OWLClass URI="&ns;Thing"/>

</SubClassOf>

<SubClassOf>

<ObjectComplementOf>

<ObjectAllValuesFrom>

<ObjectProperty URI="&ns;P1"/>

105

<ObjectOneOf>

<Individual URI="&ns;I0"/>

<Individual URI="&ns;I3"/>

</ObjectOneOf>

</ObjectAllValuesFrom>

</ObjectComplementOf>

<OWLClass URI="&ns;Thing"/>

</SubClassOf>

<SubClassOf>

<ObjectIntersectionOf>

<OWLClass URI="&ns;C26"/>

<ObjectMaxCardinality cardinality="3">

<ObjectProperty URI="&ns;P0"/>

<OWLClass URI="&ns;C26"/>

</ObjectMaxCardinality>

</ObjectIntersectionOf>

<OWLClass URI="&ns;Thing"/>

</SubClassOf>

<SubClassOf>

<ObjectIntersectionOf>

<ObjectSomeValuesFrom>

<ObjectProperty URI="&ns;P0"/>

<OWLClass URI="&ns;C15"/>

</ObjectSomeValuesFrom>

<OWLClass URI="&ns;C38"/>

</ObjectIntersectionOf>

<OWLClass URI="&ns;Thing"/>

</SubClassOf>

<SubClassOf>

<ObjectIntersectionOf>

<OWLClass URI="&ns;C26"/>

<OWLClass URI="&ns;C6"/>

</ObjectIntersectionOf>

<OWLClass URI="&ns;Thing"/>

</SubClassOf>

106

<SubClassOf>

<ObjectIntersectionOf>

<ObjectSomeValuesFrom>

<ObjectProperty URI="&ns;P0"/>

<ObjectSomeValuesFrom>

<ObjectProperty URI="&ns;P0"/>

<OWLClass URI="&ns;C15"/>

</ObjectSomeValuesFrom>

</ObjectSomeValuesFrom>

<ObjectIntersectionOf>

<OWLClass URI="&ns;C26"/>

<OWLClass URI="&ns;C6"/>

</ObjectIntersectionOf>

<OWLClass URI="&ns;C10"/>

</ObjectIntersectionOf>

<OWLClass URI="&ns;Thing"/>

</SubClassOf>

<SubClassOf>

<ObjectUnionOf>

<ObjectExactCardinality cardinality="2">

<ObjectProperty URI="&ns;P0"/>

<ObjectAllValuesFrom>

<ObjectProperty URI="&ns;P0"/>

<ObjectOneOf>

<Individual URI="&ns;I0"/>

<Individual URI="&ns;I3"/>

</ObjectOneOf>

</ObjectAllValuesFrom>

</ObjectExactCardinality>

<OWLClass URI="&ns;C29"/>

<OWLClass URI="&ns;C23"/>

<ObjectSomeValuesFrom>

<ObjectProperty URI="&ns;P1"/>

<OWLClass URI="&ns;C8"/>

</ObjectSomeValuesFrom>

</ObjectUnionOf>

107

<OWLClass URI="&ns;Thing"/>

</SubClassOf>

<SubClassOf>

<ObjectUnionOf>

<OWLClass URI="&ns;C20"/>

<ObjectExactCardinality cardinality="3">

<ObjectProperty URI="&ns;P0"/>

</ObjectExactCardinality>

<OWLClass URI="&ns;C22"/>

<OWLClass URI="&ns;C2"/>

</ObjectUnionOf>

<OWLClass URI="&ns;Thing"/>

</SubClassOf>

<SubClassOf>

<ObjectUnionOf>

<OWLClass URI="&ns;C36"/>

<ObjectExactCardinality cardinality="2">

<ObjectProperty URI="&ns;P1"/>

</ObjectExactCardinality>

</ObjectUnionOf>

<OWLClass URI="&ns;Thing"/>

</SubClassOf>

<SubClassOf>

<ObjectSomeValuesFrom>

<ObjectProperty URI="&ns;P1"/>

<ObjectUnionOf>

<OWLClass URI="&ns;C20"/>

<ObjectExactCardinality cardinality="3">

<ObjectProperty URI="&ns;P0"/>

</ObjectExactCardinality>

<OWLClass URI="&ns;C22"/>

