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Abstract. We describe an encoding of major parts of domain theory and fixed-
point theory in the Pvs extension of the simply-typed A-calculus; these formaliza-
tions comprise the encoding of mathematical structures like complete partial orders
(domains), domain constructions, the Knaster-Tarski fixed-point theorem for mono-
tonic functions, and variations of fixed-point induction. Altogether, these encodings
form a conservative extension of the underlying Pvs logic. A major problem of
embedding mathematical theories like domain theory lies in the fact that develop-
ing and working with those theories usually generates myriads of applicability and
type-correctness conditions. Our approach to exploiting the Pvs devices of predi-
cate subtypes and judgements to establish many applicability conditions behind the
scenes leads to a considerable reduction in the number of the conditions that actu-
ally need to be proved. We illustrate the applicability of our encodings by means of
simple examples including a mechanized fixed-point induction proof in the context
of relating different semantics of imperative programming constructs.
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1. Introduction

Domain theory forms the mathematical basis of denotational semantics
for programs, and is used in systems like LcF [7][13] for reasoning
about non-termination, partial functions, and infinite-valued domains.
Although LCF can be tailored to reason about finite-valued datatypes
and total functions, the resulting proofs tend to be rather unwieldy for
the ubiquitous undefined (or bottom) elements. By contrast, logics and
specification languages based on Church’s simply-typed A-calculus such
as HoL [8] or Pvs [12] naturally support reasoning about finite-valued
datatypes and total functions. Thus, it seems to be advantageous to
combine the strengths of both approaches.

In this paper we describe such a combination by semantically embed-
ding many basic concepts of domain and fixed-point theory into the
Pvs specification language. More precisely, our encodings consist of:

— Formalizations of basic mathematical structures like partial orders
and complete partial orders (cpos, domains).
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— Various domain constructions like flat cpos, discrete cpos, predicate
cpos, function cpos, and product cpos.

— Notions related to monotonic functions, continuous functions, and
admissible predicates.

— Knaster-Tarski fixed-point theorems for monotonic and continuous
functions; the proof of the fixed-point theorem for monotonic func-
tions requires Zorn’s lemma, which has been derived from Hilbert’s
choice operator.

— Scott’s fixed-point induction principle for admissible predicates and
variations of fixed-point induction like Park’s lemma.

Altogether, these encodings form a conservative extension of the under-
lying Pvs logic, and they permit, for example, expressing partial func-
tions as the least fixed-point of some functional and reasoning about
this class of functions using a combination of fixed-point induction with
induction schemes like structural or well-founded induction that are
built into Pvs.

Most of these encodings are straightforward transcriptions of textbook
knowledge from Loeckx and Sieber [11], Winskel [20], Schmidt [18],
and Gunter [9]. A major problem of embedding mathematical theories
like domain theory and fixed-point theory, however, lies in the fact
that both developing these theories and working with them usually
generates myriads of applicability conditions; i.e. one is continually
concerned that a certain structure is a cpo, a monotonic or continuous
function, or an admissible predicate.

In order to reduce the number of generated applicability conditions we
make use of distinctive features of the Pvs specification language such
as predicate subtyping and judgements. Predicate subtypes are used, for
instance, for explicitly constraining domains and ranges of operations in
a specification, while judgements allow additional type information to
be passed to the type-checker in order to discharge, and consequently
to suppress, a multitude of generated verification conditions during
type-checking. The consequent use of these features thus minimizes the
amount of required proof effort when working with the theory.

1.1. OVERVIEW

This paper is organized as follows. After comparing our encodings with
work that we consider most closely related with ours, we give a brief
overview in Section 2 on the Pvs system and some of its distinctive
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features. Section 3 comprises the main part of this paper; it includes
an overview of the encodings of complete partial orders, the notions of
monotonicity, continuity, and admissibility, various domain construc-
tions, fixed-point theorems, and fixed-point induction. For the sheer
size of the formalizations we are forced to make a selection in this
presentation, and we only include selected definitions and theorems—
thereby omitting many interesting facts needed to support these theo-
rems. Moreover, we concentrate on encoding techniques and we do not
include any proofs, since—not too surprisingly—our formal proofs cor-
respond rather directly to textbook proofs; see [3] for a more detailed
description. Section 3 contains quite a lot of Pvs text, which has been
edited and typeset for presentation purposes. In Section 4 we demon-
strate simple applications of our mechanized domain theory including a
fixed-point induction proof of the while-rule of the Hoare calculus from
a state transformer semantics of the while-statement. Finally, Section 5
contains some concluding remarks about our experience with formal-
izing mathematical structures in Pvs; the complete Pvs sources and
proofs are available from the authors upon request.

