
Mechanizing Domain Theory�F. Bartels, H. Pfeifer, F. von Henke and H. Rue�Universit�at Ulm, Fakult�at f�ur InformatikAbstract. We describe an encoding of major parts of domain theory and �xed-point theory in the Pvs extension of the simply-typed �-calculus; these formaliza-tions comprise the encoding of mathematical structures like complete partial orders(domains), domain constructions, the Knaster-Tarski �xed-point theorem for mono-tonic functions, and variations of �xed-point induction. Altogether, these encodingsform a conservative extension of the underlying Pvs logic. A major problem ofembedding mathematical theories like domain theory lies in the fact that develop-ing and working with those theories usually generates myriads of applicability andtype-correctness conditions. Our approach to exploiting the Pvs devices of predi-cate subtypes and judgements to establish many applicability conditions behind thescenes leads to a considerable reduction in the number of the conditions that actu-ally need to be proved. We illustrate the applicability of our encodings by means ofsimple examples including a mechanized �xed-point induction proof in the contextof relating di�erent semantics of imperative programming constructs.Key words: Domain Theory, Fixed-Point Theory, Mechanized Theorem Proving1. IntroductionDomain theory forms the mathematical basis of denotational semanticsfor programs, and is used in systems like Lcf [7][13] for reasoningabout non-termination, partial functions, and in�nite-valued domains.Although Lcf can be tailored to reason about �nite-valued datatypesand total functions, the resulting proofs tend to be rather unwieldy forthe ubiquitous unde�ned (or bottom) elements. By contrast, logics andspeci�cation languages based on Church's simply-typed �-calculus suchas Hol [8] or Pvs [12] naturally support reasoning about �nite-valueddatatypes and total functions. Thus, it seems to be advantageous tocombine the strengths of both approaches.In this paper we describe such a combination by semantically embed-ding many basic concepts of domain and �xed-point theory into thePvs speci�cation language. More precisely, our encodings consist of:� Formalizations of basic mathematical structures like partial ordersand complete partial orders (cpos, domains).� Supported in part by the Deutsche Forschungsgemeinschaft (DFG) underproject \Veri�x"

2 F. Bartels et al.� Various domain constructions like at cpos, discrete cpos, predicatecpos, function cpos, and product cpos.� Notions related to monotonic functions, continuous functions, andadmissible predicates.� Knaster-Tarski �xed-point theorems for monotonic and continuousfunctions; the proof of the �xed-point theorem for monotonic func-tions requires Zorn's lemma, which has been derived from Hilbert'schoice operator.� Scott's �xed-point induction principle for admissible predicates andvariations of �xed-point induction like Park's lemma.Altogether, these encodings form a conservative extension of the under-lying Pvs logic, and they permit, for example, expressing partial func-tions as the least �xed-point of some functional and reasoning aboutthis class of functions using a combination of �xed-point induction withinduction schemes like structural or well-founded induction that arebuilt into Pvs.Most of these encodings are straightforward transcriptions of textbookknowledge from Loeckx and Sieber [11], Winskel [20], Schmidt [18],and Gunter [9]. A major problem of embedding mathematical theorieslike domain theory and �xed-point theory, however, lies in the factthat both developing these theories and working with them usuallygenerates myriads of applicability conditions; i.e. one is continuallyconcerned that a certain structure is a cpo, a monotonic or continuousfunction, or an admissible predicate.In order to reduce the number of generated applicability conditions wemake use of distinctive features of the Pvs speci�cation language suchas predicate subtyping and judgements. Predicate subtypes are used, forinstance, for explicitly constraining domains and ranges of operations ina speci�cation, while judgements allow additional type information tobe passed to the type-checker in order to discharge, and consequentlyto suppress, a multitude of generated veri�cation conditions duringtype-checking. The consequent use of these features thus minimizes theamount of required proof e�ort when working with the theory.1.1. OverviewThis paper is organized as follows. After comparing our encodings withwork that we consider most closely related with ours, we give a briefoverview in Section 2 on the Pvs system and some of its distinctive
fixpoints-domains3.tex; 21/01/1998; 10:09; no v.; p.2

