
Compiler Correctness and Implementation Veri�cation:The Veri�x ApproachWolfgang Goerigk� Axel Doldx Thilo Gaulz Gerhard GooszAndreas Heberlez Friedrich W. von Henkex Ulrich Ho�mann� Hans Langmaack�Holger Pfeiferx Harald Ruessx Wolf ZimmermannzAbstractCompiler correctness is crucial to the software en-gineering of safety critical software. It depends onboth the correctness of the compiling speci�cationand the correctness of the compiler implementation.We will discuss compiler correctness for practicallyrelevant source languages and target machines in or-der to �nd an adequate correctness notion for thecompiling speci�cation, i.e. for the mapping fromsource to target programs with respect to their stan-dard semantics, which allows for proving both spec-i�cation and implementation correctness. We willsketch our approach of proving the correctness ofthe compiler implementation as a binary machineprogram, using a special technique of bootstrappingand double checking the results. We will discussmechanical proof support for both compiling ver-i�cation and compiler implementation veri�cationin order to make them feasible parts of the soft-ware engineering of correct compilers. Veri�x is ajoint project on Correct Compilers funded by theDeutsche Forschungsgemeinschaft (DFG).Keywords: compiling veri�cation, compiler im-plementation veri�cation, computer based systems(CBS), correct compilers, safety critical software.1 IntroductionIn most cases tests are not su�cient to guaranteeprogram correctness. It becomes more and more ap-parent that program veri�cation is needed to meethigh reliability requirements for safety critical soft-ware. Adequate software engineering methods, es-pecially formal methods, should be used to support�Christian-Albrechts-University of Kiel, Preu�erstr. 1-9,D-24105 Kiel, (wg@informatik.uni-kiel.d400.de)zUniversity of Karlsruhe, Vincenz-Prie�nitz-Str. 3, D-76128 Karlsruhe, (zimmer@ipd.info.uni-karlsruhe.de)xUniversity of Ulm, James-Franck-Ring, D-89069 Ulm,(ruess@informatik.uni-ulm.de)

the correct program construction. Program veri�-cation methods are best known to work for mathe-matically clean high level programming languages.However, it is the binary machine code running on aconcrete piece of hardware which we ultimatelywantand have to trust. Therefore, program correctnesscrucially depends on the correctness of the compilerused for implementation. The compiler, more pre-cisely its machine code implementation, should beproved to carry over application program correct-ness from source to target programs, i.e. to preserveapplication program correctness.Compiling correctness for sequential, imperativesource languages is easier to formulate than the gen-eral problem of program correctness. We know themathematical theory of source and target languagesemantics and the theory of partial and total pro-gram correctness in sequential, non-real-numericalapplication areas, and hence we are able to exactlyde�ne the relationship a compiler has to establishbetween source and target programs. A mathemat-ically exact speci�cation of the problem is available.The de�nition of the compiling speci�cation, map-ping or relating source to target programs and theproof of its correctness with respect to semantics(compiling veri�cation) are crucial tasks while con-structing correct compilers. In section 2 we will de-velop a framework which allows to express and tostudy di�erent compiler correctness notions. Practi-cal veri�cation techniques for realistic compilers andcompiler implementations are needed. Even sourcelanguages are often de�ned operationally, based onan abstract execution model. In addition to thestandard technique of structural induction on sourceprograms also simulation or bisimulation proofs canbe used to prove code generator speci�cations cor-rect.Like in ordinary program veri�cation, however, itis again the binary machine code executable whichwe ultimately want to trust. In addition to com-piling veri�cation we have to prove the speci�cationto be correctly implemented on the machine (com-1