<OWLClass URI="&ns;C2"/>

</ObjectUnionOf>

</ObjectSomeValuesFrom>

<OWLClass URI="&ns;Thing"/>

108

</SubClassOf>

<SubClassOf>

<ObjectSomeValuesFrom>

<ObjectProperty URI="&ns;P0"/>

<ObjectComplementOf>

<ObjectUnionOf>

<OWLClass URI="&ns;C11"/>

<OWLClass URI="&ns;C6"/>

<OWLClass URI="&ns;C14"/>

</ObjectUnionOf>

</ObjectComplementOf>

</ObjectSomeValuesFrom>

<OWLClass URI="&ns;Thing"/>

</SubClassOf>

<SubClassOf>

<ObjectSomeValuesFrom>

<ObjectProperty URI="&ns;P0"/>

<OWLClass URI="&ns;C23"/>

</ObjectSomeValuesFrom>

<OWLClass URI="&ns;Thing"/>

</SubClassOf>

<SubClassOf>

<ObjectSomeValuesFrom>

<ObjectProperty URI="&ns;P1"/>

<OWLClass URI="&ns;C8"/>

</ObjectSomeValuesFrom>

<OWLClass URI="&ns;Thing"/>

</SubClassOf>

<SubClassOf>

<ObjectAllValuesFrom>

<ObjectProperty URI="&ns;P1"/>

<ObjectComplementOf>

<ObjectUnionOf>

<OWLClass URI="&ns;C11"/>

109

<OWLClass URI="&ns;C6"/>

<OWLClass URI="&ns;C14"/>

</ObjectUnionOf>

</ObjectComplementOf>

</ObjectAllValuesFrom>

<OWLClass URI="&ns;Thing"/>

</SubClassOf>

<SubClassOf>

<ObjectAllValuesFrom>

<ObjectProperty URI="&ns;P1"/>

<ObjectIntersectionOf>

<ObjectSomeValuesFrom>

<ObjectProperty URI="&ns;P0"/>

<OWLClass URI="&ns;C15"/>

</ObjectSomeValuesFrom>

<OWLClass URI="&ns;C38"/>

</ObjectIntersectionOf>

</ObjectAllValuesFrom>

<OWLClass URI="&ns;Thing"/>

</SubClassOf>

<SubClassOf>

<ObjectAllValuesFrom>

<ObjectProperty URI="&ns;P1"/>

<OWLClass URI="&ns;C9"/>

</ObjectAllValuesFrom>

<OWLClass URI="&ns;Thing"/>

</SubClassOf>

<SubClassOf>

<ObjectHasValue>

<ObjectProperty URI="&ns;P1"/>

<Individual URI="&ns;I4"/>

</ObjectHasValue>

<OWLClass URI="&ns;Thing"/>

</SubClassOf>

110

<SubClassOf>

<ObjectExistsSelf>

<ObjectProperty URI="&ns;P1"/>

</ObjectExistsSelf>

<OWLClass URI="&ns;Thing"/>

</SubClassOf>

<SubClassOf>

<ObjectExistsSelf>

<ObjectProperty URI="&ns;P1"/>

</ObjectExistsSelf>

<OWLClass URI="&ns;Thing"/>

</SubClassOf>

<SubClassOf>

<ObjectExactCardinality cardinality="3">

<ObjectProperty URI="&ns;P1"/>

<ObjectUnionOf>

<ObjectExactCardinality cardinality="2">

<ObjectProperty URI="&ns;P0"/>

<ObjectAllValuesFrom>

<ObjectProperty URI="&ns;P0"/>

<ObjectOneOf>

<Individual URI="&ns;I0"/>

<Individual URI="&ns;I3"/>

</ObjectOneOf>

</ObjectAllValuesFrom>

</ObjectExactCardinality>

<OWLClass URI="&ns;C29"/>

<OWLClass URI="&ns;C23"/>

<ObjectSomeValuesFrom>

<ObjectProperty URI="&ns;P1"/>

<OWLClass URI="&ns;C8"/>

</ObjectSomeValuesFrom>

</ObjectUnionOf>

</ObjectExactCardinality>

<OWLClass URI="&ns;Thing"/>

</SubClassOf>

111

<SubClassOf>

<ObjectMinCardinality cardinality="1">

<ObjectProperty URI="&ns;P0"/>