Mechanizing Domain Theory 3features. Section 3 comprises the main part of this paper; it includesan overview of the encodings of complete partial orders, the notions ofmonotonicity, continuity, and admissibility, various domain construc-tions, �xed-point theorems, and �xed-point induction. For the sheersize of the formalizations we are forced to make a selection in thispresentation, and we only include selected de�nitions and theorems|thereby omitting many interesting facts needed to support these theo-rems. Moreover, we concentrate on encoding techniques and we do notinclude any proofs, since|not too surprisingly|our formal proofs cor-respond rather directly to textbook proofs; see [3] for a more detaileddescription. Section 3 contains quite a lot of Pvs text, which has beenedited and typeset for presentation purposes. In Section 4 we demon-strate simple applications of our mechanized domain theory including a�xed-point induction proof of the while-rule of the Hoare calculus froma state transformer semantics of the while-statement. Finally, Section 5contains some concluding remarks about our experience with formal-izing mathematical structures in Pvs; the complete Pvs sources andproofs are available from the authors upon request.1.2. Related WorkThe work by Agerholm [1][2] and Regensburger [16][17] is most closelyrelated to ours, since the aim of their work is to combine the characteris-tics and reasoning strengths of Lcf with those of Hol; both encodings,however, are restricted to the simpler case of continuous functions.Agerholm [1][2] describes an embedding of the Lcf logic in the Hol [8]theorem proving system. His basic approach is to encode domains asa pair (set [D];�), consisting of a carrier set set [D] and a relation �of type D ! (D ! bool), and constructions of domains by means offunctions from pairs to pairs. This choice of encoding has the conse-quence that a new type discipline on domains has to be introduced.Continuous functions from a domain set [D] to a domain set [E], forexample, are encoded by a Hol function f : D ! E . Since Hol isrestricted to total functions, function f above must be determined forelements outside set [D]. Agerholm [1][2] deals with these problems byproviding syntactic notations for writing domains, continuous functionsand admissible predicates. These are implemented by an interface and anumber of specialized proof functions (tactics). Altogether, Agerholm'sextension of Hol constitutes an integrated system where the domaintheory constructs look (almost) primitive to the user, and many factsare proved, using specialized tactics, behind the scenes to support thisview.
fixpoints-domains3.tex; 21/01/1998; 10:09; no v.; p.3

4 F. Bartels et al.It seems to be more desirable, however, to prove domain-theoretic factsonce and for all and to encode these facts as type information of theunderlying system. In this way, Regensburger [16][17] extends the Holobject logic of Isabelle [14] with domain-theoretic notions by employ-ing Isabelle's type class mechanism, which permits a �ne-grained useof polymorphism. On the other hand, the expressiveness of type classesis restricted since dependencies between type class parameters can notbe expressed. Instead of type classes, we use the concepts of predicatesubtyping to parameterize with respect to certain classes of mathemat-ical structures. In addition, predicate subtyping supports the encodingof facts that rely on dependencies between source and target types astype information.2. A Brief Description of the Pvs Speci�cation LanguageThe Pvs system combines an expressive speci�cation language with aninteractive proof checker; see [12] for an overview. This section providesa brief description of the Pvs language and prover, and introduces someof the concepts needed in this paper. More details can be found in [5].The Pvs speci�cation language builds on classical typed higher-orderlogic with the usual base types, bool , nat , int , among others, the func-tion type constructor [D ! R], and the product type constructor[A;B]. The type system of Pvs is augmented with dependent typesand abstract data types. In Pvs, predicates over some type A are, asusual, boolean-valued functions on A, and pred [A] is an abbreviationfor the function type [A! bool].A distinctive feature of the Pvs speci�cation language are predicatesubtypes: the subtype fx : D j P(x)g consists of exactly those elementsof type D satisfying predicate P . The expression (P) is an abbreviationfor the predicate subtype fx : D j P(x)g. Since sets can be described bytheir characteristic predicates, the expression fx : D j P(x)g can alsobe used to denote the set of elements satisfying P , and consequentlyset [A] is just a notational variant of pred [A]. Hence, x : (P) also meansthat x is an element of the set P . This feature is used, for example, incomputing the image of a function f restricted to S .image(f : [D ! R])(S : set [D]) : set [R] =f y : R j 9(x : (S)) : y = f (x) gPredicate subtypes are used for explicitly constraining domains andranges of operations in a speci�cation and to de�ne partial functions.
fixpoints-domains3.tex; 21/01/1998; 10:09; no v.; p.4

Mechanizing Domain Theory 5In general, type-checking with predicate subtypes is undecidable; thetype-checker generates proof obligations, so-called type correctness con-ditions (TCCs) if satisfaction of the restricitng predicate cannot imme-diately be resolved. A large number of TCCs are discharged by special-ized proof strategies, and a Pvs expression is not considered to befully type-checked unless all generated TCCs have been proved. If anexpression that produces a TCC is used many times, the type-checkerrepeatedly generates the same TCC. The use of judgements can preventthis. There are two kinds of judgements:Judgement + Has Type [Even; Even ! Even]Judgement Continuous Subtype of MonotonicThe �rst form, a constant judgement, asserts a closure property of +on the subtype of even natural numbers. The second one, a subtypejudgement, asserts that a given type is a subtype of another type. Thetype-checker generates a TCC for each judgement to check the validityof the assertion, but will then use the information provided further on.Thus, many TCCs need not be generated.Pvs speci�cations are packaged as theories that can be parametric intypes and constants. A built-in prelude and loadable libraries providestandard speci�cations and proved facts for a large number of theories.As an example, Figure 1 shows parts of the theory po that deals withnotions related to partial orders. The theory is parameterized by anonempty type D , since theory parameterization is the only means inPvs to parameterize with respect to types. The theory de�nes the typePO [D] of partial orders (over D). Predicates ub? and lub? specify upperbounds and least upper bounds, respectively, of a set A, while predicatelub exists? holds for sets that have least upper bounds. However, onecan show that if such least upper bounds do exist, then there is at mostone; this is expressed by the lemma lub unique. Variables that occurfree in formulae, like A in lub unique, are implicitly universally quanti-�ed. Using the property lub unique, one can de�ne a function lub thatreturns the least upper bound of a set. Note that lub is only de�nedon those sets B for which it is known that a least upper bound exists.The operator choose is pre-de�ned in the Pvs prelude (as is the pred-icate unique?) and takes as argument a nonempty set and returns anarbitrary element of that set. Technically, the non-deterministic choosefunction is de�ned from Hilbert's epsilon-operator.choose(S : (nonempty?[D])) : (S) = epsilon(S)Since we have shown that the set LUB(B) is a singleton set the chooseoperator is deterministic in this case and thus lub is well-de�ned. Final-
fixpoints-domains3.tex; 21/01/1998; 10:09; no v.; p.5

