Polytypic Abstraction in Type Theory

H. Pfeifer and H. Ruef}

Universitat Ulm
Fakultat fiir Informatik
D-89069 Ulm, Germany

{pfeifer,ruess}@informatik.uni-ulm.de

Abstract. This paper is concerned with formalizations and verifications in type theory that are ab-
stracted with respect to a large class of datatypes; i.e polytypic formalizations. The main advantage
of these developments are that they can not only be used to polytypically define functions but also
to formally state polytypic theorems and to interactively develop polytypic proofs using existing proof
editors. Polytypic program and proof construction in a type-theoretic setting is exemplified by the
definition of a polytypic map function and by mechanized proofs of corresponding properties such as
preservation of composition and fusion theorems.

1 Introduction

Many functional programming languages provide a predefined map functional on the list datatype. Applying
this functional to a function f and a source list [yields a target list obtained by replacing each element a
of [with the value of f(a), thereby preserving the structure of I. The type of map in a Hindley-Milner type
system, as employed by current functional programming languages, is abstracted with respect to two type
variables A and B.

map : YA,B. (A — B) — (list(A) — list(B))

Thus, map is a polymorphic function. The general idea of the map function of transforming elements while
leaving the overall structure untouched, however, is not restricted to lists and applies equally well to other
datatypes. This observation gives rise to a new notion of polymorphism, viz. polytypy,' for defining functions
uniformly on a class of datatypes T.

map: VT.VA,B. (A— B)— (T(A) = T(B))

Notice that the notion of polytypy is completely orthogonal to the concept of polymorphism, since every
“instance” of the family of polytypic map-functions is polymorphic.

Many interesting polytypic functions have been identified and described in the literature [Mee92, She93,
MFP91, Jeu95, JJ96, Mee96, Tui96]), and concepts from category theory have proven to be especially suitable
for expressing polytypic functions and reasoning about them. In this approach, datatypes are modeled as
initial objects in categories of functor-algebras [Mal90], and polytypic constructions are formulated using
initiality without reference to the underlying structure of datatypes.

This paper examines techniques for expressing polytypic abstraction in type theory. The main advantage
of these developments is that they can not only be used to polytypically define functions but also to formally
state polytypic theorems and to interactively develop polytypic proofs using existing proof editors. The
importance of mechanizing polytypic abstraction is underlined by the fact that large parts of libraries in
systems like CoqQ [CCFT95] or LEGO [LP92, JM94] consist of rather trivial developments that have to be
repeated and carried out separately for every datatype of interest. This increases the bulk of proving effort
and reduces clarity. Formalization of polytypic abstraction in type theory opens the door to proving many
useful facts about large classes of datatypes once and for all.

! Sheard [She93] calls these algorithms type parametric, Meertens [Mee92] calls them generic, and Jay and Cock-
ett [JC94] refer to this concept as shape polymorphism.

The paper is structured as follows. The formal setting of type theory is sketched in Section 2, while
Section 3 includes type-theoretic formalizations of some basic notions from category theory that are needed
to specify datatypes as initial objects in categories of functor-algebras. Polytypic abstraction with respect
to the class of polynomial datatypes is exemplified with two well-known fusion theorems. In the rest of the
paper we develop techniques to replace the semantic condition of initiality in polytypic abstraction with a
syntactic one. The main idea is to use representations that make the internal structure of datatypes explicit,
and to compute type-theoretic specifications for all represented datatypes in a uniform way; developments
abstracted with respect to datatype representations are said to be syntactically polytypic. Section 4 describes
a simple representation of datatypes and Section 5 includes the details of syntactic polytypic abstraction.
Section 6 concludes with some remarks.

All constructions in this paper have been developed and checked with the LEGo [LP92] system. For the
sake of readability we present typeset versions of the original LEGO terms and we take the freedom to use
some syntactic conventions—such as infix notation—not available in LEGO.

2 Preliminaries

Our starting point is the Extended Calculus of Constructions [Luo90] (ECC') enriched with some inductive
datatypes as implemented in the LEGO system. The main purpose of this section is to sketch basic concepts
of this type theory, to fix the notation, and to discuss the treatment of datatypes in constructive type theory.

The type constructor ITz : A. B(z) is interpreted as the collection of dependent functions with domain
A and codomain B(a) with a the argument of the function at hand. Whenever variable z does not occur
free in B(z), A — B is used as shorthand for ITxz : A. B(z); as usual — associates to the right. Types of
the form X'z : A. B(z) comprise dependent pairs. Moreover, types are collected in yet other types Prop and
Type; (i € N). These universes are closed under the type-forming operations and form a fully cumulative
hierarchy [Luo90]. Although essential to the formalization of many programming concepts, universes are
tedious to use in practice, for one is required to make specific choices of universe levels. For this reason, we
apply— carefully, without introducing inconsistencies—the typical ambiguity convention [HP89] and omit
subscripts i of type universes Type;.

