
Construction and Deduction Methods for the

Formal Development of Software

F. W. von Henke, A. Dold, H. Rue�, D. Schwier, M. Strecker

Abt. K�unstliche Intelligenz

Universit�at Ulm

Abstract. In this paper we present an approach towards a framework

based on the type theory ECC (Extended Calculus of Constructions) in

which speci�cations, programs and operators for modular development

by stepwise re�nement can be formally described and reasoned about. We

demonstrate how generic software development steps can be expressed

as higher-order functions and how proofs about their asserted e�ects can

be carried out in the underlying logical calculus.

For formalizing transformations that require syntactic manipulation of

objects, we introduce a two-level system combining a meta-level and an

object level and show how to express and reason about transformations

that faithfully represent object-level operators.

1 Introduction

Modern software engineering regards software development as an evolutionary

process [Wir95, BP81]. One view of this process is that, starting from abstract,

high-level requirement speci�cations, a series of re�nement or implementation

steps is applied to successive levels of speci�cation, eventually yielding a program

as the �nal result of the process. In a more formal context, it must be demon-

strated for each step that the re�ned speci�cation or implementation satis�es

the properties postulated by the previous (higher level) speci�cation. Then the

�nal program will satisfy the initial requirements, provided suitable properties

of compositionality of steps hold.

Past experience has shown that formal veri�cation of software developments

requires more e�ort and higher costs than can be justi�ed in most situations, ma-

king traditional post mortem veri�cation rather impractical. As an alternative,

we may analyze the development process further and identify certain steps that

are applied repeatedly as re�nement patterns. If we succeed in formalizing such

patterns and verifying their properties, we may considerably reduce the e�ort

required for the formal veri�cation of the development process. In particular, it

is desirable to formalize a development pattern as an operator that transforms

speci�cations into new speci�cations and to prove that the result of applying

the operator yields, for example, a re�nement of the argument speci�cation. Ac-

cordingly, the demonstration of correctness for each development step that is an

instance of a formalized pattern has been reduced to showing that the operator

is applicable.



In this paper we present an approach towards a framework in which we can

formally describe and reason about speci�cations, programs and development

operators and apply the method outlined above. Our approach is based on a

type theory, the Extended Calculus of Constructions (ECC) [Luo90, Luo91a],

as the unifying logical foundation. Building on ECC, we de�ne a speci�cation

language, Typelab; roughly, it introduces syntactic constructs that are closer

to the style of algebraic speci�cations and more readable than the language of

the \raw" logic, while its semantics is grounded in the type theory. In essence, a

speci�cation represents a type, and a member of that type is a realization of that

speci�cation. Obviously, such a notion of types as speci�cations requires types

to convey semantic information; as a consequence, demonstrating that an object

has a particular type, i.e. type checking, may involve verifying that it satis�es the

semantic properties of the type { which, in general, requires theorem proving.

The language is rich enough for expressing speci�cations, assertions about

speci�cations, and relations between speci�cations in a natural way. In particu-

lar, many generic development steps can be expressed as higher-order functions,

and proofs that they have the asserted e�ect can be carried out in the underlying

logical calculus; a formalization of this kind will be presented in Sect. 4. It seems,

however, that in many cases the formalization of development patterns requires

a direct description of how the text of a speci�cation has to be modi�ed, for

instance for optimizing transformations; thus, such patterns must be formalized

as operators on syntactic representations of speci�cations. Then the veri�cation

that applying an operator indeed establishes the asserted relationship between

its source and target typically requires relating the syntactic manipulation (i.e.,

how the text of the source speci�cation is modi�ed to yield the text of the target)

to the semantic relationship between the meanings of those texts. To facilitate

this kind of reasoning a two-level formal system has to be provided: the syntax of

the object language is represented by data types of the meta-level, and a reec-

tion principle serves to link syntactic structures to their meaning at the object

level. In Sect. 4 we develop such a two-level system for Typelab and show by

means of a simple example how operators can be formalized and reasoned about.

The remainder of the paper is organized as follows. Section 2 contains a brief

description of the type theory used. In Sect. 3 we introduce the speci�cation

language Typelab. Section 4 presents the two main approaches to formalizing

development steps: using higher-order functions, and using meta-operators; for

the latter approach the two-level formal system is developed. Section 5 discus-

ses aspects of the Typelab implementation. The �nal section contains a brief

summary and conclusions.