piler implementation veri�cation). In section 3 wewill sketch our approach to the proof of compilerimplementation correctness. We use a specializedbootstrapping technique and double-check the re-sulting code to be correctly generated as speci�ed.A reasonable choice of intermediate program repre-sentations separates crucial compilation steps fromeach other. The implementation correctness proofis modularized into smaller parts. Compiling veri�-cation uses more or less the same intermediate stepsanyway.In section 4 we will discuss mechanical proof sup-port for both compiling and compiler implementa-tion veri�cation. Since compiler veri�cation usuallyproduces a lot of tedious proof obligations, we needto incorporate mechanical support into our proofmethods to make them practical. We must not de-pend on unveri�ed theorem prover implementations,but of course proofs get much more trustworthy ifthey are additionally checked by machine, even if theautomatism is not fully veri�ed. We are also allowedto use theorem provers like PVS to �nd proofs, if theproof protocols at the end are completely under hu-man control.The Veri�x project tackles techniques for the soft-ware engineering of correct compilers. Three re-search groups at Karlsruhe (G. Goos), Ulm (F.W.v.Henke) and Kiel (H. Langmaack) work togetheron compiling veri�cation, compiler implementationveri�cation and compiler generation veri�cation forrealistic sequential imperative source languages onreal machines.2 Compiling CorrectnessAs there are di�erent notions of program correct-ness, the question arises whether we are able to de-�ne one single reasonable, comprehensive notion ofcompiler correctness. Of course, a compiler shouldtransform source programs to semantically equiva-lent target code. However, this correctness notionis too strong for realistic compilers generating realmachine code; machines have �nite resource limita-tions. We will develop a framework which allowsto express and to study advantages, drawbacks andrelationships between di�erent compiler correctnessnotions. The usual commutative diagram relatingsource and target program semantics to the compil-ing function (or relation) will be specialized for thecase of state based sequential imperative languages.This section is best characterized as a comprehen-sive presentation of preliminary work, results andideas originated from the ProCoS [2] [1] work on

compiling veri�cation [8] [9] [17], especially from [11]and [14]. However, we will argue why for the specialpurpose of correct compiler construction a compilercorrectness notion based on partial program correct-ness is su�cient.Our de�nitions also work out if both source andtarget language are de�ned operationally on the ba-sis of an abstract (or concrete) machine. In this casewe can enrich the repertoire of proof techniques anduse simulation or bisimulation proofs well knownfrom computability theory in order to prove com-piling correctness.2.1 Correct CompilersCompiler veri�cation has a very long history start-ing in the mid-60's with the work of McCarthy andPainter [12]. A good overview of the research workperformed on compiler veri�cation and the resultsachieved since then is given by Je�rey J. Joycein [10]. McCarthy and Painter have established astandard mathematical paradigm which has beenadopted by most of the literature on compiler cor-rectness: abstract syntax of both source and tar-get language, abstract mathematical de�nition ofthe compiling speci�cation, abstract de�nition of anidealized target machine code; even the basic proofmethod, structural induction on the syntax of sourceprograms, is common to most of the work presentedso far.For source languages SL and target languages TLa compiling speci�cation C will be de�ned eithermapping or relating source programs p 2 SL to tar-get programs C(p) 2 TL. Usually, the correctnessof the compiling speci�cation C is expressed by thecommutativity of a diagram similar to the one shownin �gure 1 below.C(p) 2 TL [[C(p)]]TLp 2 SL [[p]]SL--C ?SL semanticsTL semanticsFigure 1: Compiling CorrectnessBut how to relate source and target program seman-tics to each other? For imperative languages we can2

take a closer look (cf. �gure 2) to the right handside of the diagram above. In this case, programsmean state transformations. The source programsemantics [[p]]SL is a function mapping programstates (mappings from program variables to values)q 2 QSL to program states. Denotational seman-tics for instance de�ne programs to mean (contin-uous) mappings [[p]]SL 2 QSL ! QSL. More re-cently, also operational (F. and H. Nielson), struc-tural operational (G. Plotkin) and axiomatic ap-proaches (C.A.R. Hoare, [8]) have been used in thearea of compiling veri�cation.Machine program state transformation [[C(p)]]TLcan be de�ned very naturally starting from theoperational de�nition of the machine con�gurationtransformation of single instructions as de�ned inthe machine manual.q2 2 QTL q02 2 QTLq1 2 QSL q01 2 QSL--6 6� �f = [[p]]SLfc = [[C(p)]]TLFigure 2: Compiling Correctness for ImperativeLanguagesA retrieve function � (abstraction, or inverse rep-resentation) relates both state spaces to each other.It abstracts program states frommachine states, i.e.values from their concrete machine representations.Di�erent notions of weak or strong commutativityof this diagram now give rise to di�erent notions ofcompiling correctness (cf. section 2.2). If we require� � fc = f � � ;the compiling speci�cation C has to establish strongsemantical equivalence of source and target pro-gram. It will preserve both partial and total correct-ness properties of the application source program(cf. section 2.2 below). Markus M�uller-Olm [14]shows strong commutativity for a while-language Pand a machine language MP of conditional jumpsand assignment instructions, assuming � to be theidentity map on QP = QMP .Because of the �niteness of real machines, how-ever, realistic correct compiler construction has toweaken the envisaged correctness notion. In general