A-abstraction is of the form (Az : A. M) and abstractions like (Az : A,y : B. M) are shorthand for
iterated abstractions (Az : A. Ay : B. M). Function application associates to the left and is written as M (N),
as juxtaposition M N, or even in subscript notation My . Definitions like ¢(z1 : A1,... 2, : Ap): B == M
are used to introduce a name ¢ for the term M (iteratively) abstracted with respect to z; through z,; the
typing B is optional and specifies the type of the term M. Consider, for example, the definition of the
polymorphic identity function and function composition.

I(A| Type, z: A): A == «zx
.o (A,B| Type, f :B—>C, g:A—=B): A= C == Az:A f(g9(x))

Bindings of the form z | A are used to indicate parameters that can be omitted in function application;
systems like LEGO are able to infer the hidden arguments in applications like f o g automatically (see
[LP92)).

Using the principle of propositions-as-types, the dependent product type ITz : A. B(z) is interpreted as
logical universal-quantification and Az : A. M is interpreted as a proof term for the formula Tz : A. B. Tt
is possible to encode in FCC all the usual logical connectives and quantifiers (T, L, V, 3, A, =, =, ...)
together with a natural-deduction style calculus for a higher-order constructive logic. A logical formula is
said to be valid if and only if it is inhabited, i.e. a proof term can be constructed for this formula. Leibniz
equality (=) identifies terms having the same properties.

.= .(A| Type)(z,y: A): Prop == IIP:A — Prop. P(z) - P(y)

This equality is intensional in the sense that ¢ = b is inhabited in the empty context if and only if a and b
are convertible; i.e. they are contained in the least congruence ~ generated by B-reduction (and by reduction
rules for datatypes, see below). Constructions in this paper employ, besides Leibniz equality, a (restricted)
form of extensional equality . = . on functions.

.=.(A,B| Type)(f,g: A— B): Prop == Vz:A f(z) = g(z)

Inductive datatypes can be encoded in type theories like ECC by means of impredicative quantifica-
tion [BB85]. For the well-known imperfections of these encodings—such as noninhabitedness of structural
induction rules—however, we prefer the introduction of datatypes by means of formation, introduction, elim-
ination, and equality rules [NPS90, CP90, PM93, JM94]. Consider, for example, the extension of type theory
with (inductive) products. The declared constant . x . forms the product type from any pair of types, and
pairing (.,.) is the only constructor for this newly formed product type.

. X .: Type — Type — Type
(,.):ITA,B| Type. A— B — (A X B)

The type declarations for the product type constructor and pairing represent the formation and introduction
rules of the inductive product type, respectively. These rules determine the form of the elimination and
equality rules on products.

elim™ : ITA,B| Type, C: (A x B) — Type. (Ila : A,b: B. C(a,b)) = Iz : (A x B). C(x)

Elimination provides a means to construct proof terms (functions) of propositons (types) of the form [Tz :
(A x B). C(z). The corresponding equality rule is specified in terms of a left-to-right rewrite rule.

elimg, f (a,b)~ fab

It is convenient to specify a recursor as the non-dependent variant of elimination in order to define functions
such as the projections fst and snd.

rec* (A, B, C | Type) == elim™*(A_: A x B. C)
fst:(AxB)—> A = rec*(Az:A,y:B.x)
snd: (Ax B)— B == rec*(Az:4,y:B.y)
Moreover, the (overloaded) . x . function plays a central role in categorical specifications of datatypes.
(,)C | Type)(f : C = A)(g: C—=B): C—>(AxB) == Az:C.(fz gzx)
X .(A4,B,C,D | Type)(f :A— C)(g:B—>D):(AxB)— (CxD) == (fofstan, gosndan)

The specifying rules for coproducts A + B with injections inls,g(a) and inra p(b). are dual to the ones
for products. Elimination on coproducts is named elim™ and its non-dependent variant [f, g] is pronounced
“case f or ¢g”.

[,J(A,B,C | Type) : (A— C) > (B = C) = (A+B)— C == elim*(A_: A+ B. C)

Similar to the case of products, the symbol + is overloaded to also denote the bifunctor (see Def. 2 below)
on coproducts.

.+.(A,B,C,D | Type, f:A— B, g:C—>D):(A+C)— (B+D) == [inlgpof, inrgpo 4|

Unlike products or coproducts, the datatype of parametric lists with constructors nil and cons is an
example of a genuinely recursive datatype.

list : Type — Type

nil : ITA: Type. list(A)
cons : ITA| Type. A x list(A) — list(A)

These declarations correspond to formation and introduction rules and completely determine the form of list
elimination?

elim¥t : ITA | Type, C : list(A) — Type,
(C(nila) x (II(a,l) : (A x list(A)). C(I) — C(cons(a,l)))
s 71 : list(A). C(1)

and of the rewrites corresponding to equality rules:

elimbt f nily ~ fst(f)
elimlt f cons(a,l) ~ snd(f) (a,1) (elimZst f 1)

list list

The non-dependent variants rec** and hom'" of list elimination are used to encode structural recursive

functions on lists.

rect™t (A, C' | Type, f: C x ((A x list(A)) = C = C)) : list(A) = C ==
elim'st (_ : list(A). C)(f)

hombst(A, C' | Type, f: C x ((Ax C) = O)) : list(A) = C ==
rectt(fst(f), Ma,_) : A x list(4), y: C. snd(f)(a,y))

The name hom's* stems from the fact that hom!'(f) can be characterized as a (unique) homomorphism
from the algebra associated with the list datatype into an appropriate target algebra specified by f [vH76].
Consider, for example, the prototypical definition of the map functional by means of the homomorphic
functional hom!st,

map"st (A, B | Type, f : A — B): list(A) — list(B) ==
hom"*! (nilg, X(a,y) : (A x list(B)). cons(f(a),y))

In the rest of this paper we assume the inductive datatypes 0, 1, x, +, and list together with the usual
standard operators and relations on these types to be predefined.