6 F. Bartels et al.po[D : Type+] : TheoryBeginPO : Type+ = (partial order?[D])�: Var PO ; x ; y : Var D ; A : Var set [D]ub?(�)(x ; A) : bool = 8(a : (A)) : a � xUB(�)(A) : set [D] = fx : D j ub?(�)(x ;A)glub?(�)(x ;A) : bool =ub?(�)(x ;A) ^ 8(y : (UB(�)(A))) : x � yLUB(�)(A) : set [D] = fx : D j lub?(�)(x ;A)glub exists?(�)(A) : bool = nonempty?(LUB(�)(A))lub unique : Lemmaunique?(LUB(�)(A))lub(�)(B : (lub exists?(�))) : D = choose(LUB(�)(B))chain?(�)(A) : bool =nonempty?(A) ^ 8(x ; y : (A)) : (x � y) _ (y � x)Chain(�) : Type+ = (chain?(�))End po Figure 1. Theory of Partial Ordersly, the theory po speci�es a predicate subtype of sets that have the chainproperty, i. e. there are no elements in the set that are incomparablewith respect to the ordering relation �; families of types are de�nedusing free variables as in the de�nition of Chain(�).A theory can use the de�nitions and theorems of another theory byimporting it. Parameterized theories can be imported in either of twoways: �rst, one instantiates the theory by providing actual values forthe formal parameters, or, second, the theory is imported without anyinstantiation. In the latter case all possible instantiations of the import-ed theory may be used; in case of ambiguities, actual values can beprovided by qualifying on imported identi�ers (as e.g. in set [D]).
fixpoints-domains3.tex; 21/01/1998; 10:09; no v.; p.6

Mechanizing Domain Theory 7We close our description of Pvs with a brief sketch of some character-istics of the prover. Proofs in Pvs are presented in a sequent calculus.The atomic commands of the Pvs prover component include induc-tion, quanti�er instantiation, conditional rewriting, simpli�cation usingarithmetic and equality decision procedures and type information, andpropositional simpli�cation. The skosimp* command, for example,repeatedly introduces constants (of the form x !i) for universal-strengthquanti�ers, and assert combines rewriting with decision procedures.Pvs has an LCF-like strategy language for combining inference stepsinto more powerful proof strategies. The de�ned rule grind, for exam-ple, combines rewriting with quanti�er reasoning and propositional andarithmetic decision procedures; this strategy is the workhorse for prov-ing a large number of our formalization of domain theory.
3. Formalization of Domain TheoryThis chapter describes formalizations of complete partial orders(domains), continuous and monotonic functions, some basic domainconstructions, the Knaster-Tarski �xed-point theorem for monotonicfunctions, and various �xed-point induction principles.3.1. Complete Partial OrdersA partial order � over D is a pre-cpo over D if for every chain C in Dthe least upper bound lub(�)(C) exists. If, in addition, the type D hasa least element bottom then the pair (�; bottom) is called a complete-partial order. The encodings of these concepts in De�nition 3.1 arepackaged in a theory|called domains|that is parameterized by the(nonempty) type D ; For sake of conciseness, however, we omit the Pvs-speci�c syntax for denoting theories and theory parameterization.