<ObjectOneOf>

<Individual URI="&ns;I0"/>

<Individual URI="&ns;I3"/>

</ObjectOneOf>

</ObjectMinCardinality>

<OWLClass URI="&ns;Thing"/>

</SubClassOf>

<SubClassOf>

<ObjectMaxCardinality cardinality="2">

<ObjectProperty URI="&ns;P0"/>

<ObjectOneOf>

<Individual URI="&ns;I4"/>

<Individual URI="&ns;I2"/>

</ObjectOneOf>

</ObjectMaxCardinality>

<OWLClass URI="&ns;Thing"/>

</SubClassOf>

<SubClassOf>

<ObjectExactCardinality cardinality="2">

<ObjectProperty URI="&ns;P1"/>

</ObjectExactCardinality>

<OWLClass URI="&ns;Thing"/>

</SubClassOf>

<SubClassOf>

<ObjectExactCardinality cardinality="2">

<ObjectProperty URI="&ns;P1"/>

</ObjectExactCardinality>

<OWLClass URI="&ns;Thing"/>

</SubClassOf>

<SubClassOf>

112

<ObjectMinCardinality cardinality="0">

<ObjectProperty URI="&ns;P0"/>

</ObjectMinCardinality>

<OWLClass URI="&ns;Thing"/>

</SubClassOf>

<SubClassOf>

<ObjectMaxCardinality cardinality="3">

<ObjectProperty URI="&ns;P1"/>

</ObjectMaxCardinality>

<OWLClass URI="&ns;Thing"/>

</SubClassOf>

</Ontology>

113

References

[1] International Telecommunication Union (ITU). Key Global Tele-
com Indicators for the World Telecommunication Service Sec-
tor. 2007. http://www.itu.int/ITU-D/ict/statistics/at_

glance/KeyTelecom99.html.

[2] Netcraft. April 2008 Web Server Survey. Apr 14, 2008. http:

//news.netcraft.com/archives/web_server_survey.html.

[3] Ivan Herman. W3C Semantic Web Activity. Nov 18, 2007. http:
//www.w3.org/2001/sw/.

[4] D. L. McGuinness and F. van Harmelen. W3C Rec OWL Web
Ontology Language. Feb 10, 2004. http://www.w3.org/TR/

owl-features/.

[5] Mike Dean, Dan Connolly, Frank van Harmelen, James Hendler,
Ian Horrocks, Deborah L. McGuinness, Peter F. PatelSchneider,
and Lynn Andrea Stein. OWL Web Ontology Language 1.0
Reference. July 29, 2002. http://www.w3.org/TR/2002/

WD-owl-ref-20020729/.

[6] Ian Horrocks, Bijan Parsia, Peter F. Patel-Schneider, and
Ulrike Sattler. OWL 1.1 Web Ontology Language. De-
cember 19, 2006. http://www.w3.org/Submission/2006/

SUBM-owl11-overview-20061219/.

[7] Ian Horrocks, Boris Motik, and Peter F. Patel-Schneider.
OWL 2 Web Ontology Language: Structural Specification and
Functional-Style Syntax. April 11, 2008. http://www.w3.org/

TR/2008/WD-owl2-syntax-20080411/.

[8] Dmitry Tsarkov and Ian Horrocks. Reasoner Prototype.
September 25, 2003. http://wonderweb.semanticweb.org/

deliverables/documents/D13.pdf.

[9] Li Ma, Yang Yang, Zhaoming Qiu, GuoTong Xie, Yue Pan,
and Shengping Liu. Towards a Complete OWL Ontology
Benchmark. In Sure and Domingue [14], pages 125–139.
http://www.springerlink.com/content/l0wu543x26350462/

fulltext.pdf.