N -ary Products and Coproducts. Using higher-order abstraction, type universes, and parametric lists it is
possible to internalize n-ary versions of binary type constructors. Consider, for example, the n-ary product
Ay x ... x A,. Tt is constructed from the iterator ®(.) applied to a list containing the types A; through A4,,.

®(.) : list(Type) — Type == hom"t (1, x)
®(.) : list(Type) = Type == hom"t(0, +)

®(I) represents an n-ary coproduct constructor. Furthermore, pairing may be generalized to tupling, there
is a generalized projection function on tuples, and, most interestlingly, the bifunctors x and + can be
generalized to the n-ary functors ®(.) and @®(.) respectively.

3 Semantic Polytypy

In this section we describe a type-theoretic framework for formalizing polytypic programs and program
transformations. Datatypes are modeled as initial objects in categories of functor-algebras [Mal90], and
polytypic constructions—both programs and proofs—are formulated using initiality without reference to
the underlying structure of datatypes. We exemplify polytypic program construction in this type-theoretic
framework with the polytypic map function, corresponding properties such as preservation of composition,
and polytypic fusion theorems; other polytypic developments from the literature can be added easily.

% Bindings may also employ pattern matching on pairs; for example, a is of type A and [of type list(A) in the
binding (a,1) : (A x list(4)).

Functors are twofold mappings: they map source objects to target objects, and they map morphisms of
the source category to morphisms of the target category with the requirement that identity arrows and
composition are preserved. Here, we restrict the notion of functors to the category of types (in a fixed, but
sufficiently large type universe Type;) with (total) functions as arrows.

Definition 1 Functor.

Functor : Type :=
Y Fop; 0 Type — Type,
Fo: HA,B | Type. (A — B) — FobjA — FobjB.
ITA: Type. Foprls = Ip,,; A
ANITA,B,C: Type, g: A— B, f: B — C. Forp(f 09) = Forr(f) © Farr(g)

Moreover, functorial(Fop;)(Farr) denotes the conjunction of the two preservation properties. a

Bifunctors are functors of type Type x Type — Type or, using the equivalent curried form, of type Type —
Type — Type; they are used to describe polymorphic datatypes. For a bifunctor, the functor laws in Def. 1
take the following form.

Definition 2 Bifunctor.

Bifunctor : Type ::=
YFFy; : Type — Type — Type,
FFop: IIA,B,C,D | Type. (A - B) - (C — D) — FFo; A C — FF,,;B D.
UA,B: Type. FFGM-IAIB = IFFobjA B
NITA,B,C,D,E,F:Type, h:A—- B, f:B—>C,k:D—E, g:E—F.
FFarr(f o h)(g o k) = (FFm‘rf g) o (FFarrh k)

The shorthand bifunctorial(Fop;)(Farr) is used to denote the preservation properties of bifunctors. O

Many interesting examples of bifunctors are constructed from type constructors like 1, product, and coprod-
uct. Seeing parameterized lists as cons-lists with constructors nils : list(A) and consa : A x list(A) — list(A)
we get the bifunctor FF%st.

Example 3 Polymorphic Lists.

FF%S;(A,X; Type) : Type == 1+ (AxX)
FFUsY(A,B,C,D | Type)(f : A— B)(g: C = D) : (FFést]t AC)— (FFéZbSJt BD) u= Iy +(fxg)

The proof that the proposition (bifunctorial FF!! FF!st) is inhabited closely follows the structure of the

; obj arr
definition of FFé’bsjt; i.e. the proof uses coproduct induction elim* followed by product induction in the
(A x X) case; the resulting base equalities follow trivially from normalization.
Fixing the first argument in a bifunctor yields a functor. The dot notation is used to project from elements

of Y-types and obj, arr name the first and second projections, respectively, on (bi)functors.

Propositiond4. I[IFF : Bifunctor, A: Type. functorial FF.obj(A) FF.arr(ls)

Fusion and Reflection in Initial Algebras. Using the notion of functor one defines the concept of datatype
(algebra) as in Def. 5 without being forced to introduce a signature, that is, names and typings for the
individual sorts (types) and operations involved. An F-algebra for an arbitrary functor F is a function
f of type F A — A. The existence of an initial F-algebra, say «, means that for any other F-algebra f
there is a unique homomorphism, say cata(f), from « to f; i.e. cata(f) is the only F-algebra such that
cata(f) o a = f o Fopr(cata(f)) . Definition 5 makes these statements precise.