2 Type-theoretic Foundation

The formal basis of our approach is the type theory Extended Calculus of Con-

structions (ECC) [Luo90, Luo91a] augmented by inductive types. We briey

summarize those features of the type theory that are needed in this paper.

ECC, like all advanced type theories, may be regarded as an extension of

the (simply typed) lambda calculus [Chu40] by a more powerful type system. In

our context, the most important extensions are the addition of dependent types

and type universes.

�-types (strong sum types) generalize Cartesian products: �x : A: B is the

type of pairs (a; b) such that a is a member of type A and b is in B [x := a].
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�-types (abstraction types) generalize function types. Intuitively, �x : A: B is

the type of dependent functions with domain A and codomain B where B may

depend on the element to which the function is applied.

A type universe is a type which has types as its members. ECC o�ers two

kinds of universes, Prop and Type

i

, for natural numbers i . By the Curry-Howard

principle of propositions-as-types [CF58, How80], logical formulas are considered

as the types of their proofs. They are included in the universe Prop and data

types reside in the universes Type

i

. Coquand and Huet [CH85] demonstrate how

logical connectives (^, _,),,), logical quanti�cation (8, 9) and Leibniz equality

(a = b) are coded. Strong sums and type universes in ECC prove to be use-

ful for encoding program speci�cations and abstract implementations between

speci�cations, and for modular development by stepwise re�nement [Luo91b].

The treatment of rules and proofs is based on the notion of judgement. Typing

judgements are of the form � ` M : A and express the fact that in context �

termM is of type A, where a context is de�ned as a �nite sequence of declarations

x : A. Depending on the situation, a : A may be interpreted as \a is of type A",

\a is a proof of formulaA", or \a meets speci�cation A". A termM is well-typed

in context � , if � ` M : A for some A: A type A is inhabited under context �

if and only if there exists a term M such that � ` M : A is derivable. For a

complete presentation of typing rules and a notion of derivability of judgements

see [Luo90].ECC has many good meta-theoretic properties. It obeys the Church-

Rosser property, is strongly normalizable, and type checking is decidable.

3 Speci�cation in Typelab

In the following we extend the calculus ECC by constructs for representing

units of the software development process [Wir95]. The design of these constructs

is inuenced mainly by the PVS [ORS92, ORSv95] speci�cation language and

Extended ML [ST89]. The extensions to ECC are quite expressive in the sense

that most of the mathematical and computational concepts we wish to describe

can be formulated very directly and naturally.

1

Capital letters and a, b denote terms of the term calculus of ECC, while x , y denote

variables. N [x :=M ] denotes the substitution of a term M for all free occurrences

of x in the term N .



Type constructors are introduced to form Cartesian products, (dependent)

record types, semantic subtypes, and speci�cations. All these constructs are spe-

cial forms of strong sum types in ECC; they are, however, handled di�erently

by the typing system and therefore require special syntax. Cartesian products

and record types are of the form A

1

� : : :� A

n

and � x

1

: A

1

; : : : ; x

n

: A

n

�

respectively; their elements are tuples (a

1

; : : : ; a

n

). The common dot notation

denotes selection of record �elds.

A semantic subtype fx : A j Pg includes those members of type A which

satisfy predicate P . Elements of the semantic subtype are denoted by a[p], where

a is a member of type A and p is a proof term of type P [x := a]. (This notation

is possible because proofs can be expressed as usual terms). A distinctive feature

of the typing system is a conversion mechanism that is able to convert members

of one type to members of a di�erent type automatically. For example, applying

a function that requires a member of fx : N j Odd(x )g to the natural number 5

is illegal, because 5 is not a member of the subtype. But if one can �nd a term p

which is a proof ofOdd(5), we may rewrite the application using 5[p] instead of 5.

Since in general it is not possible to �nd the required proofs automatically, proof

obligations are generated. A proof obligation is a placeholder for a term which

will be �lled in later by the prover. These proof obligations can be postponed

because the type checker only requires type information.