1.2. RELATED WORK

The work by Agerholm [1][2] and Regensburger [16][17] is most closely
related to ours, since the aim of their work is to combine the characteris-
tics and reasoning strengths of LCF with those of HOL; both encodings,
however, are restricted to the simpler case of continuous functions.

Agerholm [1][2] describes an embedding of the LCF logic in the HOL [§]
theorem proving system. His basic approach is to encode domains as
a pair (set[D], <), consisting of a carrier set set[D] and a relation <
of type D — (D — bool), and constructions of domains by means of
functions from pairs to pairs. This choice of encoding has the conse-
quence that a new type discipline on domains has to be introduced.
Continuous functions from a domain set[D] to a domain set[E], for
example, are encoded by a HoL function f : D — E. Since HOL is
restricted to total functions, function f above must be determined for
elements outside set[D]. Agerholm [1][2] deals with these problems by
providing syntactic notations for writing domains, continuous functions
and admissible predicates. These are implemented by an interface and a
number of specialized proof functions (tactics). Altogether, Agerholm’s
extension of HOL constitutes an integrated system where the domain
theory constructs look (almost) primitive to the user, and many facts
are proved, using specialized tactics, behind the scenes to support this
view.

fixpoints-domains3.tex; 21/01/1998; 10:09; no v.; p.3



4 F. Bartels et al.

It seems to be more desirable, however, to prove domain-theoretic facts
once and for all and to encode these facts as type information of the
underlying system. In this way, Regensburger [16][17] extends the HoL
object logic of ISABELLE [14] with domain-theoretic notions by employ-
ing ISABELLE’s type class mechanism, which permits a fine-grained use
of polymorphism. On the other hand, the expressiveness of type classes
is restricted since dependencies between type class parameters can not
be expressed. Instead of type classes, we use the concepts of predicate
subtyping to parameterize with respect to certain classes of mathemat-
ical structures. In addition, predicate subtyping supports the encoding
of facts that rely on dependencies between source and target types as
type information.

2. A Brief Description of the Pvs Specification Language

The Pvs system combines an expressive specification language with an
interactive proof checker; see [12] for an overview. This section provides
a brief description of the Pvs language and prover, and introduces some
of the concepts needed in this paper. More details can be found in [5].

The Pvs specification language builds on classical typed higher-order
logic with the usual base types, bool, nat, int, among others, the func-
tion type constructor [D — R], and the product type constructor
[A, B]. The type system of Pvs is augmented with dependent types
and abstract data types. In Pvs, predicates over some type A are, as
usual, boolean-valued functions on A, and pred[A] is an abbreviation
for the function type [A — bool].

A distinctive feature of the Pvs specification language are predicate
subtypes: the subtype {z : D | P(z)} consists of exactly those elements
of type D satisfying predicate P. The expression (P) is an abbreviation
for the predicate subtype {z : D | P(z)}. Since sets can be described by
their characteristic predicates, the expression {z : D | P(z)} can also
be used to denote the set of elements satisfying P, and consequently
set[A] is just a notational variant of pred[A]. Hence, z : (P) also means
that z is an element of the set P. This feature is used, for example, in
computing the image of a function f restricted to S.

image(f : [D — R])(S : set|D]): set[R] =
{y: R|3: (8):y = fla)}

Predicate subtypes are used for explicitly constraining domains and
ranges of operations in a specification and to define partial functions.
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In general, type-checking with predicate subtypes is undecidable; the
type-checker generates proof obligations, so-called type correctness con-
ditions (TCCs) if satisfaction of the restricitng predicate cannot imme-
diately be resolved. A large number of TCCs are discharged by special-
ized proof strategies, and a PVs expression is not considered to be
fully type-checked unless all generated TCCs have been proved. If an
expression that produces a TCC is used many times, the type-checker
repeatedly generates the same TCC. The use of judgements can prevent
this. There are two kinds of judgements:

JUDGEMENT + HAS_TYPE [Even, Even — Even)|
JUDGEMENT Continuous SUBTYPE_OF Monotonic

The first form, a constant judgement, asserts a closure property of +
on the subtype of even natural numbers. The second one, a subtype
judgement, asserts that a given type is a subtype of another type. The
type-checker generates a TCC for each judgement to check the validity
of the assertion, but will then use the information provided further on.
Thus, many TCCs need not be generated.