fixpoints-domains3.tex; 21/01/1998; 10:09; no v.; p.7

8 F. Bartels et al.De�nition 3.1 (Domains). Let D : Type+ ; then:� : Var PO [D]; x : Var Dprecpo?(�) : bool = 8(C : Chain(�)) : lub exists?(�)(C)preCPO : Type+ = (precpo?)bottom?(�)(x) : bool = 8(y : D) : x � yBottom(�) : Type+ = (bottom?(�))cpo?(�; x) : bool = precpo?(�) ^ bottom?(�)(x)CPO : Type+ = (cpo?)The de�ning predicates for pre-cpos and cpos are parameterized by� and the pair (�; bottom), respectively. This permits de�ning thepredicate subtype preCPO [D] comprising all partial orders � over typeD that satisfy predicate precpo?, and the predicate subtype CPO [D]for the pairs (�; bottom) for which predicate cpo? holds.Alternatively, the Pvs subtyping mechanism permits encoding of math-ematical structures like pre-cpos by pairs (S ;�), where S is a set withelements of type D and the type of the ordering predicate �, namelypred [[(S); (S)]], uses the predicate subtype (S) formed from the set Sin order to restrict � to elements of S .preCPOalt : Type+ =[S : set [D]; �: f�: pred [[(S); (S)]] j precpo?[(S)](�)g]Compared with preCPO from De�nition 3.1, the encoding preCPOaltseems to be closer to mathematical practice, since a pre-cpo is usuallythought of as a carrier set with an associated ordering. In our experi-ence, however, switching between sets S and corresponding predicatesubtypes (S) caused proofs to get rather cumbersome; consequently,we abandoned using the encoding preCPOalt .Simple examples of pre-cpos over a given type D are the discrete pre-cpos, and the type of Booleans bool equipped with implication) andthe bottom element false.1discrete : preCPO [D] = (=)bool : CPO [bool] = (); false)1 Pvs distinguishes between the type bool and the cpo bool , because there areseparate name spaces for types and for constants.
fixpoints-domains3.tex; 21/01/1998; 10:09; no v.; p.8

Mechanizing Domain Theory 9Next, we want to express the fact that CPO [D] is a subtypeof preCPO [D]. One possibility is to specify a projection func-tion � from cpos into pre-cpos as an implicit coercion via theConversion declaration.De�nition 3.2 (Selectors). Let D : Type+ ; then:#�(d : CPO [D]) : preCPO [D] = proj 1(d)#?(d : CPO [D]) : Bottom(#�(d)) = proj 2(d)Conversion #� : [CPO [D]! preCPO [D]]This declaration causes the Pvs type-checker to implicitly coerceobjects d of type CPO [D] to #�(d), whenever an object of typepreCPO [D] is expected. In this way, formal parameters of typepreCPO [D] can be instantiated with actual parameters of typeCPO [D].3.2. CPO ConstructionsWe exemplify the encoding of basic domain constructions by presentingthe constructions of at cpos and function space cpos. Other construc-tions, like product or sum cpos, are de�ned in a similar way.3.2.1. LiftingUsing the lifting construction one constructs a domain from an arbi-trary non-empty type by adding a bottom element. Technically, we con-struct in De�nition 3.3 a polymorphic sum type at as a non-recursivedata type with two constructors: inject for injecting elements of typeD and bottom for the added bottom element. The conversion declara-tion in De�nition 3.3 causes the Pvs type-checker to implicitly coerceelements x of type D to inject(x) whenever an element of type at [D]is expected.
fixpoints-domains3.tex; 21/01/1998; 10:09; no v.; p.9

10 F. Bartels et al.De�nition 3.3 (Lifting). Let D : Type+ ; then:at : DatatypeBegininject(arg : D) : inject?bottom : bottom?End atConversion inject�: preCPO [at] = �(x ; y : at) : (x = y) _ bottom?(x)at : CPO [at] = (�; bottom)The type at [D], equipped with the pre-cpo � as de�ned in De�ni-tion 3.3 and the constant bottom, forms a cpo.3.2.2. Function DomainsGiven types D and R, the domain constructor 7! generates a cpo overfunction type [D ! R] from a pre-cpo over D and a cpo over R byordering functions pointwise and using the constant bottom function.2De�nition 3.4 (Function Space). Let D ;R : Type+ ; then:pointwise(�: preCPO [R]) : preCPO [[D ! R]] =�(f ; g : [D ! R]) : 8(x : D) : f (x) � g(x)fbottom(cod : CPO [R]) : Bottom[[D ! R]](pointwise(cod)) =Let (�; bottom) = cod In�(x : D) : bottom7! (dom : preCPO [D]; cod : CPO [R]) : CPO [[D ! R]] =Let (�; bottom) = cod In(pointwise(�); fbottom(cod))Now, it is easy to de�ne the cpo of predicates over some type D andthe cpo of (non-deterministic) state transformers srel with domain Dand codomain R.32 In general, no restrictions on the domain type are required for constructinga function space cpo; the restriction of the domain to pre-cpos, however, has theadvantage of providing a hook for further subtyping constraints on the domaintype|like the one in Example 3.8. On the other hand, this restriction does not poseany real limitations, since any type D can be viewed as a discrete pre-cpo.3 Remember, both pred [D] and set [D] are synonymous for D ! bool .
fixpoints-domains3.tex; 21/01/1998; 10:09; no v.; p.10

