
Formalization and Reasoning in a Reective ArchitectureH. Rue�, H. Pfeifer, F.W. von HenkeK�unstliche IntelligenzFakult�at f�ur InformatikUniversit�at UlmD-89069 Ulm/Donau, GermanyAbstractThis paper is concerned with developing a reec-tive architecture for formalizing and reasoningabout entities that occur in the process of soft-ware development, such as speci�cations, theo-rems, programs, and proofs. The starting pointis a syntactic extension of the type theory ECC .An encoding of this object calculus within itselfcomprises the meta-level, and reection princip-les are provided for switching between di�erentlevels. These reection principles are used tomix object- and meta-level reasoning, to generate\standard" units by executing meta-operators,and to apply formal tactics that allow for ab-straction from the basic inference rules.1 IntroductionFormalizing artifacts of software development andsoftware engineering activities that produce theseartifacts is, according to [2], a central issue ofknowledge-based software engineering. Here wepropose a reective architecture based on a type-theoretic calculus that is capable of expressing

most units of the software development processlike theorems, speci�cations, proofs, programs,and relative implementations between speci�ca-tions in order to formalize schematic develop-ments as operators on the meta-level. Thesemeta-operators are applied to speci�c problemsby means of reection principles that connectobject- and meta-level. Formalizing software de-velopment steps as executable (meta-) operatorssupports several aspects of the by now almostuniversally accepted goal of reusability, which in-volves not only reuse of program fragments butalso of designs and developments, and, in thecontext of fully formal approaches, proofs.The work reported here is mainly related toreexive systems for safely extending mechani-cal theorem provers [20, 3, 5, 9, 1, 8]. Workreported in [1] and [8] also uses a type theoryas the base calculus, but their meta-level enco-ding consists of encoding of proof trees, whilein our object calculus proofs are already �rst-class entities. Moreover, our main interest liesin applying reective architectures in formalizingsoftware development steps [19]; these may alsoinclude operators modi�cation.1



Section 2 includes a brief description of theprogramming and speci�cation calculus Type-lab, while an outline of the encoding of Ty-pelab within Typelab together with reectionprinciples is considered in Sections 3 and 4. Thiscompletes the description of the reective archi-tecture. An in-depth discussion on reective ar-chitectures for type theories can be found in aforth-coming thesis [17] and in [15]. Here weconcentrate on describing some experiments thathave been carried out with this reective system.Sections 5, 6, and 7 provide examples for mixingobject and meta-level deduction, for generatingstandard developments for inductive datatypes,and for applying tactics in such reective archi-tecture, respectively.2 The Object CalculusThe object calculus Typelab basically is a syn-tactic extension of the type theory ECC [10] withinductive datatypes, and the design of these con-structs is inuenced mainly by the PVS speci�-cation language [13]. The resulting language isquite expressive in the sense that many entitiesof the software development process { programs,proofs, implementations, logical formulae, and(parameterized) speci�cations { can be formallyexpressed very directly and naturally.Type constructors are introduced to form Car-tesian products, (dependent) record types, se-mantic subtypes, and speci�cations. All theseconstructs are special forms of strong sum typesin ECC; they are, however, handled di�erentlyby the typing system and therefore require spe-cial syntax. A semantic subtype fx : A j Pg com-prises those members of type A which satisfy pre-dicate P , while speci�cations consist, as usual, of

Nat Spec :=specnat : Type(0);zero : nat ;succ : nat ! nat ;elim : �C : nat ! Type(0):C (zero)!(�x : nat : C (x)! C (succ(x)))! �n : nat : C (n)with8C : nat ! Type(0); f1 : C (zero);f2 : (�x : nat : C (x)! C (succ(x)));n : nat :elim C f1 f2 zero = f1;elim C f1 f2 succ(n)= f2 n (elim C f1 f2 n)endFigure 1: Speci�cation of Natural Numbersa signature part and an axiom part. A speci�-cation Nat Spec of natural numbers by means offormation, introduction, elimination, and equa-lity rules is given, for example, in Figure 1.A distinctive feature of the typing system isa mechanism for converting members of one typeto members of a di�erent type automatically;this feature is mainly used to generate so-calledtype correctness conditions [13] or proof obliga-tions. A proof obligation is a placeholder fora term which will be �lled in later by the pro-ver. Discharging these proof obligations can bepostponed because the type checker only requirestype information.The mechanisms to form inductive dataty-pes follow Ore's extension of ECC [12]. Since2