A speci�cation consists, as usual, of a signature part and an axiom part;

the signature part normally corresponds to a dependent �-type, the axiom part

is a collection of propositions (elements of type Prop) that restrict the set of

acceptable \models" of the signature. For instance, the following speci�cation

declares a type Setoid as consisting of a type T together with a binary Boolean

function eq on T that is restricted to be an equivalence relation:

Setoid := spec

T : Type; eq : T �T ! B

with

Ax : equivalence(eq)

end

Realizations of such speci�cations are structures that satisfy the axioms. For

example, the structure struc T := B ; eq := eq

B

end is of type Setoid if the

condition equivalence(eq

B

) holds. Whenever a structure is type checked and no

proof terms are given, proof obligations are generated to �ll out any missing

proofs. The proof obligations are derived from the speci�cation by substituting

terms from the structure into the axioms. In this example the obligation is

equivalence(eq

B

). Let p be a proof of this proof obligation, then the structure

above is converted into:

struc T := B ; eq := eq

B

end [p] : Setoid

The conversion mechanism is also used by the casting construct (::) of Ty-

pelab. A term M :: A causes the typing system to check if M is a member of

type A. If the type check fails, the system tries to generate a term M

0

of type



A fromM by introducing proof obligations. This feature is used to generate the

proof obligations that are necessary to establish the correctness of the develop-

ment process. The following function, for example, realizes a re�nement map

with import speci�cations imp

1

and imp

2

, and the export speci�cation exp.

� := � r

1

: imp

1

; r

2

: imp

2

:

struc

: : :

end :: exp

Type casting of the function body produces proof obligations that intuitively

state: if realization r

i

, i = 1; 2, ful�lls the axiom part of speci�cation imp

i

then

�(r

1

; r

2

) ful�lls the axioms of exp.

The mechanisms to form inductive datatypes follow the extension of ECC by

Ore [Ore92]. Polymorphic lists, for example, are de�ned by

List := � T : Type: datatype X : Type: nil j cons : T � X

Note that the names of the constructors for inductive datatypes have to

be introduced explicitly (e.g. mkNil := � T : Type: intro(List(T ); nil)). The

case construct is a generic construct for inductive datatypes; it allows both

for structural induction over inductively de�ned datatypes and for the de�nition

of functions by means of (higher{order) primitive recursion; it can be seen as

a variant of the concept of hom{functionals [vH76] and exhibits the natural

correspondence between the structure of a program (or proof) and the data

structure. The speci�c inductive structure to which case is being applied is

determined by the type of the �rst argument. For example, the function map on

polymorphic lists,

2

map := � T ; S j Type; l : List(T ); f : T ! S :

case l of

nil : mkNil(S );

cons : � (t ; l

1

) : T � List(T ); y : List(S ):

mkCons(f (t); y)

end

is completely speci�ed by describing its behavior for each of the constructors

separately. In the second case of the case construct (cons), the result of ap-

plying the function f to the head element t is concatenated to the result y of

what e�ectively is the recursive call of map: Inductive datatypes representing

Booleans (B ), natural numbers (N) and polymorphic lists (List) together with

appropriate operators are prede�ned.

The fix construct allows for de�ning recursive functions in a restricted

form: mutual recursion is not allowed, and functions must be proven to be total.

2

The notation � T j Type: : : : is used to denote type parameters which usually are

not provided explicitly, i.e. are left implicit and deduced by type checking.



Consider, for example, the de�nition of the factorial function:

fix f : N! N:

� n : N: if isZero(n) then 1 else n � f (n � 1) end

measure � x : N: x

The function following the keyword measure is required for demonstrating

termination of the function being de�ned recursively by means of the fix con-

struct, following the approach of PVS. It has the same domain as the recursively

de�ned function and, in this case, range type N. The de�nition generates the

termination correctness condition

8 n : N: isZero(n) 6= true ) n � 1 <

N

n

using the standard ordering <

N

on N as default. This condition must be dischar-

ged to ensure well-typedness of f : Measure functions can also be utilized in the

obvious way to prove properties about recursive functions by means of Noethe-

rian induction.

4 Formalizing Development Steps

In this section we present two approaches to formally representing and reasoning

about software development steps in Typelab:

{ by higher-order functions,

{ by meta-functions.