Pvs specifications are packaged as theories that can be parametric in
types and constants. A built-in prelude and loadable libraries provide
standard specifications and proved facts for a large number of theories.

As an example, Figure 1 shows parts of the theory po that deals with
notions related to partial orders. The theory is parameterized by a
nonempty type D, since theory parameterization is the only means in
Pvs to parameterize with respect to types. The theory defines the type
POID] of partial orders (over D). Predicates ub? and lub? specify upper
bounds and least upper bounds, respectively, of a set A, while predicate
lub_exists? holds for sets that have least upper bounds. However, one
can show that if such least upper bounds do exist, then there is at most
one; this is expressed by the lemma lub_unique. Variables that occur
free in formulae, like A in lub_unique, are implicitly universally quanti-
fied. Using the property lub_unique, one can define a function [ub that
returns the least upper bound of a set. Note that lub is only defined
on those sets B for which it is known that a least upper bound exists.
The operator choose is pre-defined in the Pvs prelude (as is the pred-
icate unique?) and takes as argument a nonempty set and returns an
arbitrary element of that set. Technically, the non-deterministic choose
function is defined from Hilbert’s epsilon-operator.

choose(S : (nonempty?[D])) : (S) = epsilon(S)

Since we have shown that the set LUB(B) is a singleton set the choose
operator is deterministic in this case and thus lub is well-defined. Final-
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po[D : TYPET |: THEORY
BEGIN
PO : TYPEY = (partial_order?|D])
<: VAR PO; z,y: VAR D; A: VAR set[D]

ub?(<)(z, A): bool =V(a:(A):a<z
UB(L)(A) : set[D] = {z:D | ub?(<)(z,A)}

ub?(<)(z,A) : bool =
Wb?(<)(, A) Ay : (UB(S)(A)) 2 < y

LUB(<L)(A): setlD] ={z:D | ub?(<)(z,A)}
lub_ezists?(<)(A) : bool = nonempty?(LUB(<L)(A))

lub_unique : LEMMA
unique?(LUB(<)(A))

lub(<)(B : (lub_ezists?(<))) : D = choose(LUB(<)(B))

chain?(<)(A) : bool =
nonempty?(A) AV(z,y: (4)): (z <y)V (y <=z
Chain(<) : TYPEY = (chain?(<))
END po

Figure 1. Theory of Partial Orders

ly, the theory po specifies a predicate subtype of sets that have the chain
property, i. e. there are no elements in the set that are incomparable
with respect to the ordering relation <; families of types are defined
using free variables as in the definition of Chain(<).

A theory can use the definitions and theorems of another theory by
importing it. Parameterized theories can be imported in either of two
ways: first, one instantiates the theory by providing actual values for
the formal parameters, or, second, the theory is imported without any
instantiation. In the latter case all possible instantiations of the import-
ed theory may be used; in case of ambiguities, actual values can be
provided by qualifying on imported identifiers (as e.g. in set[D]).
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We close our description of Pvs with a brief sketch of some character-
istics of the prover. Proofs in Pvs are presented in a sequent calculus.
The atomic commands of the Pvs prover component include induc-
tion, quantifier instantiation, conditional rewriting, simplification using
arithmetic and equality decision procedures and type information, and
propositional simplification. The skosimp* command, for example,
repeatedly introduces constants (of the form z!7) for universal-strength
quantifiers, and assert combines rewriting with decision procedures.
Pvs has an LCF-like strategy language for combining inference steps
into more powerful proof strategies. The defined rule grind, for exam-
ple, combines rewriting with quantifier reasoning and propositional and
arithmetic decision procedures; this strategy is the workhorse for prov-
ing a large number of our formalization of domain theory.

3. Formalization of Domain Theory

This chapter describes formalizations of complete partial orders
(domains), continuous and monotonic functions, some basic domain
constructions, the Knaster-Tarski fixed-point theorem for monotonic
functions, and various fixed-point induction principles.