Definition 5 Initial Datatypes. Given the type declarations 7T : Type, F' : Functor, and
a:F.obj(T)—> T
cata : ITA | Type. (F.obj(A) = A) —» (T — A)
we say that « is the initial F-algebra (with respect to cata) if the proposition

unique_extension(T)(F)(a)(cata) : Prop =
ITA | Type, h: T — A, f: F.0bj(A) = A. hoa=fo F.arr(h) < h = cata(f)

is inhabited; then, cata(f) is called a catamorphism.

Catamorphisms enjoy many nice properties like reflection or fusion laws, and « is an isomorphism with
cata(F.arr(«)) as functional inverse.

Lemma 6. Given the type declarations for T, F, a, and cata in Def. 5 together with the hypotheses

H, : unique_extension(T)(F)(a)(cata)
Hy: ITA | Type, f,g9: F.0bj(A) = A. f =g = cata(f) = cata(yg)

the following formulas are inhabited.
cata(a) = Ir (Reflection)

ITA,B | Type,f : F.obj(A) - A,g: F.obj(B) —» B,h: A — B. (Fusion)
hof =goF.arr(h) = ho cata(f) = cata(g)

ao cata(F.arr(a)) = I, cata(F.arr(a)) o a = Ip opj(T) (Lambek’s lemma)

The mechanized proofs of these properties are along the line of published equational proofs [BAM97]. For the
fact that the equality = (see Section 2) on functions is not a congruence relation on terms, however, proofs
are on the point level and the condition H, is required to replace the functional argument in cata(f) with
cata(g) when f = g. In the case of lists, the initial FF's!(A)-algebra is defined by case split (see Section 2)
and the corresponding catamorphism is a variant of the homomorphic functional on lists.

Ezample 7.

QS (A | Type) : (FFUt A list(A)) — list(A) [nila, consal
cata™™ (A, B | Type)(f : (FF"™" A B) = B): list(A) = B == hom™"(foinly 4. p, foinry 4.p)

According to Proposition 4 fixing the first argument of a bifunctor yields a functor. This fact is used to
define the induced type functor from a bifunctor FF with the collection of initial algebras a4.

Definition 8 Induced Type Functor. Given the type declarations T : Type — Type, FF : Bifunctor,
and

a:ITA| Type. (FF.0bj A) T(A) = T(A)
cata : ITA, B | Type. ((FF.obj A) B) - B) = (T(A) = B)
the induced type functor T, is defined as follows:
Torr(A, B | Type)(f : A= B): T(A) — T(B) == cata(alphap o (FF.arr f I7(p)))

Now, Theorem 9 states the well-known fact that indeed T, T, form a functor. The proof of this fact uses
so-called type functor fusion, which can be regarded as an optimizing transformation that permits merging
two iterations of the form cata(h) o Ty (g) into a single iteration. The essential step in the proof of type
functor fusion is the application of fusion in Lemma 6.

Theorem 9. Given the type declarations for T, FF, a, and cata in Def. 8 and the assumptions

Hy : ITA | Type. unique_extension (T A) (FF.obj A) (FF.arr I4) as cataa
Hy:ITA,B| Type, f,g:((FF.0bj A) B— B). f =g = cata(f) = cata(yg)

the following propositions are inhabited:

ITA,B,C | Type, h: (FF.obj BC)— C, g: A— B. (Type Functor Fusion)
cata(h) o Ty (g) = cata(h o (FF.arr g Ic))
functorial T Typy (Type Functor)

The formal proofs of these facts are straightforward transliterations of the developments in Chapter 2
of [BAM97]. Coming back to our running example, it is easy to see that the prerequisites of Theorem 9
are fulfilled for parametric lists.

ITA : Type. unique_extension list(A) FFUSt(A) FFUt(1,) alist catalist

obj arr
ITA,B : Type, f,g: A— B. f =g = cata’(f) = cata"*t(g)

The ezistence part of the unique extension property is proved by induction on the structure of FF!st (as
in the bifunctoriality proof for FF!s* above), while both the uniqueness part and the equality property for
cata(f) require list induction elim!**. In this way, one obtains, through simple instantiation, the usual map
functional on parametric lists together with proof (terms) of the facts that this map function preserves both
identities and composition.

More importantly, proofs for establishing the bifunctoriality condition or the unique extension property
follow certain patterns. The order of applying product and coproduct inductions in the proof of the existential
direction of the unique extension property, for example, is completely determined by the structure of the
underlying bifunctor. Hence, one may develop specialized tactics that generate according proofs separately
for each datatype under consideration. Here, we go one step further by capturing the general patterns of these
proofs and internalizing them in type theory. In this way, polytypic proofs of the applicability conditions of
the theory formalized in this section are constructed once and for all, and the proof terms for each specific
datatypes are obtained by simple instantiation.