strong commutativity will be very hard to achieve.Regular program termination { successful termina-tion without any runtime error occuring { of thetarget program cannot be guaranteed for arbitrarywell-de�ned source programs. One solution couldbe to strengthen the source language semantics toreect machine restrictions. This method, however,causes many additional problems in program veri-�cation and only pays o� for instance in the �eldof safety critical embedded control, where irregularprogram termination could be disastrous, where to-tal program correctness is required and has to bepreserved. On the other hand, weakening the targetcode semantics to completely abstract frommachineresource limitations at the end is undesirable either.Although very important for modularizing correct-ness proofs, and successfully adopted in the widemajority of the literature on compiler veri�cationso far, complete abstraction from machine resourcelimitations rules out concrete hardware to be thetarget of correct program implementations.If we have a closer look to di�erent error situationsin source and target programs, we can identify thoseruntime errors which are due to resource violationsof the concrete �nite target machine, e.g. memory orarithmetic overow. The best we can achieve with-out considering additional knowledge about machineand implementation details is that C� establishes semantical equivalence, but� C(p) may abort due to machine resource viola-tion even for well-de�ned programs p.For most concrete target machines M we are ableto de�ne an idealized version M1 with unrestrictedresources. In this case we could additionally re-quire C(p) to be semantically equivalent to p onM1. This excludes unfair compilers like thoseconstantly generating non terminating memory ex-hausting code or a division by zero. In most practi-cal cases this also implies that for every well de�nedprogram p and every input there exists a (�nite)target machine which is \large enough" for C(p) toterminate regularly on that input.2.2 Weaker Correctness NotionsDi�erent �elds of applications require di�erent no-tions of program correctness. In many cases, par-tial correctness su�ces. One typical example is thecompiler itself: If it terminates regularly then theresulting code has to be the correct one. We needa rigorous mathematical proof for this fact. How-ever, compiler veri�cation would become much more3

cumbersome or even impossible if we would insistupon regular termination of the implemented com-piler for every source program. Although of coursethis property is a desirable and very important soft-ware quality aspect for compilers, it is not centralfor compiler correctness. We subsume this kind oftotal correctness of a compiler under quality aspectswhere a di�erent level how to gain con�dence couldbe satisfactory, e.g. compiler validation as alreadyused in industry nowadays.Figure 2 allows for the de�nition of di�erent no-tions of compiler correctness. fc is de�ned to be acorrect implementation of f based on weak or strongcommutativity of the diagram:(a) Preserving Partial Correctness: � � fc �f � � . Regular termination of the target pro-gram implies correct results w.r.t. source pro-gram semantics. This is the inverse of(b) Preserving Total Correctness: f � � � � �fc . For well-de�ned source programs correcttarget program results are guaranteed.(c) Preserving both Partial and Total Cor-rectness: � � fc = f � � , i.e. both (a) and(b) hold. This notion of strong commutativitycorresponds to (strong) semantical equivalence,sometimes called bisimulation.(d) Weak Commutativity: Even weaker than(a) or (b), we require for every q 2 QSL(� � fc)(q) = (f � �)(q) only if both sides arewell de�ned.Although total program correctness is stronger thanpartial program correctness, it turns out that pre-serving total correctness does not imply preservingpartial correctness nor vice versa.The weak commutativity as de�ned in (d) actu-ally is too weak. We cannot conclude the correct-ness of the result of a regularly terminating ma-chine program execution without additionally prov-ing the well-de�nedness of the corresponding sourceprogram with respect to the same input data. And,moreover, we also cannot conclude the regular ter-mination of the target program from proving thewell-de�nedness of the source program. The lattermakes up the essential di�erence of (d) to the notionde�ned in (b). Since (b) in addition to (d) preservesregular termination behavior of the source program,(b) is very useful in the area of e.g. safety criticalembedded control or reactive systems where irreg-ular program termination or non-termination couldbe disastrous because of the absence of a safe errorstate. Hoare [8] and Sampaio [17] for instance use