3.1. COMPLETE PARTIAL ORDERS

A partial order < over D is a pre-cpo over D if for every chain C in D
the least upper bound lub(<)(C) exists. If, in addition, the type D has
a least element bottom then the pair (<, bottom) is called a complete-
partial order. The encodings of these concepts in Definition 3.1 are
packaged in a theory—called domains—that is parameterized by the
(nonempty) type D; For sake of conciseness, however, we omit the Pvs-
specific syntax for denoting theories and theory parameterization.
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Definition 3.1 (Domains). Let D : TYPET ; then:
<: VAR PO[D]; z: VAR D

precpo?(<) = bool = Y(C : Chain(<)) : lub_ezists?(<)(C)
preCPO : TYPET = (precpo?)

bottom?(<)(z) : bool = V(y: D): z <y

Bottom(<) : TYPEY = (bottom?(<))

cpo?(<, ) bool = precpo?(<) A bottom?(<)(x)

CPO : TYPET = (cpo?)

The defining predicates for pre-cpos and cpos are parameterized by
< and the pair (<, bottom), respectively. This permits defining the
predicate subtype preCPO[D] comprising all partial orders < over type
D that satisfy predicate precpo?, and the predicate subtype CPO[D]
for the pairs (<, bottom) for which predicate cpo? holds.

Alternatively, the Pvs subtyping mechanism permits encoding of math-
ematical structures like pre-cpos by pairs (S, <), where S is a set with
elements of type D and the type of the ordering predicate <, namely
pred[[(S), (S)]], uses the predicate subtype () formed from the set S
in order to restrict < to elements of S.

preCPQOguy : TYPET =
[S: set[D), < {<: pred[[(S),(S)]] | precpo?[($))()}

Compared with preCPO from Definition 3.1, the encoding pre CP Oy
seems to be closer to mathematical practice, since a pre-cpo is usually
thought of as a carrier set with an associated ordering. In our experi-
ence, however, switching between sets S and corresponding predicate
subtypes (S) caused proofs to get rather cumbersome; consequently,
we abandoned using the encoding preCPOg;.

Simple examples of pre-cpos over a given type D are the discrete pre-
cpos, and the type of Booleans bool equipped with implication = and
the bottom element false.!

discrete : preCPO[D] = (=)

bool : CPO[bool] = (=, false)

! Pvs distinguishes between the type bool and the cpo bool, because there are
separate name spaces for types and for constants.
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Next, we want to express the fact that CPO[D] is a subtype
of preCPO[D]. One possibility is to specify a projection func-
tion < from cpos into pre-cpos as an implicit coercion via the
CONVERSION declaration.

Definition 3.2 (Selectors). Let D : TYPET ; then:

l<(d: CPO[D]): preCPO[D] = proj_1(d)
Li(d: CPO[D]): Bottom(l<(d)) = proj_2(d)

CONVERSION |< : [CPO[D] — preCPO|D]]

This declaration causes the Pvs type-checker to implicitly coerce
objects d of type CPO[D] to |<(d), whenever an object of type
preCPO[D] is expected. In this way, formal parameters of type
preCPO[D] can be instantiated with actual parameters of type
CPOID].

3.2. CPO CONSTRUCTIONS

We exemplify the encoding of basic domain constructions by presenting
the constructions of flat cpos and function space cpos. Other construc-
tions, like product or sum cpos, are defined in a similar way.

3.2.1. Lifting

Using the lifting construction one constructs a domain from an arbi-
trary non-empty type by adding a bottom element. Technically, we con-
struct in Definition 3.3 a polymorphic sum type flat as a non-recursive
data type with two constructors: inject for injecting elements of type
D and bottom for the added bottom element. The conversion declara-
tion in Definition 3.3 causes the Pvs type-checker to implicitly coerce
elements z of type D to inject(z) whenever an element of type flat[D]
is expected.
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Definition 8.3 (Lifting). Let D : TYPET ; then:

flat = DATATYPE
BEGIN
inject(arg : D) : inject?
bottom : bottom?
END flat

CONVERSION inject
<: preCPO|flat] = Xz, y: flat): (z =y) V bottom?(x)
flat © CPO|flat] = (<, bottom)

The type flat[D], equipped with the pre-cpo < as defined in Defini-
tion 3.3 and the constant bottom, forms a cpo.

3.2.2. Function Domains

Given types D and R, the domain constructor — generates a cpo over
function type [D — R] from a pre-cpo over D and a cpo over R by
ordering functions pointwise and using the constant bottom function.?