Mechanizing Domain Theory 11Example 3.5.predicates : CPO [pred [D]] = (discrete[D] 7! bool)srel : CPO [[D ! set [D]]] = (discrete[D] 7! predicates[D])Using the judgement of De�nition 3.4, the type-checker deduces thatpredicates and state transformers are continuous, and consequentlysuppresses corresponding TCCs.3.3. Monotonicity, Continuity, and AdmissibilityGiven two partial orders over some domain type D and range type R,monotonicity is de�ned in the usual way.De�nition 3.6 (Monotonicity). Let D ;R : Type+ ; then:�D : Var PO [D]�R: Var PO [R]monotonic?(�D ;�R)(f : [D ! R]) : bool =8(x ; y : D) : x �D y) f (x) �R f (y)Monotonic(�D ; �R) : Type+ = (monotonic?(�D ; �R))The subtype of continuous functions in De�nition 3.7 comprises allfunctions, intuitively speaking, which are compatible with the construc-tion of least upper bounds.De�nition 3.7 (Continuity). Let D ;R : Type+ ; then:�D : Var preCPO [D]�R: Var preCPO [R]continuous?(�D ; �R)(f : [D ! R]) : bool =8(C : Chain(�D)) :lub exists?(�R)(image(f)(C))^ f (lub(�D)(C)) = lub(�R)(image(f)(C))Continuous(�D ;�R) : Type+ = (continuous?(�D ;�R))The following subtype judgement expresses the fact that, given the pre-cpos �D and �R over D and R respectively, every continuous function
fixpoints-domains3.tex; 21/01/1998; 10:09; no v.; p.11

12 F. Bartels et al.from D to R is also monotonic.4Judgement Continuous(�D ; �R)Subtype of Monotonic(�D ; �R)Furthermore, given the (singleton) type discrete preCPO [D], thejudgement in Example 3.8 re�nes, using dependent typing, the typeof the function space constructor map (see De�nition 3.4). Informal-ly, this judgement expresses the fact that functions from pre-cpos intocpos are continuous.Example 3.8. Let D ;R : Type+ ; then:discrete preCPO : Type+ = f�: preCPO [D] j � = (=)gJudgement 7! Has Type[dom : discrete preCPO [D]; cod : CPO [R]! CPO [Continuous(dom; #�(cod))]]Fixed-point induction requires the concept of admissible predicates. Let� be a pre-cpo and P be a predicate on D . The predicate P is calledadmissible if for every chain C the least upper bound of C satis�es Pwhenever all elements of C do; admissible predicates on D (with respectto �) are characterized by the predicate subtype Admissible(�).De�nition 3.9 (Admissibility). Let D : Type+ ; then:�: Var preCPO [D]admissible?(�)(P : pred [D]) : bool =8(C : Chain(�)) : every(P)(C)) P(lub(�)(C))Admissible(�) : Type+ = (admissible?(�))Many su�cient conditions for admissibility, used mainly in �xed-pointinduction proofs, can be stated easily as judgements.Judgement ^ Has Type[Admissible(�);Admissible(�)! Admissible(�)]Using this judgements and a similar one for disjunction, the type-checker is able to deduce automatically admissibility of formulas likeP ^ (Q _ R) ^ Q from the admissibility of P , Q , and R.4 This judgement must be expressed in a separate theory parameterized by pre-cpos �D and �R, since, at least currently, Pvs restricts judgements to statementsnot containing free variables.
fixpoints-domains3.tex; 21/01/1998; 10:09; no v.; p.12

Mechanizing Domain Theory 13Lemma 3.10.�D : Var preCPO [D]; �R: Var preCPO [R]cont pred admissible : Lemma8(f : Continuous(�D ;�R); P : Admissible(�R)) :admissible?(�D)(� d : P(f (d)))le pred admissible : Lemma8(f : Continuous(�D ;�R); g : Monotonic(�D ;�R)) :admissible?(�D)(�(x : D) : f (x) �R g(x))Lemma cont pred admissible, for example, states a su�cient conditionfor admissibility predicates involving continuous functions, and lemmale pred admissible forms a crucial part in our proof of the Knaster-Tarski theorem for monotonic functions.3.4. Formalization of Fixed-Point TheoryFor the sake of completeness, De�nition 3.11 formalizes, for a given typeD , standard notions regarding �xed-points and least �xed points; theset lfp?(f) and the corresponding type LFP(f), for example, compriseall least �xed points of function f .De�nition 3.11 (Fixed-points). Let D : Type+ ; then:�: Var PO [D]; x ; y : Var D ; f : Var [D ! D]�xedpoint?(f)(x) : bool = (f (x) = x)lfp?(�)(f)(x) : bool =�xedpoint?(f)(x) ^ (8(y : D) : �xedpoint?(f)(y)) x � y)lfp exists?(�)(f) : bool = nonempty?(lfp?(�)(f))LFP(�; f) : Type+ = (lfp?(�)(f))LFP Exists(�) : Type+ = (lfp exists?(�))The key result for reasoning about �xed-points is the celebratedKnaster-Tarski �xed-point theorem.5 Given a cpo d (over type D), this5 The theorem by Knaster [10] applied only to power sets and Tarski [19] gener-alized it to complete lattices.
fixpoints-domains3.tex; 21/01/1998; 10:09; no v.; p.13