(b), i.e. the preservation of total program correct-ness. The programmer has to prove regular termi-nation, which then is guaranteed to be preserved.In many cases, the compiler may produce more ef-�cient target code, e.g. it may omit range or typechecks. However, since the target program is allowedto terminate regularly producing incorrect results incases where the source program is unde�ned, a user'sproof of total program correctness is required if acorrect compiler in the sense of (b) shall be used.Since regular termination of the source programimplies regular termination of the target program,(b) actually preserves total program correctness:Let f be totally correct with respect to P , Q andlet us start fc in state s 2 ��1(P). Then �(s) 2 P ,f(�(s)) is de�ned and so is �(fc(s)) with the sameresult. Since Q holds for f(�(s)) also ��1(Q) holdsfor fc(s).The correctness notion in the sense of (a) allowstarget programs to be less de�ned than source pro-grams, for instance because of limitations of machineresources. A target program may irregularly abort,even if the source program is well-de�ned. We con-sider that not harmful; above all, the target programis not allowed to deceive the user about the qualityof results. If a regular result is given, it is guaran-teed to be the correct one (or one of the correct onesin the case of nondeterminism or non-injectivity of�). This correctness notion is adequate if partialcorrectness of programs su�ces. It does not stressthe user to give cumbersome proofs of regular ter-mination of application programs, if not required.Since regular termination of the target programimplies regular termination of the source programwith the same result, partial program correctness ispreserved (if � is total): Let f be partially correctwith respect to P and Q and let fc(sc) be de�nedsuch that ��1(P) holds for sc. Then �(fc(sc)) isde�ned and equal to f(�(sc)). Hence Q holds forf(�(sc)) and ��1(Q) holds for fc(sc).2.3 Partial Correctness of CompilersLet us now consider the compiler itself: The prop-erty that it preserves (partial and/or total) programcorrectness, is a partial correctness property of thecompiler: If the source program is well formed, andif the compiler manages to generate a target pro-gram, then the target program shall be as correct asthe source program. The same partial correctnessproperty should hold for the compiler implementa-tion, of course. Thus, preserving partial correctness(a) is su�cient for the compiler used to implementthe compiler itself, even if the implemented compiler4

shall be correct in one of the other senses. A correctcompiler in the sense of (b) or (d) would not help un-less we additionally prove regular termination prop-erties for the compiler program. A lot of unnecessaryproof work eventually would lead away from the cen-tral work necessary for establishing both compilingand compiler implementation correctness for a �rstcompiler.Moreover, in our initial approach to compiler im-plementation veri�cation (cf. section 3), the com-piler implementation will be bootstrapped with thecompiler itself. Therefore it is convenient and suf-�cient to use (a) as the correctness notion for thecompiling speci�cation.Preserving partial program correctness is not theultimate compiler correctness notion. Our majorgoal is to make our techniques and methods practi-cally usable for compiling and compiler implementa-tion veri�cation projects based on stronger or di�er-ent compiler correctness notions. Compilers shouldbe correct in a stronger sense, e.g. as de�ned at theend of section 2.1. Note, however, that for the con-struction of a �rst full correct compiler implementa-tion we only need a rigorous mathematical proof ofpartial correctness preservation.3 Implementation Veri�cationIn order to prove full compiler correctness as rig-orously as required to assure the correctness ofthe complete development process for safety criticalsoftware, we have to carefully verify both the compil-ing speci�cation (cf. section 2) and the compiler im-plementation. After re�ning the compiling speci�ca-tion into a program formulated in high level compilerimplementation language, the compiler program it-self has to be transformed into a binary machineprogram. An implementation correctness proof isnecessary.This fact has �rst been severely stressed byJ Moore [13]. Unfortunately, the literature on com-piler veri�cation gives no su�cient solution so far.No fully reliable realistic compiler implementation isavailable, since this agenda has not been completelyworked out for any existing compiler or program-ming language implementation. Compilers and,hence, executed high level programs are not enoughtrustworthy nowadays. Instead, the correctness orreliability of safety critical software is approached bymore or less complete semantical binary code inspec-tion, partly using unveri�ed de-compilation tools.