all objects in Typelab are �rst-class entities,names of constructors for inductive datatypeshave to be introduced explicitly. Inductive da-tatypes representing Booleans, natural numbers,and polymorphic lists together with appropriateoperators are prede�ned. Expressions of Type-lab constitute an embedded functional languagewith basic expressions corresponding to prede�-ned types, let-statements, conditionals, higher-order structural recursion (induction), and well-founded recursion (induction). An informal butcomprehensive introduction to the Typelab lan-guage can be found in [16].3 The Meta-LevelA �rst step towards a reective architecture con-sists in a representation of the object layer; here,the object calculus Typelab is also used as themeta-language, and the encoding itself amountsto a de�nitional extension to Typelab. Thisencoding constitutes the meta-level.Syntactic categories of Typelab are repre-sented as objects of an inductive datatype trm.Since many applications require to explicitly ex-amine and manipulate both free and bound va-riables, we choose to distinguish between objectand meta-level variables. This is in contrast tothe higher-order abstract syntax approach mainlyused for de�ning logics in Logical Frameworks [6].Moreover, the representation type trm of Type-lab terms closely models the object-oriented im-plementation of Typelab in that hierarchicallyordered classes are encoded by means of layeredconstructors. Contexts are represented as listsof both declarations and de�nitions resulting insome representation type cxt .Quoting associates entities of the object-layer

with their representations in the meta-layer, andthereby allows the meta-layer to refer to, andexpress properties of the elements of the object-layer. Quoting p:q is external to both object-and meta-level and associates objects of Type-lab with corresponding representations, i.e. ele-ments in normal form of representation typesvar , trm, and cxt . De�nition of the quoting me-chanism is straightforward and proceeds on thestructure of syntactic categories. E�cient execu-tion of quoting is a necessity for practical appli-cation of reective architectures. Thus, quotingof both terms and contexts is implemented ef-�ciently in that (parts of) objects of respectiverepresentation types are computed only when ac-cessed; the methods used are reminiscent of tech-niques for implementing lazy lists. Sometimesit is convenient to mix object-level syntax withmeta-level representations. This can be accom-plished using Backquoting `:` that is reminiscentof the Lisp comma operator within backquotes.For example,8 c : cxt ;A;B : trm: inh(c; p`A`! `B `! `B `q)is a more readable notation for8 c : cxt ;A;B : trm:inh(c;mk impl(A;mk impl(B ;A)))The backquote feature is especially useful whendealing with \large" representations. The inverseof quoting is called unquoting and is denoted byx:y . Unquoting associates a (normal form) re-presentation with its object entity. Note, thatthe result of unquoting is not necessarily well-typed.Next, functions on representation types forsubstitution (subst), one-step reduction (reduce1),weak-head-normalform (whnf ), and cumulativity3



subst : trm � var � trm ! trmreduce1 : cxt � trm ! trmwhnf : cxt � trm ! trmcum : trm � trm ! boolderiv : cxt � trm � trm ! boolFigure 2: Meta-functions(cum), that generalizes convertibility, are provi-ded. Derivability of type judgments is expressedas a predicate deriv of type cxt � trm � trm !Prop. Instead of coding all these functions on re-presentation type trm, one simply declares cor-responding constants, see Figure 2 and attachesthem to the underlying Lisp implementation ofthe Typelab system. More precisely, wheneverevaluating a function application f (pM q) one doesso by using the Lisp representation ofM and eva-luating the corresponding Lisp function on thisrepresentation; �nally the result of this compu-tation is expressed as an object of the Typelablanguage. Following Weyhrauch [20] we refer tothis mechanism of evaluating meta-functions assemantic attachments. Using semantic attach-ments has several advantages over explicit en-coding of Typelab within Typelab: one avo-ids duplicating the Lisp implementation in Ty-pelab and inherits from Lisp e�cient executionof meta-operators; a small overhead results onlyfrom transforming (quote/unquote) between Lisprepresentations of objects and entities of repre-sentation types. Besides practical considerati-ons, there are also theoretical limitations in re-presenting evaluation function whnf and deci-ding derivability by means of type-theoretic func-tions. These functions, however, can be appro-ximated by respective families of functions that