4.1 Representation of Steps by Higher-Order Functions

The formalization of transformations using higher-order patterns has been consi-

dered by several researchers. In [HL78], for example, program transformations for

recursion removal are expressed as second-order patterns de�ned in the simply

typed �-calculus [Chu40]. In contrast to this treatment we use the powerful fra-

mework of Typelab and demonstrate how it is possible to formalize and verify

a \large" development step ; this is illustrated by a schematic algorithm global-

search. Due to space limitations, only the most essential features can be sketched,

the rigorous mathematical treatment and veri�cation is presented in [Dol94]. To

a large extent, this work follows the approach developed by D. Smith [Smi87].

Independently of the work described here, a formal treatment of some of the

\larger" steps has also been carried out by C. Kreitz [Kre93] in the context of

Nuprl [Con86].

Global-search is a generalization of well-known search strategies such as back-

tracking and depth-�rst-search [Smi87]. The basic idea of global-search is to re-

present and manipulate sets of candidate solutions. Starting from an initial set

containing all solutions, a global-search algorithm repeatedly extracts solutions,

splits sets into subsets until no sets remain to be split. Sets are represented im-

plicitly by descriptors; valid, i.e. meaningful, descriptors are characterized by a



predicate J . A predicate satis�es on descriptors determines whether a candidate

solution is in the set denoted by the descriptor. The whole process can be re-

garded as a search procedure on trees in which nodes represent sets implicitly

described by the type S of set descriptors and arcs represent the split operation.

Starting from a requirement speci�cation, an extension of this speci�ca-

tion de�nes the additional datatypes and operations needed to realize a global-

search algorithm. This extended structure is expressed in a speci�cation called

global search theory. Based on this theory an abstract generic algorithm can be

de�ned. Instantiating the abstract scheme with the speci�c problem structure to-

gether with a proof that the structure satis�es the axioms of global search theory

su�ces to synthesize an algorithm realizing a constructive solution of the pro-

blem. Using this method, we have derived a key-search algorithm and shown

that its veri�cation is easily obtained by applying the correctness proof of the

transformation to the speci�c problem structure [Dol94].

One starts with the following speci�cation:

Problemspec := � D : Type;R : Type; I : D ! Prop;O : D � R ! Prop �

where D is the domain type, R the range type, I the input condition restricting

D to legal inputs and O the input/output relation. The problem is then formally

described by

3

req spec := � (D ;R; I ;O) : Problemspec:

8 x : D : I (x )) 9 S : Set(R): 8 elem : R:

((elem 2 S ) = true), O(x ; elem))

The schematic algorithm de�ned below realizes a constructive proof of this

(parameterized) proposition.

The theory global search theory is given as a speci�cation parameterized by

an object of type Problemspec. The theory is sketched in Fig.1. The following

properties (in the theory expressed formally as axioms) must hold for the theory

components:

1. The initial descriptor init(x ) is a valid descriptor.

2. If r is a legal descriptor then all its (immediate) descendants s calculated by

the split operation are legal descriptors.

3. All solutions must be contained in the set described by init(x ).

4. A candidate solution z is in a set described by s if and only if it can be

extracted from s or one of its descendants.

5. Elements z which can be extracted from a set r (i.e. extract?(z ; r) = true)

are contained in the set extract(x ; r) if they satisfy condition O .

6. There are no loops w.r.t. the transitive closure of the relation split?.

7. Every legal descriptor has at most one predecessor.

The function F

gs

(Fig.2) de�nes the schematic algorithm which takes as input

a realization of a global search theory and two additional functions arbsplit for



global search theory := � (D;R; I ;O) : Problemspec:

spec

S : Type

J : D � S ! Prop

init : D ! S

satis�es : R � S ! Prop

split? : D ! (S � S ! Prop)

split : D � S ! Set(S)

extract? : R � S ! Prop

extract : D � S ! Set(R)

with

ax1 : 8 x : D: I (x )) J (x ; init(x ));

ax2 : 8 x : D; r ; s : S : (I (x ) ^ J (x ; r) ^ split?(x )(r ;s))) J (x ; s);

ax3 : 8 x : D; z : R: (I (x ) ^ O(x ; z ))) satis�es(z ;init(x ));