3.1 BootstrappingWe have chosen source and implementation lan-guage to be an appropriate subset ComLisp ofCommonLisp in order to achieve a �rst proved cor-rect compiler implementation. Moreover, we willimplement the compiler on its own target machine.A specialized bootstrapping technique can be used inorder to generate the machine code implementationof the compiler using an unveri�ed CommonLispsystem. We rigorously double check the result tobe correctly generated. The result has been gener-ated according to our own proved correct compilingspeci�cation and hence we fully know what it shouldlook like.Figure 3 sketches our bootstrapping and doublechecking technique in the simpli�ed case of onlyone intermediate language, e.g. C. Compiling ver-i�cation and speci�cation re�nement yield veri�edcompiler programs from ComLisp to C and from Cto the machine language ML, written in ComLisp.The compiler from ComLisp to ML in ML will begenerated in �ve steps:1. We use an unveri�ed CommonLisp system torun the compiler from ComLisp to C, compiling thecompiler from C to ML to C. The result is obvi-ously not fully veri�ed (indicated by hatching thediagrams in �gure 3). It depends on the unveri�edCommonLisp system. We double-check the resultby hand in a mathematical style to be generatedas speci�ed. The mathematical correctness of thisspecial test result then no longer depends on theCommonLisp-system.2. The correct implementation of the compilerfrom C to ML in ML proceeds exactly the same.It is the initial veri�ed compiler machine programon hardware (fat lined diagrams represent provedcorrect compiler programs).3. At the front end, we get the veri�ed compilerprogram from ComLisp to C written in C analo-gously.4. We assume hardware to work correctly. There-fore we now can correctly bootstrap the compilerfrom ComLisp to C in ML on the machine. Nofurther manual proof work is necessary.5. The sequential composition of the two machineprograms yields the desired proved correct compilerimplementation (if compiling speci�cation and itsre�nement to ComLisp have been proved correctbeforehand).If we generalize the setting to incorporate evenmore, say n, intermediate languages or programrepresentations, �gure 3 above will generalize to a5

Double
Check

C C

C C

C

C

ML

Com
Lisp

C

C

C MLML

ML C ML C ML

ML

M

C

Common
Lisp

Double
Check

C

MLC

C ML

CDouble
Check

Common
Lisp

Common
Lisp

Com
Lisp

Com
Lisp

Com
Lisp

Com
Lisp

Com
Lisp

Com
Lisp

Com
Lisp

Com
Lisp

Com
Lisp

Com
Lisp

C ML

ML

C ML

ML

ML

ML

Com
Lisp

2. Step

4. Step

5. Step

compiler implementation
by trusted machine
execution

compiling specification, its
verification and correct refinement
in high level ComLisp

1. Step

3. Step

verification of compiler implementation
in lower level C and ML by double
checking the results

Figure 3: Implementation Veri�cation Using Bootstrapping and Double-Checking the Results(n + 1)� (n + 2) matrix of di�erent compiler partswritten down in di�erent representations. It will im-mediately become clear, that manual double check-ing the results is necessary only in the upper left tri-angle of that diagram, whereas proved correct ma-chine generation will generate the remaining part.Note that the compilers used for machine code gen-eration are now both correctly speci�ed and provedto be correctly implemented.A reasonable choice of intermediate representa-tions will modularize the manual double checks intosmaller parts, and, even more important, it willseparate crucial compilation steps from each otherwhich also makes every single double checking proofstep easier. Since it is especially annoying to dou-ble check lower level code and especially binary ma-chine code, reasonable strategy should be to do smalltranslation steps towards the end of compiling.In a �rst attempt we have successfully run thebootstrap using three intermediate languages: The�rst one is an abstract high level stack intermediatelanguage; functions (and procedures) with parame-ters are compiled to parameterless procedures. Thesecond one is an abstract small subset of a stronglytyped imperative language like C used as an abstractmachine language. This language essentially is thetarget of data representation for dynamic Lisp data.Then, in order to atten control structure into lin-ear code with jumps, we use an assembler target