4 Representation of Datatypes

The essence of polytypic abstraction is that the syntactic structure of a datatype completely determines
many developments on this datatype. Hence, we specify a syntactic representation for making the internal
structure of datatypes explicit, and generate, in a uniform way, bifunctors from datatype representations.
In order to keep subsequent developments manageable and to concentrate on the underlying techniques we
chose to restrict ourselves to representations of the-rather small—class of parametric, polynomial datatypes;
similar developments, however, should be possible to deal with larger classes.

A natural representation for polynomial datatypes is given by a list of lists, whereby the j* element in
the i"* element list determines the type of the 5 selector of the i** constructor. The type Rep below is
used to represent datatypes with n constructors, where n is the length of the representation list, and the
type Sel restricts the arguments of datatype constructors to the datatype itself (at recursive positions) and
to the polymorphic type (at non-recursive positions). Finally, rec and nonrec are used as suggestive names
for the injection functions of the Kind coproduct.

Definition 10 (Representation Types).

Kind : Type == rec: 1 + nonrec: 1
Sel : Type == list(Kind)
Rep : Type == list(Sel)

Consider the representations for lists and binary trees below. The lists nil and (nonrec :: rec) in the repre-
sentation DT of the list datatype, for example, describe the signatures of the list constructors nil and
cons, respectively.

Ezample 11.

DTY%t . Rep = nilging = (nonrec :: rec)

DT . Rep = mnilging = (nonrec :: rec :: rec)

The term Constr(A, X, 1) denotes a schematic type for the constructor represented by the list I. The corre-
sponding argument type Arg(A4, X, 1) is computed from the representation [by placing type A at nonrecursive
positions, type X at recursive positions, and by forming the n-ary product of the resulting list of types.

Definition 12.

Arg(A, X : Type,l: Sel) : Type == &(map (rect X A) 1)
Constr(A, X : Type,l: Sel) : Type == (Arg AX1l)— X

Next, a polytypic bifunctor FFP°% is computed uniformly for the class of representable datatypes. The object
part of these functors is easily computed by forming the n-ary sum of the list of argument types (products)
of constructors.

Definition 13.

FFf,fjly(dt :Rep, A, X : Type): Type == P(map (Arg A X) dt)

Likewise, the arrow part FFP%% is computed by recursing over the structure of the representation type Rep
of datatypes; i.e. by recursing on the outer list, the inner lists, and by case analysis on the elements of type
Kind. This time, however, the recursion is a bit more involved, since the resulting function type depends on

the representation itself.
Definition 14. Let dt : Rep, A,B,X,Y | Type, g: A — B, and f : X — Y; then:

FFy(dt, A,B,X,Y,g,f): (FF%Y dt AX)— (FFIV dt BY) u=
elim'*! (\1: Rep. (FF?; 1 AX) - (FF?)V I B'Y))
(Ig, Xa:Sel,l: Rep,y: (FF%Y 1 AX) — (FF" I BY).
(pTOdarr gfl a) + y)
dt

prode (A, B, X, Y g,f): Sel » (Arg A X dt) — (Arg B Y dt) ==
elim"t (X1 : Sel. (Arg A X 1) = (Arg B Y 1))
(I1,Xa:Arg, 1:Sel, y:(Arg AX 1) — (Arg B Y).
elim®™ (\k : Kind. (Arg A X cons(k,1)) — (Arg B Y cons(k,1)))
(F xy) (9 xy) a)B

Recall that elimination on lists is of the form elim!(C)(fni, foons), Where C determines the (dependent)
target type and frir, feons Specify the computations in the nil and in the cons case, respectively. Application
of FFP% vields the identity function on the O type in case of an empty datatype representation; otherwise
it sums the function (prod,.. g f a) with the function y as accumulated by recursive calls. This product
function is defined in a similar fashion by inducting on the list of selectors followed by case analysis: if
the current argument a describes a recursive (nonrecursive) position then one multiplies f (g) with the
recursively computed function y.

It is not hard to verify that FFf,fjly, FFPo% preserve identities and composition for every possible datatype
representation dt by generalizing the proof for establishing bifunctoriality of FF%* in Section 3.

Proposition 15. ITdt : Rep. bifunctorial FFP?% (dt) FFPoW(dt)

obj arr

The inductive proof of this fact parallels the structure of the recursive definition of FFP°% (dt). More precisely,
this induction proceeds by inducting on the number of coproduct inductions elim™ as determined by the
length of the representation type dt followed by an induction on the number of product inductions elim™ in
the induction step; the outer (inner) induction employs one coproduct (product) induction elim™* (elim>)
in its induction step. Thus, tupling the terms FFf,fjly(dt), FFPo%(dt), and the proof term constructed above

yields an element, say FFP°%(dt) of type Bifunctor (see Definition 2).

5 Syntactic Polytypy

For the class of representable datatypes dt as introduced in Section 4, we now extend the underlying type
theory with four (families of) constants Ty, introg:, elimg;, egsq: corresponding to the formation, introduc-
tion, elimination, and equality rules of parametric, polynomial datatypes. These constant declarations are
completely internalized in that the types of the declared constants are computed, by means of type-theoretic
functions, in a uniform way from datatype representations dt.

Definition 16.