114

http://www.itu.int/ITU-D/ict/statistics/at_glance/KeyTelecom99.html
http://www.itu.int/ITU-D/ict/statistics/at_glance/KeyTelecom99.html
http://news.netcraft.com/archives/web_server_survey.html
http://news.netcraft.com/archives/web_server_survey.html
http://www.w3.org/2001/sw/
http://www.w3.org/2001/sw/
http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/2002/WD-owl-ref-20020729/
http://www.w3.org/TR/2002/WD-owl-ref-20020729/
http://www.w3.org/Submission/2006/SUBM-owl11-overview-20061219/
http://www.w3.org/Submission/2006/SUBM-owl11-overview-20061219/
http://www.w3.org/TR/2008/WD-owl2-syntax-20080411/
http://www.w3.org/TR/2008/WD-owl2-syntax-20080411/
http://wonderweb.semanticweb.org/deliverables/documents/D13.pdf
http://wonderweb.semanticweb.org/deliverables/documents/D13.pdf
http://www.springerlink.com/content/l0wu543x26350462/fulltext.pdf
http://www.springerlink.com/content/l0wu543x26350462/fulltext.pdf

[10] Timo Weithöner, Thorsten Liebig, Marko Luther, Sebastian
Böhm, Friedrich W. von Henke, and Olaf Noppens. Real-
world reasoning with owl. In Franconi et al. [15], pages 296–
310. http://www.uni-ulm.de/fileadmin/website_uni_ulm/

iui.inst.090/Publikationen/2007/WLLBvHN07.pdf.

[11] Boris Motik, Peter F. Patel-Schneider, and Ian Horrocks.
OWL 1.1 Web Ontology Language Structural Specification and
Functional-Style Syntax. May 23, 2007. http://www.webont.

org/owl/1.1/owl_specification.html.

[12] Grady Booch, James E. Rumbaugh, and Ivar Jacobson. The
Unified Modeling Language User Guide. Addison-Wesley, 1999.

[13] Ian Horrocks, Peter F. Patel-Schneider, Sean Bechhofer,
and Dmitry Tsarkov. OWL rules: A proposal and pro-
totype implementation. J. Web Sem., 3(1):23–40, 2005.
http://www.cs.man.ac.uk/~horrocks/Publications/

download/2005/HPBT05.pdf.

[14] York Sure and John Domingue, editors. The Semantic Web:
Research and Applications, 3rd European Semantic Web Confer-
ence, ESWC 2006, Budva, Montenegro, June 11-14, 2006, Pro-
ceedings, volume 4011 of Lecture Notes in Computer Science.
Springer, 2006.

[15] Enrico Franconi, Michael Kifer, and Wolfgang May, editors. The
Semantic Web: Research and Applications, 4th European Seman-
tic Web Conference, ESWC 2007, Innsbruck, Austria, June 3-7,
2007, Proceedings, volume 4519 of Lecture Notes in Computer
Science. Springer, 2007.

[16] Matthew Horridge, Sean Bechhofer, and Olaf Noppens. Ig-
niting the OWL 1.1 Touch Paper: The OWL API. In Gol-
breich et al. [18]. http://ftp.informatik.rwth-aachen.de/

Publications/CEUR-WS/Vol-258/paper19.pdf.

[17] Natalia Villanueva-Rosales and Michel Dumontier. Describing
Chemical Functional Groups in OWL-DL for the Classification
of Chemical Compounds. In Golbreich et al. [18]. http://www.

scs.carleton.ca/~nvillanu/papers/2007_OWLED_CFG.pdf.

115

http://www.uni-ulm.de/fileadmin/website_uni_ulm/iui.inst.090/Publikationen/2007/WLLBvHN07.pdf
http://www.uni-ulm.de/fileadmin/website_uni_ulm/iui.inst.090/Publikationen/2007/WLLBvHN07.pdf
http://www.webont.org/owl/1.1/owl_specification.html
http://www.webont.org/owl/1.1/owl_specification.html
http://www.cs.man.ac.uk/~horrocks/Publications/download/2005/HPBT05.pdf
http://www.cs.man.ac.uk/~horrocks/Publications/download/2005/HPBT05.pdf
http://ftp.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-258/paper19.pdf
http://ftp.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-258/paper19.pdf
http://www.scs.carleton.ca/~nvillanu/papers/2007_OWLED_CFG.pdf
http://www.scs.carleton.ca/~nvillanu/papers/2007_OWLED_CFG.pdf

[18] Christine Golbreich, Aditya Kalyanpur, and Bijan Parsia, edi-
tors. Proceedings of the OWLED 2007 Workshop on OWL: Expe-
riences and Directions, Innsbruck, Austria, June 6-7, 2007, vol-
ume 258 of CEUR Workshop Proceedings. CEUR-WS.org, 2007.