14 F. Bartels et al.theorem states that the least �xed-point exists for monotonic functionsover d , which in our terminology reads as follows.Judgement Monotonic(#�(d); #�(d))Subtype of LFP Exists(#�(d))This judgement generates a type-correctness condition that states theKnaster-Tarski theorem in a form that is closer to mathematical prac-tice.Theorem 3.12.KnasterTarski : Theorem8(d : CPO [D]; f : Monotonic(#�(d); #�(d))) :lfp exists?(#�(d))(f)The main characteristics of our mechanized proof lies in the systematicuse of judgements to keep the formal reasoning as close as possible tothe paper proof in [4]; see [3] for a detailed description. Most interest-ingly, our proof uses a variant of Zorn's lemma and, consequently, wehave developed a formal proof of Zorn's lemma from Hilbert's epsilon-operator. Since this choice operator is included in the underlying Pvslogic, we may claim that our formalization of �xed point theory formsa de�nitional extensional of the Pvs logic; this implies, in particular,that our encodings form a conservative extension of Pvs.Given the Knaster-Tarski theorem, it is straightforward to de�ne aleast �xed-point for monotonic functions over a cpo by selecting anarbitrary element from the set of least �xed points for such a function,since Knaster-Tarski guarantees that this set is non-empty as requiredby the de�nition of choose (see Section 1.1).De�nition 3.13.�(d : CPO [D])(f : Monotonic(#�(d); #�(d))) : LFP(#�(d); f) =choose(lfp?(#�(d))(f))Since �(d)(f) is, by de�nition, a least �xed-point, one gets immediatelythe �xed-point equality for �.Lemma 3.14.� char : Lemma8(d : CPO [D]; f : Monotonic(#�(d); #�(d))) :�(d)(f) = f (�(d)(f))
fixpoints-domains3.tex; 21/01/1998; 10:09; no v.; p.14

Mechanizing Domain Theory 15Moreover, �xed-point induction is derived from the Knaster-Tarski the-orem in the usual way.Theorem 3.15. Let d : Var CPO [D]fp induction mono : TheoremLet (�; bottom) = d In8(f : Monotonic(�;�);P : Admissible(�)) :(P(bottom) ^ (8(x : D) : P(x)) P(f (x))))) P(�(d)(f))4. ExamplesIn the previous section, we showed how to embed a considerable frag-ment of domain theory. These formalizations are collected in a non-parametric, top-level theory called domain theory . By including thestatement Importing domain theoryin a speci�cation, the current context is extended by theses notions.Now, we shall consider examples that illustrate simple applications ofthe theory built up in the preceeding section for de�ning partial func-tions, closures of relations, and using the Pvs prover for reasoningabout partial functions using �xed-point induction.4.1. Example: Partial FunctionAssuming a suitable strict extension � : [at [int]; at [int]! at [nat]]of multiplication, one may, for example, de�ne the factorial functionfac on the integers as a partial function that yields bottom only on thenegative integers.De�nition 4.1.fac : [int ! at [int]] =�(discrete[int] 7! at [int])(�(f : [int ! at [int]]) : �(n : int) :If n = 0 Then 1 Else n � f (n � 1) Endif)The conversion inject of De�nition 3.3 causes the type-checker to auto-matically inject the Then -part and the �rst argument of � into the
fixpoints-domains3.tex; 21/01/1998; 10:09; no v.; p.15

16 F. Bartels et al.corresponding at datatype. Moreover, the monotonicity TCC gener-ated for the application of the least �xed-point operator � to givenfunctional is easily discharged using the proof strategy grind.4.2. Example: Transitive ClosureGiven a binary relation R over some type D , one de�nes the transitiveclosure of R as the least �xed-point of the functional (�X : R[(X �X)),where union [and composition � of relations are de�ned in the obviousway. Again, the monotonicity of this functional is proved using thegrind strategy.De�nition 4.2. Let D : Type+ ; then:BinRel : Type+ = pred [[D ;D]]R; S ; X : Var BinRel�: preCPO [BinRel] = #�(predicates[[D ;D]])�(R) : Monotonic(�;�) = �X : (R [(X � X))tc(R) : BinRel = �(predicates[[D ;D]])(�(R))It is a simple exercise to show that tc(R) is indeed the transitive closureof R.4.3. Example: Mechanized SemanticsThe embedding of domain theory and �xed-point theory has beenused to encode the semantics of simple imperative programming con-structs based on state transitions, and to derive the well-known Hoarecalculus rules [15]. First, given the state transformer type srel :Type+ = [D ! set [D]], we de�ne some state transformers for someimperative programming statements.66 Mix�x operations like If : : : Then : : : Else : : : Endif can be overloaded.
fixpoints-domains3.tex; 21/01/1998; 10:09; no v.; p.16