are indexed with an upper bound for the numberof evaluation steps [17].In order to be able to express and prove pro-perties on semantically attached meta-functionsone provides axioms on declared constants. Theseaxioms describe the operational nature of theterm functions and closely follow the underly-ing Lisp implementation. Thus, in e�ect, theseaxioms are not only part of the meta-level des-cription but can be regarded as an operationalspeci�cation of the Typelab system. Moreover,using these axioms it is possible to reason aboutthe underlying Lisp code within the Typelabsystem. The correctness of such reasoning de-pends, of course, on the Lisp implementation,that is assumed to \ful�ll" the speci�ed axioms.In order to substantiate this claim, structures ofspecifying axioms reect the structure of the un-derlying Lisp functions. The axioms that des-cribe operational behavior of the whnf functionclosely follows the structure of the implementa-tion: In this way many axioms directly reectmethods of the underlying Lisp code. On theother hand, axioms for deriv are not operatio-nal but rather describe the typing rules (togetherwith some meta-theoretic results) of the under-lying calculus. Moreover, the Typelab systemprovides for advanced features such as anony-mous universes [7] and hidden applications thatdrastically complicate the implementation, andthe formalizations provided in [15] abstract fromthese features.Finally, the set of well-typed terms of type Ain context c is represented by means of semanticsubtypes and derivability:wtt := �(c;A) : cxt � trm:fM : trm j deriv(c;M ;A) = truegA related notion is that of inhabitedness (prova-4



bility) of some type (formula) A in context c:inh := �(c;A) : cxt � trm:9M : trm: (deriv(c;M ;A) = true)4 Reection PrinciplesThe encodings given so far constitute the meta-level encodings of Typelab, but no connectionsbetween object-level and meta-level deductionshave yet been provided. The following reectionrules provide such connections:� ` M : A` up(�;M ;A) : inh(p�q; pAq)` p : inh(p�q; pAq)� ` down(p) : ANote that both up and down can not be enco-ded as functions of Typelab. In the context ofthe pure calculus of construction these rules havebeen shown to be admissible, and the object-levelsystem together with the encodings and reec-tion rules is a conservative extension of the ori-ginal system [17].Corresponding to the reection rules reectup and reect down the basic Typelab systemhas been extended with prover commands thatallow one to switch between di�erent levels. Forexample, goal � `?0 : A may be rewritten as`?1 : inh(p�q; pAq). This process of rei�cationcan be iterated. Next rei�cation, for example,yields `?2 : inh(pq; pinh(p�q; pAq)q).Another reection rule involves computing ofobject-level terms from representations thereof:` pM q : wtt(p�q; pAq)� ` M : A

We refer to this transition as safe unquoting, sincethe unquoted term is known to be type-correctin the unquoted context. On the other hand, onemay not always want to construct proofs of well-typedness for results of meta-operations. For thisreason, we also allow for unsafe unquoting. Inthis case, transitions from meta-level to object-level involve type checking of the reected termin the current context.5 Mixing Reasoning on Di�e-rent LevelsReection rules can be utilized to solve object-level goals by reifying the problem, applying ameta-theorem, and reecting the constructed re-presentation of a proof object. This procedure issimilar to that of Weyhrauch's FOL system, withthe addition that proof objects are constructedexplicitly. Consider, for example, the (toy) pro-blem of solvingA : Prop ` ?0 : A! AOne possibility to solve such a goal could involvea meta-theorem such asobvious : �c : cxt ;A : trm:deriv(c;A; pPropq) = true !inh(c; p`A`! `A`q)In a �rst step one rei�es the goal at hand:` ?1 : inh(pA : Propq; pA! Aq)Now, one applies the re�ne command of the Ty-pelab prover that matches the current goal withthe conclusion of meta-theorem obvious . Justi�-cation of ?0 relative to ?1 is computed from meta-proof obvious and downward reection:?0 := down(obvious(pA : Propq; pAq; ?2))5



Here, ?2 is a proof obligation` ?2 : deriv(pA : Propq; pAq; pPropq) = truethat can be easily shown to hold using semanticattachment for derivability. This process of reify-ing a goal followed by application of re�nementand discharging of \trivial" goals is condensed ina proof command called reect . Above toy pro-blem, for example, could be solved in one stepby issuing the prover command reect obvious .Note that this command, in addition, tries to in-stantiate meta-theorems with the representationof the current context.6 Meta-Operators as Genera-torsLarge parts of proof libraries of Coq [4] andLego [11] consist of rather trivial developments{ comprising both theorems and programs andproofs { that have to be carried out separately foreach datatype. A better idea seems to capturethe general scheme of such developments once-and-for-all and apply these schemes for each in-stance. Thus, developments on inductive dataty-pes are a particularly rich source for formalizingmeta-operators.For example, speci�cations of inductive da-tatypes that are given by means of introduction,formation, elimination, and equality rules fol-low a certain pattern, and the form of elimina-tion and equality can already be computed fromformation and introduction rules by means ofthe inversion principle (see [18]). This know-ledge can be poured into a meta-operator namedgen dt spec. Consider, for example, the induc-