Definition 3.4 (Function Space). Let D, R : TYPE™T ; then:

pointwise(<: preCPO|R]) : preCPO[[D — R]]
Af,g: [D—R]): V(z: D): f(z) <g(z)

foottom(cod : CPO[R]) : Bottom[[D — R]](pointwise(cod)) =
LET (<, bottom) = cod IN
Xz : D): bottom

— (dom : preCPO|[D], cod : CPOI[R]): CPO|[[D — R]] =
LET (<, bottom) = cod IN
(pointwise(<), fbottom(cod))

Now, it is easy to define the cpo of predicates over some type D and
the cpo of (non-deterministic) state transformers srel with domain D
and codomain R.?

2 In general, no restrictions on the domain type are required for constructing
a function space cpo; the restriction of the domain to pre-cpos, however, has the
advantage of providing a hook for further subtyping constraints on the domain
type—Ilike the one in Example 3.8. On the other hand, this restriction does not pose
any real limitations, since any type D can be viewed as a discrete pre-cpo.

® Remember, both pred[D] and set[D] are synonymous for D — bool.
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Ezxample 3.5.
predicates : CPO|pred[D]] = (discrete[D] — bool)
srel : CPO[[D — set[D]]] = (discrete[D] — predicates[D])

Using the judgement of Definition 3.4, the type-checker deduces that
predicates and state transformers are continuous, and consequently
suppresses corresponding TCCs.

3.3. MONOTONICITY, CONTINUITY, AND ADMISSIBILITY

Given two partial orders over some domain type D and range type R,
monotonicity is defined in the usual way.

Definition 8.6 (Monotonicity). Let D, R : TYPE™T ; then:

<p: VAR PO[D]
<gr: VAR PO|[R]

monotonic?(<p,<gr)(f: [D — R]): bool =
V(z, y: D):z<py=f(z) <rf(y)

Monotonic(<p, <g): TYPET = (monotonic?(<p, <g))

The subtype of continuous functions in Definition 3.7 comprises all
functions, intuitively speaking, which are compatible with the construc-
tion of least upper bounds.

Definition 8.7 (Continuity). Let D, R : TYPE™T ; then:

<p: VAR preCPO[D]
<g: VAR preCPOIR]

continuous?(<p, <g)(f : [D — R]): bool =
V(C : Chain(<p)):
lub_exists?(<g)(1mage(f)(C))
A f(lub(<p)(C)) = lub(<g)(image(f)(C))

Continuous(<p,<g): TYPET = (continuous?(<p,<g))

The following subtype judgement expresses the fact that, given the pre-
cpos <p and <p over D and R respectively, every continuous function
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from D to R is also monotonic.*
JUDGEMENT Continuous(<p, <g)
SUBTYPE_OF Monotonic(<p, <gr)

Furthermore, given the (singleton) type discrete_preCPO[D], the
judgement in Example 3.8 refines, using dependent typing, the type
of the function space constructor map (see Definition 3.4). Informal-
ly, this judgement expresses the fact that functions from pre-cpos into
cpos are continuous.

Ezample 3.8. Let D, R : TYPET ; then:

discrete_preCPO : TYPET = {<: preCPO[D] | <
JUDGEMENT ~— HAS_TYPE
[dom : discrete_preCPO[D], cod : CPO[R]
— CPO[Continuous(dom, < (cod))]]

Il
—
Il
N
—

Fixed-point induction requires the concept of admissible predicates. Let
< be a pre-cpo and P be a predicate on D. The predicate P is called
admissible if for every chain C the least upper bound of C satisfies P
whenever all elements of C' do; admissible predicates on D (with respect
to <) are characterized by the predicate subtype Admissible(<).

Definition 8.9 (Admissibility). Let D : TYPE" ; then:
<: VAR preCPO[D]

admissible?(<)(P : pred[D]) : bool =
V(C : Chain(<)) : every(P)(C) = P(lub(<)(C))

Admissible(<) : TYPET = (admissible?(<))

Many sufficient conditions for admissibility, used mainly in fixed-point
induction proofs, can be stated easily as judgements.

JUDGEMENT A HAS_TYPE
[Admissible(<), Admissible(<) — Admissible(<)]

Using this judgements and a similar one for disjunction, the type-
checker is able to deduce automatically admissibility of formulas like
P A(QV R) A @ from the admissibility of P, @, and R.