Mechanizing Domain Theory 17De�nition 4.3 (Statements). Let D : Type+ ; then:f ; g ; X : Var srel [D]s : Var Db : Var set [D]skip : srel [D] = � s : singleton(s); (f ; g) : srel [D] = � s : image(g)(f (s))If (b; f ; g) : srel [D] =� s : If b(s) Then f (s) Else g(s) Endifv: preCPO [srel [D]] = #�(srel [D])abort : Bottom(v) = #?(srel [D])	(b; f) : Monotonic(v;v) =�X : If b Then f ; X Else skip Endifwhile(b; f) : srel [D] = �(srel [D])((b; f))A mechanized proof of the monotonicity of functional 	 is describedin [15]. Furthermore, srel [D] is overloaded, since at certain positionsit denotes a type and at others the state transformer cpo de�ned inExample 3.5.For purpose of illustrating �xed-point induction in Pvs we choose thederivation of Hoare's while rule from the denotational semantics inDe�nition 4.3 using �xed-point induction.De�nition 4.4 (Hoare Triple). Let D : Type+ ; then:p; q : Var pred [D]f : Var srel [D]�: preCPO [pred [D]] = #�(predicates)j= (p; f ; q) : bool = (image(f)(p) � q)Hoare-triples j= (p; f ; q) hold if the image of the function f withrespect to precondition p is included, with respect to the ordering �on predicates, in the postcondition q . Now, we have collected all ingre-dients to formulate and prove Hoare's while rule.
fixpoints-domains3.tex; 21/01/1998; 10:09; no v.; p.17

18 F. Bartels et al.Lemma 4.5. Given the variable declarations from De�nition 4.4, thefollowing holds:while rule : Lemmaj= (p ^ b; f ; p))j= (p; while(b; f); p ^ : b)Unfolding the de�nition of while and propositional reasoning yields thefollowing subgoal:7while rule :[�1] j= (p!1 ^ b!1; f !1; p!1)j � � �����f1g j= (p!1; �((b!1; f !1)); p!1 ^ : b!1)while rule is proved using �xed-point induction fp induction monofrom Theorem 3.15 by instantiating the latter's formal parameter Pwith�(F : srel [D]) : j= (p!1; F ; p!1 ^ : b!1)Application of �xed-point induction yields three subgoals.while rule:1 :f�1g j= (p!1 ^ b!1; f !1; p!1)j � � �����f1g j= (p!1; abort ; p!1 ^ : b!1)while rule:2 :f�1g j= (p!1; x !1; p!1 ^ : b!1)[�2] j= (p!1 ^ b!1; f !1; p!1)j � � �����f1g j= (p!1;If b!1 Then f !1; x !1 Else skip Endif ;p!1 ^ : b!1)while rule:3 (TCC) :j � � �����f1g admissible?(�(F : srel [D]) : j= (p!1; F ; p!1 ^ : b!1))7 Remember that proofs in Pvs are presented in a sequent calculus whereantecedents and succedents arenumbered by negative and positive numbers,respectively.
fixpoints-domains3.tex; 21/01/1998; 10:09; no v.; p.18

Mechanizing Domain Theory 19Notice that the codomain of 	 in 4.3 causes the prover to sup-press a subgoal corresponding to the monotonicity of the functional	(b!1; f !1). Subgoals while rule:1 and while rule:2 respectively corre-spond to the induction base and induction step of the �xed-point induc-tion rule; these subgoals are proved with less than 15 simple interactionssuch as unfolding of de�nitions and propositional reasoning. Further-more, since the conclusion P(�(srel [D])(f)) of the �xed-point induc-tion rule in Theorem 3.15 is constrained to admissible predicates P , anadditional subgoal, a type correctness condition (TCC), while rule:3 isgenerated. The critical idea in this admissibility proof is to characterizethe least upper bound of chains C as follows:8lub(v)(C) = �(s : D) :[(set image(C)(s))This is possible, since the chain C is a set of set functions, and theleast upper bound of the set of function set images is simply the unionof these sets. 5. ConclusionsWe have discussed various techniques for formalizing concepts ofdomain theory, including cpos, various domain constructions, mono-tonic functions, the �xed-point theorem for monotonic functions oncpos, and �xed-point induction. Although our encodings of �xed-pointinduction form a conservative extension of the underlying Pvs logic,and consequently do not strengthen this logic, they permit natural for-malization of many proofs by mixing �xed-point induction with induc-tions already built into Pvs, like structural induction and well-foundedinduction.Simple applications of these encodings indicate that it is rather straight-forward to work with this theory. Other uses of formalized domain the-ory we have worked out include a comparison between various forms ofsemantics [15] and the veri�cation of generic compilation schemes [6].Altogether, these developments show that many interesting mathemat-ical facts in the context of programming semantics can readily be for-malized using current speci�cation and theorem prover technology. Thisstatement is underlined by the fact that a �rst version of these encod-ings was completed by the �rst author|who learned domain theorywhile formalizing it|within 2 months.8 [(P : set [pred [D]]) : pred [D] = �(d : D) : 9(p : (P)) : p(d)set image(F : set [[D ! R]])(x : D) : set [R] = fy : R j 9(f : (F)) : f (x) = yg
fixpoints-domains3.tex; 21/01/1998; 10:09; no v.; p.19