: : :

end

Fig. 1. De�nition of a global search theory

selecting an arbitrary element of a set and tcl which is used for termination. The

result is then a function f de�ned on a set of descriptors, a set of solutions, and a

legal input x . It selects at each step a descriptor from the active set, computes its

descendants, extracts solutions and repeats this operation on each subset until

all nodes have been considered. The initial value of the active set is given by

init(x ), and the set of solutions is empty. The function tcl produces for a given

set of nodes in the search tree its (�nite) set of successors with respect to the

relation split?, i.e. it calculates the transitive closure of split?. This speci�es a

�nite depth of the search tree. One implicitly obtains a �nite width by using

the polymorphic type Set of �nite sets, i.e. split produces for a given node the

�nite set of its (direct) descendants. To guarantee well-typedness of the recursive

function we must supply a measure function. Here we use the cardinality of the

transitive closure of the active set of nodes. The concept of semantic subtypes

is used to represent an invariant constraining the domain F Type of f . The

predicate Invar ensures that

1. every node of the active set is a legal descriptor;

2. all elements of the set solution ful�ll condition O ;

3. for two arbitrary nodes s

1

; s

2

of the active set, s

2

is not a successor of s

1

w.r.t. the relation split?.

To establish the correctness of the de�ned development step one has to show

that for an arbitrary problem speci�cation and global search theory the instan-

tiated function f is indeed a constructive solution, i.e. f calculates the set of

3

We suppose that the type Set(T ) of �nite sets over a type T together with suitable

operations is given.



F

gs

:= � (D;R; I ;O) : Problemspec; gs : global search theory((D;R; I ;O));

arbsplit : : : : ; tcl : : : : :

let

F Type := � active : Set(gs:S);solution : Set(R);

x : fD j Invar((D;R; I ;O); gs; active;solution;x )g �

in

fix f : F Type ! Set(R): � (active;solution;x ) : F Type:

if empty?(active) then solution

else

let

(r ;A

1

) := arbsplit(active);

Newactive := A

1

[ gs:split(x ;r);

Newsolution := solution [ gs:extract(x ;r)

in

f (Newactive;Newsolution;x )

measure

� (active;solution;x ) : F Type: card(tcl(active;solution;x ))

Fig. 2. The schematic algorithm Global Search

all elements of the range type R which satisfy the condition O . The soundness

theorem is given in Fig.3. Additionally, to ensure type correctness some type

correctness conditions are generated. The �rst one states that the measure func-

tion applied to the parameters of the recursive call yields a smaller value than

the function called with the original parameters. Furthermore, the parameters

of the recursive call and the initial parameters must satisfy the invariant of f .

All proof obligations have successfully been discharged using the (interactive)

higher-order Gentzen prover of the PVS speci�cation system [ORS92].

The techniques outlined above can readily be used to formalize many ge-

Soundness Theorem :=

8 (D;R; I ;O) : Problemspec; gs : global search theory((D;R; I ;O));

arbsplit : : : : ; tcl : : : : ; x : fD j I (x )g; y : R:

let

F inst := F

gs

((D;R; I ;O); gs;arbsplit ; tcl);

init set := insert(gs:init(x);?

gs:S

);

init sol := ?

R

;

sol set := F inst(init set ; init sol ;x )

in

(y 2 sol set = true), O(x ; y)

Fig. 3. Soundness Theorem of Global Search



neric development steps including transformations such as divide-and-conquer ,

dynamic programming and those investigated by the Munich CIP group [CIP87,

Par90].

4.2 Meta-Operators

Many typical development steps are not representable with the language con-

structs introduced in Sect. 3. Consider, for example, the simple task of replacing

a certain axiom P

i

in a speci�cation text by another axiom Q . If Q implies

P

i

then one can construct a re�nement map from the modi�ed speci�cation

to the original one. More precisely: let � be the current context, abbreviate

x

1

: A

1

; : : : ; x

n

: A

n

by x : A, and de�ne a speci�cation

sp

1

:= spec x : A with p

1

: P

1

; : : : ; p

i

: P

i

; : : : ; p

m

: P

m

end

that is well-typed in � . Furthermore, assume that the judgement �;x : A ` p :

Q ) P

i

is derivable.