[19] Jian Zhou, Li Ma, Qiaoling Liu, Lei Zhang, Yong Yu, and Yue
Pan. Minerva: A Scalable OWL Ontology Storage and Inference
System. In Mizoguchi et al. [20], pages 429–443. http://dx.

doi.org/10.1007/11836025_42.

[20] Riichiro Mizoguchi, Zhongzhi Shi, and Fausto Giunchiglia, ed-
itors. The Semantic Web - ASWC 2006, First Asian Seman-
tic Web Conference, Beijing, China, September 3-7, 2006, Pro-
ceedings, volume 4185 of Lecture Notes in Computer Science.
Springer, 2006.

[21] Boris Motik and Ulrike Sattler. A Comparison of Reasoning
Techniques for Querying Large Description Logic ABoxes. In
Hermann and Voronkov [22], pages 227–241. http://dx.doi.

org/10.1007/11916277_16.

[22] Miki Hermann and Andrei Voronkov, editors. Logic for Program-
ming, Artificial Intelligence, and Reasoning, 13th International
Conference, LPAR 2006, Phnom Penh, Cambodia, November 13-
17, 2006, Proceedings, volume 4246 of Lecture Notes in Computer
Science. Springer, 2006.

[23] Atanas Kiryakov, Damyan Ognyanov, and Dimitar Manov.
OWLIM - A Pragmatic Semantic Repository for OWL. In
Dean et al. [24], pages 182–192. http://dx.doi.org/10.1007/

11581116_19.

[24] Mike Dean, Yuanbo Guo, Woochun Jun, Roland Kaschek,
Shonali Krishnaswamy, Zhengxiang Pan, and Quan Z. Sheng,
editors. Web Information Systems Engineering - WISE 2005
Workshops, WISE 2005 International Workshops, New York,
NY, USA, November 20-22, 2005, Proceedings, volume 3807 of
Lecture Notes in Computer Science. Springer, 2005.

[25] Thorsten Liebig. Reasoning with OWL, System Support and In-
sights. September, 2006. http://www.informatik.uni-ulm.

de/ki/Liebig/papers/TR-U-Ulm-2006-04.pdf.

116

http://dx.doi.org/10.1007/11836025_42
http://dx.doi.org/10.1007/11836025_42
http://dx.doi.org/10.1007/11916277_16
http://dx.doi.org/10.1007/11916277_16
http://dx.doi.org/10.1007/11581116_19
http://dx.doi.org/10.1007/11581116_19
http://www.informatik.uni-ulm.de/ki/Liebig/papers/TR-U-Ulm-2006-04.pdf
http://www.informatik.uni-ulm.de/ki/Liebig/papers/TR-U-Ulm-2006-04.pdf

[26] Timo Weithner, Thorsten Liebig, Marko Luther, and Sebas-
tian Bhm. What’s Wrong with OWL Benchmarks? Novem-
ber 2006. http://www.informatik.uni-ulm.de/ki/Liebig/

papers/weithoener-et-al-ssws06.pdf.

[27] Ivan Herman and Sandro Hawke. OWL Working Group Charter.
September 7, 2007. http://www.informatik.uni-ulm.de/ki/

Liebig/papers/weithoener-et-al-ssws06.pdf.

117

http://www.informatik.uni-ulm.de/ki/Liebig/papers/weithoener-et-al-ssws06.pdf
http://www.informatik.uni-ulm.de/ki/Liebig/papers/weithoener-et-al-ssws06.pdf
http://www.informatik.uni-ulm.de/ki/Liebig/papers/weithoener-et-al-ssws06.pdf
http://www.informatik.uni-ulm.de/ki/Liebig/papers/weithoener-et-al-ssws06.pdf

	Problems and motivation
	Introduction
	OWL
	Ontology
	Concepts
	Properties
	Individuals
	Consistency

	DL reasoners
	FaCT++
	OWLIM
	Racer
	Pellet
	KAON2
	Summary

	Benchmarks

	Implementation
	Goal
	Requirements
	Metadata
	GUI
	Output
	Engine

	Problems
	Design
	Architecture
	GUI
	Core engine

	Implementation
	UML
	Java Web Start
	Libraries

	System Evaluation
	Analysis
	Performance
	Consistency Tests with Racer
	Consistency tests with Pellet
	Summary

	Conclusions and FurtherWork
	Medadata File 1
	Ontology 1