T : rep — Type — Type
intro : ITdt: Rep, A : Type. (FFf;jly dt A Tg(A)) — Ty(A)
elim : IIdt: Rep, A: Type, C : T4 (A) — Type. (IndSteps dt A C) — Iz : Ty (A). C(z)
eqs : ITdt: Rep, A: Type, C : Ty (A) = Type, f : (IndSteps dt A C). Equalities dt A C f

The family of constants T4; can be regarded as names for parametric, polynomial datatypes, while the poly-
typic bifunctor FF f;jly (Def. 13) determines the type of the constructors introg: of the datatype Tgq:. The
definitions below introduce, for example, suggestive names for the formation type and constructors corre-
sponding to the representation DT%*¢ as defined in Example 11.

btree : Type — Type == T(DTbree)
leaf(A : Type) 1= btree(A) n= (intm DTbtree A) o Z"”'ll ,Ax btree(A) x btree(A)+ 0

node(A | Type) : (A X btree(A) x biree(A) x 1) — btree(A) :=
(intro DTbiree A) ° Z’fl,?"]_ ,Ax btree(A)x btree(A)+ 0 ° i,n'lAthree(A)three(A),O

Next, constant elim in Definition 16 specifies the polytypic elimination rule. The conjunction of induction
steps (IndSteps dt A C) in the type of elim are computed by recursing over the datatype representation d¢
as in Definition 14. The type of elim(DT""*¢), for example, is convertible with

ITA: Type, C: Ty (A) — Type.
(C(leaf (A)) x (IT(a,l,r,_) : (A x btree(A) x biree(A) x 1).
((C(l) x C(r) x 1) = C(node(a,l,r)))) x 1)
= Iz : Ty(A). C(x)

Details of the recursive definitions for computing types corresponding to induction steps in elimination rules
and of the conjunctions of equality rules can be found in Appendix A. Notice also that these definitions only
rely on the presence of the datatypes 0, 1, product, coproduct, and polymorphic lists.

Hence, one may conclude that the declared constants T, intro, elim, and egs characterize the class of
parametric, polynomial datatypes. This extension of the base calculus with new constants can be viewed as
an internalization of what is usually achieved by introducing new typing rules to the underlying calculus. In

the rest of this section it is demonstrated how internalized datatype representations can be used to specify
syntactically polytypic constructions; i.e. constructions abstracted with respect to a class of representable
datatypes.

Definition 17.

rec(dt : Rep, A : Type, Y | Type) == elimg A (A_: Tg:(A). V)

cata(dt | Rep, A, X | Type)(f : FF(’;;J.ly(dt) AX): Tgp(Ad) > X ==

rec dt A (insert_recs dt A f (introg:(A)))

The polytypic recursor rec is defined in the usual way as the non-dependent variant of elimination and
cata is defined from rec by transforming collections of functions of type FF(’;,;’J.ly(dt) A X to elements of type
IndSteps dt A C; this transformation insert_recs is easily defined by means of recursing on the structure of
representations.

Now we have collected all the ingredients to use semantically polytypic developments like the ones in
Section 3 to define syntactically polytypic functions, since initial algebras and catamorphisms correspond to
polytypic constructors introg; and the polytypic catamorphism catag:, respectively. Consider, for example,
the instantiation of the induced type functor T, (Definition 8) for defining the syntactically polytypic map
function.

Ezxample 18 Polytypic Map.

map(A,B | Type, f : A — B): IIdt| Rep. Tg:(A) = Tar(B) =
(Tarr Tae FF5Y introg, catag) f

For the hidden binding dt | Rep in the definition of map, LEGO’s inference mechanism may be used to
automatically infer the appropriate datatype representation dt when applying the map f function to elements
of type T4 (A). For example, LEGO is capable of inferring the hidden argument DT"*® for representing
binary trees from the application (map f leaf (a,l,7)), since leaf (a,l,r) is of type T(DT¥"*¢). Hence, the
effect of synthesizing hidden datatype representations in LEGO is similar to the one obtained by extending
type systems with a polytypic construct as described in [Jan97]. Moreover, by applying Theorem 9, the
polytypic function map can readily be shown to be functorial and to satisfy equations like induced type
functor fusion, since introg; are initial algebras with respect to the catamorphisms catag; (and cataq; satisfies
the extraneous extensionality property required in Theorem 9).

6 Conclusions

We have shown how to formalize two conceptually differing notions of polytypism, namely semantic and
syntactic polytypism, in a type-theoretic setting. Semantically polytypic developments like the type functor
fusion theorem are formulated using initiality without reference to the underlying structure of datatypes. On
the other hand, syntactic polytypism is obtained by fixing a certain class of datatypes such a the class defined
by polynomial functors. We internalize the description of polynomial datatypes in type theory by defining a
number of type-producing functions in type theory for computing, in a uniform fashion, datatype specifica-
tions corresponding to introduction, formation, elimination, and equality rules. This internalization permits
abstracting theorems, proofs, and programs with respect to the class of representable datatypes. Further-
more, since every polynomial datatype is expressible as the initial object in a functor algebra, it is possible to
instantiate semantically polytypic developments for this syntactically specified class of datatypes once and
for all. This fact has been used in this paper to instantiate, in a formal setting, program transformations
like fusion theorems for all polynomial datatypes. In addition to the examples described in this paper, we
have also experimented with expressing and proving standard properties on datatypes like a (syntactically)
polytypic freeness theorem.