zero not succ :=8 n : nat : zero 6= succ(n)zero not succ prf : zero not succ :=�x : nat ;H : (zero = succ(x)): eq sym(H (�y : nat :(elim (� : nat : Prop) true(� : nat ; : Prop: false)y) = true)(eq re true))(�z : Prop: z )(�A : Prop; a : A: a)Figure 3: Disjointness of Constructor Termstive datatypenat := datatype X : Type(0):zero : X j succ : X ! XendApplying gen dt spec together with unsafe un-quoting yields the speci�cation Nat Spec of Fi-gure 1:Nat Spec := xgen dt spec(pnatq)y;Note also that such meta-functions need explicitaccess to variables in order to distinguish bet-ween recursive and non-recursive arguments.The generated speci�cations can easily be ex-tended to support further notions related to in-ductive datatypes. Meta function gen disj thm,for example, generates for a given inductive data-type theorems that state disjointness of construc-tors together with proof objects. For lack ofspace we do not elaborate on how to implement6



the meta-functions (gen disj thm i j pDq) and(gen disj prf i j pDq) that respectively generatethe disjointness theorem for the i -th and j -thconstructors of datatype D and a proof thereof;see [15] for a detailed description of these func-tions. These functions can be applied { againusing unsafe unquoting { to speci�c datatypeslike natural numbers:zero not succ :=xgen disj thm zero succ pnatqyzero not succ prf : zero not succ :=xgen disj prf zero succ pnatqyThis yields the same terms as shown in Figure 3.7 Formal TacticsAnother application of the reective architecturepresented here involves tactics that are capableof abstracting from the basic inference rules. Atactic is a (meta-) function that maps, in caseof success, a goal (c; g) : cxt � trm to a listof subgoals, or it fails. Unlike LCF tactics [14]these tactics do not have to compute justi�cati-ons in terms of primitive inference rules. Instead,a certain correctness result that states existenceof such a proof object is established once andfor all. Since correctness of tactics only requi-res existence of a proof, one may easily integratedecision procedures in a sound way. Also, higher-order tactics can be de�ned freely but have to beproven correct.An example may help to clarify some points.Assume given the problemA;B : Prop ` ?0 : (A ^ B)! (B ^ A)

The prover command tac, that is responsible forapplying tactics, expects as argument a meta-function together with a correctness proof of thistactic. Issuing, for instance, the commandtac atten atten corrcauses application of tactic atten. This tac-tic repeatedly applies conjunction and implica-tion elimination, and atten corr is a correctnessproof of this tactic. More precisely, in a �rst stepthe current goal is represented on the meta-levelas (pA;B : Propq; p(A ^ B)! (B ^ A)q)and meta-operator atten is applied to this goal.This yields the resultyes([(pA;B : Prop;H1 : A;H2 : Bq; pBq);(pA;B : Prop;H1 : A;H2 : Bq; pAq)])In a last step, tactic command tac reects theresult down to the object-level and one is left toshow the two subgoalsA;B : Prop;H1 : A;H2 : B ` ?1 : B ; ?2 : AMoreover, the relationship between meta-varia-bles ?0 and ?1, ?2 is computed using correctnessresult atten corr of tactic atten.8 ConclusionsWe have described a reective architecture thatis capable of applying meta-operators and meta-theorems to object-level problems, and perfor-med a number of experiments related to formalprogram construction using this architecture.This reective architecture is open in the sense7



that new knowledge can be added. On the otherhand, such knowledge can not be arbitrarily ad-ded to the system; this process possibly involvesformal proof. Altogether, starting with a rela-tively small kernel our software development toolcan be adjusted and extended in a safe way tomeet new requirements.A prototypical implementation of this reec-tive architecture has been developed on top ofthe Typelab system, and the experiments re-ported herein have been carried out in this sy-stem. In order to make the approach practical,however, several improvements have to be made.While speed of executing quoting/unquoting andapplication of reection principles is already sa-tisfactory, reduction of meta-operator applica-tion is currently rather slow. Consequently, somemechanism has to be introduced to the systemin order to speed up reduction of the underly-ing type theory. It is mainly this lack of execu-tion speed that prevented us from encoding moremeta-operators and applying these operators tothe trm representation itself in order to boot-strap the given encoding and enhance \know-ledge" about this encoding.Our short term goal in this respect is to deve-lop a formal \theory of datatypes" that includesmost standard proofs and theorems and standardfunctions on datatypes like (decidable) equalityand map-functions together with characteristictheorems on these functions. In the long run,we believe that a large collection of formalizedmeta-operators that encode common knowledgeon programming (and proving) tasks greatly fa-cilitates formal software development, and allowsone to develop and maintain large program sy-stems in a fully formal way.
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