4

It is our task to construct a realization of sp

1

relative to

a realization of speci�cation

sp

2

:= spec x : A with p

1

: P

1

; : : : ; q : Q ; : : : ; p

m

: P

m

end

A re�nement map from speci�cation sp

2

to speci�cation sp

1

is constructed as

� := � r : sp

2

:

struc x

1

:= r :x

1

; : : : ; x

n

:= r :x

n

end [r :p

1

; : : : ; p(r :q); : : : ; r :p

m

]

and the type introduction rule for structures immediately yields:

� ` � : sp

2

! sp

1

A transformation of this kind which takes a speci�cation sp

1

, a formula Q ,

and an index i and results in a new speci�cation sp

2

by replacing the i-th axiom

in sp

1

by Q needs both access to internal structure in order to manipulate

syntactical text and the correctness of this formalization involves reasoning about

derivability of judgements, i. e. meta-reasoning. Furthermore, this development

step deals with a term Q that is not necessarily well-typed in the current context

� but only in �;x : A.

In the following we describe a meta-architecture that allows one to express

such development steps and transformations by means of functions on represen-

tations of programs (proofs) and speci�cation texts. These functions are called

meta-functions and are amenable to formal treatment; e.g. one can state and

prove characteristic properties about them.

Historically, meta-architectures were �rst formalized and investigated by lo-

gicians, where the pioneering work has been carried out by G�odel [G�od31]. From

a more application oriented view, meta-level architectures have been used ex-

tensively in the realm of mechanical theorem proving [BM81, ACHA90, How88,

KC86], since in many cases it is quite straightforward to construct a proof by

4

Note that Q need not be well-typed in context � if some x

i

occurs free in Q.



means of syntactic analysis of the problem at hand [Wey80, AW80]. Here, the

important issue is howmeta-programming and meta-reasoning can be used to re-

present software development steps together with expressing a certain semantics

of these steps.

In a �rst step one encodes syntactic categories and the proof theory of Ty-

pelab within itself following the approach of G�odel. This encoding constitutes

the meta-level. On this encoding one can write (almost) arbitrary functions and

express relations like \x is a free variable in M " or \the result of substituting

the term N for all free occurrences of the variable x in M yields L". A parti-

cularly important predicate is the derivability predicate expressing the relation

that \M is of type A in context �". These features allow to encode development

steps (proof steps) by meta-functions, and to express and prove \semantic" re-

lations between arguments and results. The adequacy and faithfulness of the

encoding yield reection principles that allow one to exchange results between

the meta-level and the object level in a sound way.

Due to lack of space we can merely present a fragmentary sketch of the archi-

tecture. A detailed treatment can be found in [Rue95, Pfe95]. One �rst represents

syntactical categories of the object language syntax by means of the inductive

datatype AbsTrm. The elements of this data type can be seen as abstract syntax

of terms. This abstract syntax does not necessarily represent well-typed terms.

Representations of speci�cations, for example, can be formed by means of the

constructor mkSpec of type List(Id�AbsTrm)�List(Id �AbsTrm)! AbsTrm.

The �rst argument represents the signature, while the second one represents the

axiom part; Id is just the type for identi�ers. It is straightforward to introduce

recognizers and selectors for each alternative in the datatype AbsTrm. For spe-

ci�cations we have the recognizer isSpec and selectors specSig and specAxms.

Recognizer isSpec(M ) yields true if and only if M represents a speci�cation,

while specSig and specAxms respectively select the (representations of the) si-

gnature and the axiom part. In the following we also utilize the constructor

mkStruc with corresponding selectors strucDefs and strucPrfs.

Contexts are represented by elements of type Ctxt which is a list of (represen-

tations of) type assignments x : A while judgements are represented by elements

of Jdgmt := Ctxt�AbsTrm�AbsTrm. The data types AbsTrm,Ctxt , and Jdgmt

are called representation types and elements of them are meta-terms.

A quoting mechanism ':' associates syntactic categories of the object level

like terms, contexts, and judgements with meta-terms; for example:

' spec x

1

: A

1

; x

2

: A

2

with p

1

: P

1

; p

2

: P

2

end ' :=

mkSpec(h( 'x

1

' ; 'A

1

' ); ( 'x

2

' ; 'A

2

' )i; h( 'p

1

' ; 'P

1

' ); ( 'p

2

' ; 'P

2

' )i)

Through the mapping ':' object-level constructs become available for discourse

at the meta-level.