The constructions in this paper have been developed and checked with the LEGO system [LP92, Pol94];
This system implements the Extended Calculus of Constructions, but similar encodings should be possible
for other type theories such as Martin-Lof type theories [NPS90] with universes or the inductive calculus
of constructions. In our experience, it has been rather straightforward to encode semantic polytypy in type
theory and to transliterate equational proofs of properties like fusion theorems from the unique extension
property. For the lack of extensional equality in LEGO, however, equality proofs have to be performed at the
point level. Moreover, it proved to be surprisingly difficult to internalize polytypic abstraction with respect
to the—rather small—class of polynomial datatypes; this complication is mainly due to the restriction to
structural recursion and the clumsiness of defining recursive functions with dependent types.

A lot of work remains to be done to internalize a larger class of datatypes including mutually recursive
datatypes, infinitely-branching datatypes, and codatatypes; good starting points seem to be the extensions
of type-theoretic calculi with inductive types as described by Ore [Ore92] or Paulin-Mohring [PM93].

Shankar’s [Sha96] verification of a fusion theorem due to [Bir95] shows that current theorem-proving
capabilities can effectively be used to formalize and verify advanced program transformations. His analysis,
however, is not polytypic and restricted to one specific datatype. In Paulson’s [Pau96] extension of the
Isabelle system, (co)inductive datatypes are specified as fixedpoints of monotonic predicate transformers,
and tactics construct, from such a datatype definition, proofs of theorems corresponding to introduction and
(co)induction rules. Although structural recursors are omitted in Paulson’s package it is still more practical
and powerful than ours in that it supports basically all datatypes of interest. On the other hand, Paulson’s
package is written in a meta-language and functions in this package must be executed separately for each
datatype under consideration, while our formalizations are internalized in type theory and permit expressing
(syntactically) polytypic theorems and interactive proof construction for these theorems.

The main conclusion of this paper is that the expressiveness of type theory can be used to internalize
many interesting polytypic program development steps and theorems that are usually thought to be meta
constructions and meta theorems. In this way, polytypic abstraction in type theory has the potential to add
another level of flexibility in the reusability of formal proofs and in the design of libraries for program and
proof development systems.

References

[BB85] C.Bohm and A. Berarducci. Automatic synthesis of type A-programs on term algebras. Theoretical
Computer Science, 39:135-154, 1985.

[BAM97] R. Bird and O. de Moor. Algebra of Programming. International Series in Computer Science. Prentice
Hall, 1997.

[Bir95] R.S. Bird. Functional Algorithm Design. In B. M6ller, editor, Mathematics of Program Construction 95,
Lecture Notes in Computer Science, pages 2-17. Springer, 1995.

[CCF*95] C. Cornes, J. Courant, J.C. Fillitre, G. Huet, P. Manoury, C. Mufioz, Ch. Murthy, C. Parent, Chr. Paulin-
Mohring, A. Saibi, and B. Werner. The Coq Proof Assistant Reference Manual - Version 5.10. INRIA,
Rocquencourt, July 1995.

[CP90] Th. Coquand and Chr. Paulin. Inductively defined types. In Proc. COLOG 88, volume 417 of Lecture
Notes in Computer Science, pages 50—66. Springer-Verlag, 1990.

[HP89] R. Harper and R. Pollack. Type Checking, Universal Polymorphism, and Type Ambiguity in the Calcu-
lus of Constructions. In TAPSOFT’89, volume II, Lecture Notes in Computer Science, pages 240-256.
Springer-Verlag, 1989.

[Jan97] P. Jansson. Functional Polytypic Programming: Use and Implementation. PhD thesis, Department of
Computer Science, Chalmers University of Technology, 1997.

[JC94] C.B. Jay and J.R.B. Cockett. Shapely Types and Shape Polymorphism. In D. Sannella, editor, Pro-
gramming Languages and Systems — ESOP’9j, number 788 in Lecture Notes in Computer Science, pages
302-316. Springer-Verlag, 1994.

[Jeu95] J. Jeuring. Polytypic Pattern Matching. In Conference on Functional Programming Languages and Com-
puter Architecture (FPCA ’95), pages 238248, La Jolla, CA, June 1995. ACM Press.

[7796]
[IM94]
[LP92]
[Luo90]
[Mal90]
[Mee92]
[Mee96]

[MFPY1]

[NPS90]
[Ore92]
[Pau96]

[PMO3]

[Pol94]
[Sha96]
[She93]

[Tui96]
[VHT76]

J. Jeuring and P. Jansson. Polytypic Programming. In T. Launchbury, E. Meijer, and T. Sheard, editors,
Advanced Functional Programming, Lecture Notes in Computer Science, pages 68-114. Springer-Verlag,
1996.