language. For the last step, of course, an assem-bler program is constructed to �nally generate bi-nary machine code.Our proceeding is an interesting application of amethod of J. B. Goodenough and S. Gerhart [6],who proposed to prove a program property P as theconsequence of �nite testing results together with asubstitute property P 0.Once having completely worked o� this pro-gramme, including the compiling veri�cation for thedi�erent compilation steps, the proved correct com-piler for the basic implementation language Com-Lisp easily can be used in order to correctly boot-strap new or improved (e.g. optimizing) compiler im-plementations even for di�erent hardware platforms.ComLisp can also be used to implement compilerconstruction tools like code generator or parser gen-erators. No further implementation veri�cation isneeded.4 Theorem Prover SupportIn order to manage the large complexity of compilercorrectness proof work, mechanical proof support isabsolutely necessary. We use the speci�cation andveri�cation system PVS [16]. The higher-order spec-i�cation language with a rich typing system, the setof tools for creating, analyzing, modifying and docu-menting theories and proofs, and the powerful inter-6

active Gentzen-style theorem prover adequately sup-port formalization and veri�cation. PVS provides aset of elementary proof steps which can be combinedinto e�cient proof strategies enabling more readableproofs, closer to those performed by hand. We willgive some examples how PVS can adequately sup-port compiling and compiler implementation veri�-cation:If both source and target language are de�nedoperationally (e.g. by means of evolving algebras)and formalized as abstract machines in the PVSlanguage, proof strategies can carry out simulationproofs nearly automatically. They incorporate ef-�cient rewritings, decision procedures and proposi-tional simpli�cations by means of binary decision di-agrams (BDDs). The veri�cation process is dividedinto several re�nement steps. Each step proves thecorrespondence between two abstract machine statetraces w.r.t. a retrieve function � (cf. section 2.1).Usually only some visible machine states correspondto abstract (source) states, i.e. the machines run atdi�erent rates.In the ProCoS approach the source languageis embedded in a re�nement algebra. The seman-tics of the target language is expressed by an inter-preter written in the source language. Re�nementlaws are applied to show that the interpreted targetcode is a correct re�nement (implementation) of thesource code. We have developed PVS proof strate-gies which almost enable to carry out these proofsas done by hand, hiding several tedious PVS proofsteps.PVS can also provide support for reasoning aboutmachine programs. Based on a formal operationalmachine model, we can prove properties like correct-ness assertions for the Transputer boot protocol, us-ing symbolic execution techniques provided in proofstrategies in a similar way as described above.The goal of language and machine formalizationsin PVS is to abstract from concrete languages andmachines, to factor out common aspects and to iden-tify language or architecture speci�c parts. This isdirectly supported by parameterized PVS theories.Parameters can be constrained by means of assump-tions, theories can be instantiated by concrete ma-chines; a proof is required that the assumptions aresatis�ed. This method also facilitates the augmenta-tion of extra features of source and target languages.The generic parts of speci�cations and proofs can bereused.To illustrate the method of generic speci�cations,we have developed an abstract scheme for verifyinglocal optimizations on object code, and have provedcorrect a set of optimizations for di�erent architec-

tures using de�ned proof strategies [5].The long term goal is to construct a library ofreusable generic PVS theories for the developmentof correct compilers.Related WorkIn the so far largest project on the formal veri�cationof compiling processes at Computational Logic Inc.(CLInc, Austin, Texas) the Boyer-Moore-prover isused to construct and verify a stack of components(CLInc stack) covering the compilation of the highlevel imperative language Micro Gypsy down to thehardware processor FM8502. This imperative lan-guage is �rst compiled to assembler code [18] andfurther to machine code [13]. Compiler and assem-bler are speci�ed and veri�ed with respect to sourceand target language semantics. In [13] J S. Mooreformulated the necessity of also proving the imple-mentation correct. However, even in the CLIncproject this gap has not been closed so far. TheBoyer-Moore-prover, both used to verify and to ex-ecute the compiler, has not completely been veri�edso far, neither as Lisp program nor in its binary formexecuted on the machine.More recently, papers like [3] [4] or the VLispproject reports [15] [7] also express the necessityof proving the compiler implementation correct. Inthe VLisp project, however, this work has explicitlybeen left out, and Paul Curzon [4] argues that thedirect theorem prover based execution of the compil-ing speci�cation should be satisfactory to convincethe user of implementation correctness. The imple-mentation gets even more trustworthy, if, as an addi-tional test, it has been generated independently us-ing a di�erent execution method like bootstrapping,and the two result are equal. Although of eminentpractical use, however, in our opinion this argumentleaves mathematical correctness of the implementa-tion open. The correctness depends on the correct-ness of the theorem prover and its implementation.AcknowledgementsWe thank our colleagues in the ProCoS project, inparticular Martin Fr�anzle, Burghard v. Karger andMarkus M�uller-Olm. Without the background ofthe ProCoS project work we would not be able toexpress both di�erences and relationships betweendi�erent compiler correctness notions in the currentform. We also thank J S. Moore of ComputationalLogic Inc. He gave the original motivation to moredeeply think about the proof work necessary for arigorous compiler implementation correctness proof.7