It is a standard exercise to encode the term calculus. One de�nes func-

tions occurs of type AbsTrm � Var ! B and substVar of type AbsTrm �

Var � AbsTrm ! AbsTrm by means of higher{order primitive recursion such

that occurs( 'M ' ; 'x ' ) reduces to true if and only if x occurs free in M and



substVar( 'M ' ; 'x ' ; 'N ' ) reduces to 'M [x := N ]' . Binary relations on terms

like syntactic equality (modulo alpha-convertibility) and convertibility can be co-

ded in a type-theoretic setting by closures of the appropriate binary relations.

Likewise derivability of a judgement, denoted by deriv(:), is encoded as the least

set (one-place predicate) closed under the rules of the type calculus of Type-

lab. The following fact expresses adequacy and faithfulness of this encoding of

derivability

� ` M : A is derivable if and only if there exists a term p such that

` p : deriv( '� ' ; 'M ' ; 'A' )

Obviously, a proof of this can neither be carried out at the object level nor at

the meta-level, but is rather accomplished in the (informal) theory that allows

one to reason about both of these levels. The result above allows one to deduce

from the derivability of � ` M : A at the object level the existence of a term

of type deriv( '� ' ; 'M ' ; 'A' ). This transition from object level to meta-level

is named reection upwards while the corresponding change from meta-level

to object level is called reection downwards [GS89]. These reection rules are

admissible inferences, and thus, in principle, dispensable. From a practical point

of view, however, reection rules are crucial since they allow to exchange results

between object level and meta-level as exempli�ed in the following.

In the remaining we formalize the development step described in the be-

ginning of this section within our meta-architecture and demonstrate how to

apply meta-functions and corresponding correctness results. The meta-function

replaceAxInSpec replaces in (the representation of) a speci�cation sp the (repre-

sentation of the) i-th axiom by (the representation of) another term axm, where

replace is the replacement on lists:

replaceAxInSpec :=

� sp : fAbsTrm j isSpec(sp) = trueg; i : Nat ; axm : AbsTrm:

mkSpec(specSig(sp); replace(specAxms(sp); i ; axm))

It simply replaces the i-th element in the list of axiom representations with the

argument axm. The following predicate states that the resulting (representation

of a) speci�cation is indeed a re�nement of the argument (representation of a)

speci�cation

8 ctxt : Ctxt ; sp : fAbsTrm j isSpec(sp) = trueg; i : Nat ; axm;M : AbsTrm:

deriv(append(ctxt ; specSig(sp));M ;mkImpl(axm; nth(i ; specAxms(sp))))

) let Res := replaceAxInSpec(sp; i ; axm);

N := mkLambda(( 'r ' ;Res);

mkStruc(strucDefs(mkRef ( 'r ' ));

replace(strucPrfs(mkRef ( 'r ' )); i ;

mkApp(M ;mkProj (mkRef ( 'r ' ); i)))))

in deriv(ctxt ;N ;mkImpl(Res; sp)) ,

where mkImpl( 'A' ; 'B ' ) is the representation of A ! B , and the term N is,

despite the ugliness of abstract syntax, a mere formalization of the re�nement



term constructed in the beginning of this (meta-) exposition. The functions ap-

pend and nth denote concatenation of lists and selection of the n-th element

from a list, respectively. The proof of this correctness result is straightforward

and a direct formalization of the informal exposition above; call the correspon-

ding proof correct

prf

. This proof and the reection principles can be utilized to

construct a re�nement map between the speci�cation sp and the result of the

transformation replaceAxInSpec.

Let's go back to our running example and apply replaceAxInSpec together

with its corresponding correctness result. Again we assume a certain context �

and a speci�cation sp. Furthermore, let 'Q ' be the representation of a certain

axiom and i be a �xed natural number. In order to apply correct

prf

one has to

construct an element 'M ' such that

deriv(append( '� ' ; specSig( 'sp' ));

'M ' ;mkImpl( 'Q ' ; nth(i ; specAxms( 'sp' ))))

holds. This construction can, of course, be done completely within the meta-level.