* This judgement must be expressed in a separate theory parameterized by pre-
cpos <p and <g, since, at least currently, Pvs restricts judgements to statements
not containing free variables.
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Lemma 3.10.
<p: VAR preCPO[D]; <pg: VAR preCPO|R]

cont_pred_admissible : LEMMA
Y(f : Continuous(<p,<g), P: Admissible(<g)) :
admissible?(<p)(Ad : P(f(d)))

le_pred_admissible : LEMMA
V(f : Continuous(<p,<r), g: Monotonic(<p,<Rg)):
admissible?(<p)(A(z : D) : f(z) <g g(z))

Lemma, cont_pred_admissible, for example, states a sufficient condition
for admissibility predicates involving continuous functions, and lemma,
le_pred_admissible forms a crucial part in our proof of the Knaster-
Tarski theorem for monotonic functions.

3.4. FORMALIZATION OF FIXED-POINT THEORY

For the sake of completeness, Definition 3.11 formalizes, for a given type
D, standard notions regarding fixed-points and least fixed points; the
set Ifp?(f) and the corresponding type LFP(f), for example, comprise
all least fixed points of function f.

Definition 8.11 (Fized-points). Let D : TYPE" ; then:
<: VAR PO[D]; z, y: VAR D; f: VAR [D — D]
fizedpoint?(f)(x) : bool = (f(z) = z)

U (S)(F)(2) = bool =
fizedpoint?(f)(z) A (Y(y : D) : fizedpoint?(f)(y) = z < y)

Ifp—exists?(<)(f) - bool = nonempty?(ifp?(<)(f))

LFP(<, f) = Tyeet = (ifp?(<)(f))
LFP_Ezists(<) : TYPET = (Ifp_exists?(<))

The key result for reasoning about fixed-points is the celebrated
Knaster- Tarski fixed-point theorem.® Given a cpo d (over type D), this

5 The theorem by Knaster [10] applied only to power sets and Tarski [19] gener-
alized it to complete lattices.

fixpoints-domains3.tex; 21/01/1998; 10:09; no v.; p.13



14 F. Bartels et al.

theorem states that the least fixed-point exists for monotonic functions
over d, which in our terminology reads as follows.

JUDGEMENT Monotonic({<(d),l<(d))
SUBTYPE_OF LFP_Ezists(l<(d))

This judgement generates a type-correctness condition that states the
Knaster-Tarski theorem in a form that is closer to mathematical prac-
tice.

Theorem 3.12.

KnasterTarski : THEOREM
V(d: CPOI[D], f: Monotonic(l<(d),l<(d))) :
Up-eaists? (< (d)) (/)

The main characteristics of our mechanized proof lies in the systematic
use of judgements to keep the formal reasoning as close as possible to
the paper proof in [4]; see [3] for a detailed description. Most interest-
ingly, our proof uses a variant of Zorn’s lemma and, consequently, we
have developed a formal proof of Zorn’s lemma from Hilbert’s epsilon-
operator. Since this choice operator is included in the underlying Pvs
logic, we may claim that our formalization of fixed point theory forms
a definitional extensional of the Pvs logic; this implies, in particular,
that our encodings form a conservative extension of Pvs.

Given the Knaster-Tarski theorem, it is straightforward to define a
least fixed-point for monotonic functions over a cpo by selecting an
arbitrary element from the set of least fixed points for such a function,
since Knaster-Tarski guarantees that this set is non-empty as required
by the definition of choose (see Section 1.1).

Definition 3.18.

u(d: CPOD))(f : Monotonic(l<(d), 1< (d))) : LFP(1<(d), f) =
choose (Ifp?(L< (4)) (f))

Since p(d)(f) is, by definition, a least fixed-point, one gets immediately
the fixed-point equality for p.

Lemma 3.14.

p—char : LEMMA
V(d : CPOI[D], f: Monotonic(l<(d), 1<(d))) :
p(d)(f) = f(u(d)(f))

fixpoints-domains3.tex; 21/01/1998; 10:09; no v.; p.14



Mechanizing Domain Theory 15

Moreover, fixed-point induction is derived from the Knaster-Tarski the-
orem in the usual way.