20 F. Bartels et al.The main characteristics of our encodings is the systematic use of pred-icate subtypes and judgements; this drastically simpli�es proofs, sincemany applicability conditions are deduced|during type-checking|behind the scenes. On the other hand, we also experienced, besidessome imperfections of the current implementation, some conceptualshortcomings of the judgement mechanism in Pvs. Most important-ly, an extension of the current judgement mechanism that permits forfree variables in judgement declarations has the potential to consider-ably simplify and streamline our proofs. Moreover, the lack of Hindley-Milner style polymorphism forces unnatural decomposition of theories.So far we have restricted ourselves to only using pre-de�ned Pvs strate-gies for applying �xed-point induction. It does not seem too di�cult,however, to further automate �xed-point induction proofs by develop-ing a specialized strategy that tries to automatically apply �xed-pointinduction, prove the predicate at hand to be admissible based on thebasis of derived su�cient conditions, and to prove the remaining sub-goals using a combination of other high-level proof strategies.References1. S. Agerholm. A HOL Basis for Reasoning about Functional Programs. Bricsreport series, Department of Computer Science, University of Aarhus, Den-mark, 1994.2. S. Agerholm. LCF Examples in HOL. The Computer Journal, 38(1), 1995.3. F. Bartels, A. Dold, F.W. von Henke, H. Pfeifer, and H. Rue�. FormalizingFixed-Point Theory in PVS. Ulmer Informatik-Berichte 96-10, Universit�atUlm, December 1996.4. R. Berghammer. Theoretische Grundlagen von Programmiersprachen und Pro-grammentwicklung. Lecture Notes, 1996.5. J. Crow, S. Owre, J. Rushby, N. Shankar, and M. Srivas. A Tutorial Introduc-tion to PVS. Presented at WIFT '95: Workshop on Industrial-Strength FormalSpeci�cation Techniques, Boca Raton, Florida, April 1995.6. A. Dold, F.W. von Henke, H. Pfeifer, and H. Rue�. Generic Speci�cationof Correct Compilation. Ulmer Informatik-Berichte 96-12, Universit�at Ulm,December 1996.7. M. J. Gordon, A. J. R. Milner, and C. P. Wadsworth. Edinburgh LCF: aMechanized Logic of Computation, volume 78 of Lecture Notes in ComputerScience. Springer-Verlag, Berlin, 1979.8. M.J.C Gordon and T.F. Melham. Introduction to HOL : A Theorem ProvingEnvironment for Higher-Order Logic. Cambridge University Press, 1993.9. C.A. Gunter. Semantics of Programming Languages: Structures and Tech-niques. Foundations of Computing Series. The MIT Press, 1992.10. B. Knaster. Un Th�eor�eme sur les fonctions d'ensembles. Annales de la Societ�ePolonaise de Math�ematique, 6:133{134, 1928.11. J. Loeckx and K. Sieber. The Foundations of Program Veri�cation. Series inComputer Science. Wiley-Teubner, second edition, 1987.
fixpoints-domains3.tex; 21/01/1998; 10:09; no v.; p.20

Mechanizing Domain Theory 2112. S. Owre, J. Rushby, N. Shankar, and F. von Henke. Formal Veri�cation forFault-Tolerant Architectures: Prolegomena to the Design of PVS. IEEE Trans-actions on Software Engineering, 21(2):107{125, February 1995.13. L.C. Paulson. Logic and Computation: Interactive Proof with Cambridge LCF.Number 2 in Cambride Tracts in Theoretical Computer Science. CambridgeUniversity Press, 1987.14. L.C. Paulson. Isabelle: A Generic Theorem Prover. Number 828 in LectureNotes in Computer Science. Springer-Verlag, 1994.15. H. Pfeifer, A. Dold, F.W. von Henke, and H. Rue�. Mechanized Semantics ofSimple Imperative Programming Constructs. Ulmer Informatik-Berichte 96-11,Universit�at Ulm, December 1996.16. F. Regensburger. HOLCF: Eine konservative Erweiterung von HOL um LCF.PhD thesis, Technische Universit�at M�unchen, 1994.17. F. Regensburger. HOLCF: Higher Order Logic of Computable Functions. InT.E. Schubert, P.J. Windley, and J. Alves-Foss, editors, Higher Order LogicTheorem Proving and Its Application (HOL95), Lecture Notes in ComputerScience, pages 293{307. Springer-Verlag, 1995.18. D. A. Schmidt. Denotational Semantics. Wm. C. Brown Publishers, Dubuque,Iowa, 1988.19. A. Tarski. A Lattice-Theoretic Fixpoint Theorem and its Applications. Paci�cJournal of Mathematics, 5:285{309, 1955.20. G. Winskel. The Formal Semantics of Programming Languages. Foundationsof Computing Series. MIT Press, Cambridge, Massachusetts, 1993.Address for correspondence: Harald Rue�, Universit�at Ulm, Fakult�at f�ur Informatik,James-Franck-Ring, 89069 Ulm, Germany. E-mail: ruess@informatik.uni-ulm.de.

fixpoints-domains3.tex; 21/01/1998; 10:09; no v.; p.21