In many situations, however, it is more appropriate to prove the corresponding

problem at the object level; i.e. one has to �nd a termM such that M : Q ) P

i

is derivable in context �;x : A. The resulting judgement is reected upwards,

yielding a proof p of the predicate above. A simple instantiation of correct

prf

gives:

` correct

prf

( '� ' ; 'sp' ; i ; 'Q ' ; 'M ' ; p)

: let Res := replaceAxInSpec( 'sp' ; i ; 'Q ' ); N := : : :

in deriv( '� ' ;N ;mkImpl(Res; 'sp' ))

This judgement, �nally, is reected down to the object level in order to get the

result that the resulting speci�cation Res indeed is a re�nement of the argument

speci�cation. Moreover, downward reection explicitly constructs the object-

level re�nement map.

As demonstrated above, we are able to formalize conclusions about the ob-

ject calculus by means of a meta-architecture. This allows one to encode formal

development steps once and for all ; applications of such steps are instances

of some meta-level argument, while, in the case of pure object-level reasoning,

one has to carry out the same kind of tedious development over and over for

each instance of a given problem. Software development systems incorporating a

meta-architecture allow users of such systems to add new development (proof)

steps only in a sound way. The importance of such features lies in the fact that

it is unrealistic to incorporate each conceivable development step in a general{

purpose development system. Finally note that, in our approach, meta-functions

and meta-properties are essentially the same as object functions and object pro-

perties; they only di�er in the data types they operate on. Thus, encoding,

speci�cation, and proof methods apply to both object-level and meta-level enti-

ties.



5 Some Notes on the Typelab Implementation

An interactive support system for experiments with Typelab is under develop-

ment. The system implements a parser, type checker and pretty printer for the

Typelab language and provides an interactive proof assistant. The heart of the

system is the type checker. It is mainly built around an evaluation function for

pre-terms. A pre-term is a syntactically correct term that may be ill-typed. The

evaluation function takes a pre-term and a set of de�nitions and, if possible,

converts the pre-term to a well-typed term; see also Sect. 3.

In ECC all types belong to exactly one type universe. However, in most

cases the speci�c universe to which a term belongs is irrelevant. For this reason

the system o�ers the possibility to use the anonymous universe Type instead of

Type

i

for a given level i . The system tries then to exactly determine the universe

level i by maintaining a set of inequalities and checking for consistency [HP89].

Parametric polymorphism is handled by uni�cation. Although higher-order

uni�cation is undecidable, most problems which arise in practice from type-

checking of polymorphic functions can be solved correctly by the implemented

uni�cation algorithm. This result is obtained by coding the universe polymor-

phism, reductions, alpha convertibility and other features into the uni�cation

algorithm.

In an interactive top-down program development process it is desirable to

perform typechecking of speci�cations and their realizations before the develop-

ment is complete. To achieve this goal, incomplete terms containing placeholders

together with suitable type information may be used. Later in the development

process, these placeholders will be replaced by members of the appropriate type.

This feature, together with a re�nement editor, supports a re�nement process

similar to the one described for Extended ML [ST89, ST92].

For discharging proof obligations arising during typechecking or in the course

of a formal development, an interactive proof assistant can be invoked. It has

been designed to solve easy problems automatically while leaving the control of

major steps to the user. A detailed description of this component of Typelab

can be found in [Wag95].

6 Conclusions and Future Work

In this paper we have presented an approach to formal speci�cation and software

development based on type theory. We have discussed the logical basis and illu-

strated the elementary principles by means of simple examples. Our experience

gained so far with the approach supports our hypothesis that speci�cation based

on type theory is a viable alternative to the more common algebraic speci�ca-

tions and that many, if not most, interesting operations on, and relationships

among, development units can be dealt with by a combination of object-level

and meta-level formalization.

The work described here is part of an ongoing investigation into formal me-

thods for software development and e�ort to develop a suitable framework. Spe-

ci�cally, we plan to develop a basic set of generic algorithms and meta-operators



representing development steps, with the long-term goal of compiling some sort

of reusable \knowledge base" of programming techniques, and to test whether

this approach can be made practical by attacking non-trivial software problems.
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