Theorem 3.15. Let d : VAR CPO[D]

fo_induction_mono : THEOREM
LET (<, bottom) = d IN
Y(f : Monotonic(<,<),P : Admissible(<)) :
(P(bottom) A (V(z : D): P(z) = P(f(z))))
= P(u(d)(f)

4. Examples

In the previous section, we showed how to embed a considerable frag-
ment of domain theory. These formalizations are collected in a non-
parametric, top-level theory called domain_theory. By including the
statement

IMPORTING domain_theory

in a specification, the current context is extended by theses notions.
Now, we shall consider examples that illustrate simple applications of
the theory built up in the preceeding section for defining partial func-
tions, closures of relations, and using the Pvs prover for reasoning
about partial functions using fixed-point induction.

4.1. EXAMPLE: PARTIAL FUNCTION

Assuming a suitable strict extension * : [flat[int], flat[int] — flat[nat]]
of multiplication, one may, for example, define the factorial function
fac on the integers as a partial function that yields bottom only on the
negative integers.

Definition 4.1.
fac : [int — flat[int]] =
p(discrete[int] — flat[int])

(A(f : [int — flat[int]]) : A(n : int) :
Ir n=0 THEN 1 ELSE n x f(n — 1) ENDIF )

The conversion inject of Definition 3.3 causes the type-checker to auto-
matically inject the THEN -part and the first argument of x into the
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corresponding flat datatype. Moreover, the monotonicity TCC gener-
ated for the application of the least fixed-point operator p to given
functional is easily discharged using the proof strategy grind.

4.2. EXAMPLE: TRANSITIVE CLOSURE

Given a binary relation R over some type D, one defines the transitive
closure of R as the least fixed-point of the functional (A X : RU(X0X)),
where union U and composition o of relations are defined in the obvious
way. Again, the monotonicity of this functional is proved using the
grind strategy.

Definition 4.2. Let D : TYPE™ ; then:

BinRel : TYPET = pred[[D, D]]

R, S, X : VAR BinRel

C: preCPO[BinRel] = |<(predicates[[D, D]])
7(R) : Monotonic(C,C) = AX : (R U (X o X))

tc(R) : BinRel = u(predicates[[D, D]])(7(R))

It is a simple exercise to show that ¢c(R) is indeed the transitive closure
of R.

4.3. EXAMPLE: MECHANIZED SEMANTICS

The embedding of domain theory and fixed-point theory has been
used to encode the semantics of simple imperative programming con-
structs based on state transitions, and to derive the well-known Hoare
calculus rules [15]. First, given the state transformer type srel
TYPET = [D — set[D]], we define some state transformers for some
imperative programming statements.’

6 Mixfix operations like IF ... THEN ... ELSE ... ENDIF can be overloaded.
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Definition 4.3 (Statements). Let D : TYPET ; then:

f, g, X : VAR srel[D]
s : VAR D
b : VAR set[D]

skip : srel[D] = Xs: singleton(s)

3 (f, g) 2 srel[D] = X s : image(g)(f(s))
IF (b, f, g): srellD] =

As: IF b(s) THEN f(s) ELSE ¢(s) ENDIF
C: preCPOlsrel|D]] = |<(srel[D])

abort : Bottom(C) = |, (srel[D])

U(b, f) : Monotonic(C,C) =
AX :IF b THEN f; X ELSE skip ENDIF

while(b, f): srel[D] = u(srel[D])(¥ (b, f))

A mechanized proof of the monotonicity of functional ¥ is described
n [15]. Furthermore, srel[D] is overloaded, since at certain positions
it denotes a type and at others the state transformer cpo defined in
Example 3.5.

For purpose of illustrating fixed-point induction in Pvs we choose the
derivation of Hoare’s while rule from the denotational semantics in
Definition 4.3 using fixed-point induction.