References[1] Dines Bj�rner, Hans Langmaack, and C.A.R.Hoare, editors. Provably Correct Systems { Pro-CoS, ESPRIT BRA 3104. Dep. of Computer Sci-ence, Techn. Univ. of Denmark, 1993. Monograph,Final Deliverable.[2] Dines Bj�rner. Final Report ProCoS - ProvablyCorrect Systems, ESPRIT BRA 3104. Dep. of Com-puter Science, Techn. Univ. of Denmark, 1991.[3] Paul Curzon. Deriving Correctness Properties ofCompiled Code. Formal Methods in System Design,3:83{115, August 1993.[4] Paul Curzon. The Veri�ed Compilation of VistaPrograms. Internal Report, Computer Laboratory,University of Cambridge, January 1994.[5] Axel Dold, F.W. von Henke, H. Pfeifer, andH. Rue�. A Generic Speci�cation for Verify-ing Peephole Optimizations. Ulmer Informatik-Berichte 95-14, Universit�at Ulm, 1995.[6] J.B. Goodenough and S.L. Gerhart. Toward a The-ory of Test Data Selection. SIGPLAN Notices,10(6):493{510, June 1975.[7] J. D. Guttman, L. G. Monk, J. D. Ramsdell, W. M.Farmer, and V. Swarup. A Guide to VLisp, A Veri-�ed Programming Language Implementation. Tech-nical Report M92B091, The MITRE Corporation,Bedford, MA, September 1992.[8] C. A. R. Hoare. Re�nement algebra proves cor-rectness of compiling speci�cations. In C.C. Mor-gan and J.C.P. Woodcock, editors, 3rd Re�nementWorkshop, pages 33{48. Springer-Verlag, 1991.[9] C.A.R. Hoare, He Jifeng, and A. Sampaio. NormalForm Approach to Compiler Design. Acta Infor-matica, 30:701{739, 1993.[10] Je�rey J. Joyce. Totally Veri�ed Systems: Link-ing Veri�ed Software to Veri�ed Hardware. InM. Leeser and G. Brown, editors, Hardware Spec-i�cation, Veri�cation and Synthesis: MathematicalAspects, volume 408 of Lecture Notes in ComputerScience, 1990.[11] Burghard v. Karger. Algebraic Compiler Veri�ca-tion. Internal report, Oxford University ComputingLaboratory, October 1993.[12] J. McCarthy and J.A. Painter. Correctness ofa compiler for arithmetical expressions. In J.T.Schwartz, editor, Proceedings of a Symposium inApplied Mathematics, 19, Mathematical Aspects ofComputer Science. American Mathematical Soci-ety, 1967.[13] J S. Moore. Piton: A veri�ed assembly level lan-guage. Technical Report 22, Comp. Logic Inc,Austin, Texas, 1988.[14] Markus M�uller-Olm. An Exercise in Compiler Ver-i�cation. Internal report, CS Department, Univer-sity of Kiel, 1995.

[15] Dino P. Oliva and Mitchell Wand. A Veri�ed Com-piler for Pure PreScheme. Technical Report NU-CCS-92-5, Northeastern University College of Com-puter Science, Northeastern University, February1992.[16] S. Owre, J. M. Rushby, and N. Shankar. PVS: APrototype Veri�cation System. In Deepak Kapur,editor, Proceedings 11th International Conferenceon Automated Deduction CADE, volume 607 of Lec-ture Notes in Arti�cial Intelligence, pages 748{752,Saratoga, NY, October 1992. Springer-Verlag.[17] Augusto Sampaio. An Algebraic Approach to Com-piler Design. PhD thesis, Oxford University Com-puting Laboratory, Programming Research Group,October 1993. Technical Monograph PRG{110, Ox-ford University Computing Laboratory.[18] W.D. Young. A veri�ed code generator for a subsetof gypsy. Technical Report 33, Comp. Logic. Inc.,Austin, Texas, 1988. Veri�x

8