Definition 4.4 (Hoare Triple). Let D : TYPE" ; then:

p, q¢: VAR pred[D]
[ VAR srel[D]

C: preCPO|pred[D]] = |<(predicates)

= (p, [, @) bool = (image(f)(p) € q)
Hoare-triples |= (p, f, ¢) hold if the image of the function f with
respect to precondition p is included, with respect to the ordering C

on predicates, in the postcondition ¢. Now, we have collected all ingre-
dients to formulate and prove Hoare’s while rule.
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Lemma 4.5. Given the variable declarations from Definition 4.4, the
following holds:

while_rule : LEMMA

E=(Ab f, p)
=

= (p, while(b, f), p A= b)

Unfolding the definition of while and propositional reasoning yields the
following subgoal:”

while_rule :

{1} (1, p(¥(b1, f11)), pl1 A = bl1)

while_rule is proved using fixed-point induction fp_induction_mono
from Theorem 3.15 by instantiating the latter’s formal parameter P
with

A(F @ srel[D]) : = (p!1, F, pl1 A= bl1)
Application of fixed-point induction yields three subgoals.

while_rule.l :
{-1} E (1A, f11, pll)

| _______
{1} E (p'1, abort,p!l A = bl1)

while_rule.2 :

{-1} E (p'L,z!1,p!1 A = b!1)

2] E (1A, f11, pll)

|- ——————

{1} = (',
Ir b!1 THEN f!1; 2!1 ELSE skip ENDIF ,
p!l A = bl1)

while_rule.3 (TCC) :

{1} admissible?(A(F : srel[D]) : = (p!1, F, p!1 A = bl1))

” Remember that proofs in Pvs are presented in a sequent calculus where
antecedents and succedents arenumbered by negative and positive numbers,
respectively.

fixpoints-domains3.tex; 21/01/1998; 10:09; no v.; p.18



Mechanizing Domain Theory 19

Notice that the codomain of ¥ in 4.3 causes the prover to sup-
press a subgoal corresponding to the monotonicity of the functional
U(b!1, fI1). Subgoals while_rule.1 and while_rule.2 respectively corre-
spond to the induction base and induction step of the fixed-point induc-
tion rule; these subgoals are proved with less than 15 simple interactions
such as unfolding of definitions and propositional reasoning. Further-
more, since the conclusion P(u(srel[D])(f)) of the fixed-point induc-
tion rule in Theorem 3.15 is constrained to admissible predicates P, an
additional subgoal, a type correctness condition (TCC), while_rule.3 is
generated. The critical idea in this admissibility proof is to characterize
the least upper bound of chains C as follows:®

lub(C)(C) = A(s : D) : U(set_image(C)(s))

This is possible, since the chain C is a set of set functions, and the
least upper bound of the set of function set images is simply the union
of these sets.

5. Conclusions

We have discussed various techniques for formalizing concepts of
domain theory, including cpos, various domain constructions, mono-
tonic functions, the fixed-point theorem for monotonic functions on
cpos, and fixed-point induction. Although our encodings of fixed-point
induction form a conservative extension of the underlying Pvs logic,
and consequently do not strengthen this logic, they permit natural for-
malization of many proofs by mixing fixed-point induction with induc-
tions already built into Pvs, like structural induction and well-founded
induction.

Simple applications of these encodings indicate that it is rather straight-
forward to work with this theory. Other uses of formalized domain the-
ory we have worked out include a comparison between various forms of
semantics [15] and the verification of generic compilation schemes [6].
Altogether, these developments show that many interesting mathemat-
ical facts in the context of programming semantics can readily be for-
malized using current specification and theorem prover technology. This
statement is underlined by the fact that a first version of these encod-
ings was completed by the first author—who learned domain theory
while formalizing it—within 2 months.

8 \J(P : set[pred[D]]) : pred[D] = X(d: D): 3(p: (P)): p(d)
set_image(F : set[[D — R]])(z : D) : set[R] ={y:R|3(f:(F)): f(z) =y}
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The main characteristics of our encodings is the systematic use of pred-
icate subtypes and judgements; this drastically simplifies proofs, since
many applicability conditions are deduced—during type-checking—
behind the scenes. On the other hand, we also experienced, besides
some imperfections of the current implementation, some conceptual
shortcomings of the judgement mechanism in Pvs. Most important-
ly, an extension of the current judgement mechanism that permits for
free variables in judgement declarations has the potential to consider-
ably simplify and streamline our proofs. Moreover, the lack of Hindley-
Milner style polymorphism forces unnatural decomposition of theories.

So far we have restricted ourselves to only using pre-defined Pvs strate-
gies for applying fixed-point induction. It does not seem too difficult,
however, to further automate fixed-point induction proofs by develop-
ing a specialized strategy that tries to automatically apply fixed-point
induction, prove the predicate at hand to be admissible based on the
basis of derived sufficient conditions, and to prove the remaining sub-
goals using a combination of other high-level proof strategies.
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