C. Jones and S. Maharaj. The Lego Library. distributed with Lego System, February 1994.

Z. Luo and R. Pollack. The Lego Proof Development System: A User’s Manual. Technical Report ECS-
LFCS-92-211, University of Edinburgh, 1992.

Z. Luo. An Extended Calculus of Constructions. Technical Report CST-65-90, University of Edinburgh,
July 1990.

G. Malcolm. Data Structures and Program Transformation. Science of Computer Programming, 14:255—
279, 1990.

L. Meertens. Paramorphisms. Formal Aspects of Computing, 4(5):413-425, 1992.

L. Meertens. Calculate Polytypically. In H. Kuchen and S.D. Swierstra, editors, Programming Languages,
Implementations, Logics, and Programs (PLILP’96), Lecture Notes in Computer Science, pages 1-16.
Springer-Verlag, 1996.

E. Meijer, M. Fokkinga, and R. Paterson. Functional Programming with Bananas, Lenses, Envelopes, and
Barbed Wire. In Proceedings of the 5th ACM Conference on Functional Programming Languages and
Computer Architecture, pages 124-144, 1991.

B. Nordstrom, K. Petersson, and J.M. Smith. Programming in Martin-Léf’s Type Theory. Number 7 in
International Series of Monographs on Computer Science. Oxford Science Publications, 1990.

Ch.E. Ore. The Extended Calculus of Constructions (ECC) with Inductive Types. Information and
Computation, 99, Nr. 2:231-264, 1992.

L.C. Paulson. A Fixedpoint Approach to (Co)Inductive and (Co)Datatype Definition. Technical report,
Computer Laboratory, University of Cambridge, England, 1996.

Chr. Paulin-Mohring. Inductive Definitions in the System Coq, Rules and Properties. In J.F. Groote
M.Bezem, editor, Typed Lambda Calculi and Applications, number 664 in Lecture Notes in Computer
Science, pages 328-345. Springer-Verlag, 1993.

R. Pollack. The Theory of LEGO: A Proof Checker for the Eztended Calculus of Constructions. PhD
thesis, University of Edinburgh, 1994.

N. Shankar. Steps Towards Mechanizing Program Transformations Using PVS. Preprint submitted to
Elsevier Science, 1996.

T. Sheard. Type parametric programming. Oregon Graduate Institute of Science and Technology, Port-
land, OR, USA, 1993.

D. Tuijnman. A Categorical Approach to Functional Programming. PhD thesis, Universitat Ulm, 1996.
F. W. von Henke. An Algebraic Approach to Data Types, Program Verification, and Program Synthesis. In
Mathematical Foundations of Computer Science, Proceedings. Springer-Verlag Lecture Notes in Computer
Science 45, 1976.

A Polynomial Datatypes in LEGO

Module poly_datatypes Import poly_functors;

[A:Typel; (* parameter type *)
[DT:Rep]; (* representation of datatype *)
(% ———mm *)
(* Formation *)
(% ————m *)

[FormationType = Rep->Type->Typel;

$[T_DT :

FormationType] ;

$[T = T_DT DT];

(% ————m *)
(* Introduction *)
(F — e *)
[IntroductionType = [dt:Rep] (FFobj dt A (T A))->T Al;

$[intro : {dt:Rep}IntroductionType dt];

(F — e *)
(* Elimination *)
(F — e *)
(x F [1 _ -> unit *)
(* F [rec,L] (al,a2,..,ak) -> C(al) * (F L (a2,...,ak)) *)
(* F [nonrec,L] (al,a2,..,ak) -> F L (a2,..,an) *)

[C: (T A)->Typel;

[IndHyps = [1]Sell
list_elim Kind ([1:5el](Arg A (T A) 1)->Type)
([_:Arg A (T A) noargs]unit)
(Kind_elim
([a:Kind]{1:Sel}((Arg A (T A) 1)->Type)->(Arg A (T A) (cons a 1))->Type)
([1:Sellly:(Arg A (T A) 1)->Typel
[arg:Arg A (T A) (cons rec 1)]
(prod (C (Fst arg)) (y (Snd arg))))
([1:Sellly:(Arg A (T A) 1)->Typel
[arg:Arg A (T A) (cons nonrec 1)]
(y (Snd arg))))

11;
(* IndSteps: yields product of induction steps for each constructor *)
(* F [] _ --> unit *)
(» F [11,12,...,1n] (cl,c2,...,cn) --> *)
(% IndStepl * (F [12,...,1n] (c2,...,cn)) *)

(x where IndStepl := {a:Arg A (T A) 11}(IndHyps a)->C (cl a) *)

[IndSteps = [DTIRepl
list_elim Sel ([DT:Rep] (IntroductionType DT)->Type)

([_:empty->(T A)Junit)

([1:Se1] [DT:Rep] [y: (IntroductionType DT)->Typel
[intro:IntroductionType (cons 1 DT)]
[introl = compose intro (injectl 1 DT A (T A))]
[intro2 = compose intro (injectr 1 DT A (T A))]
(prod ({a:Arg A (T A) 1}(IndHyps a)->C (introl a))

(y intro2)))
DT];

[EliminationType =
{DT |Rep}(IndSteps (intro DT))->{x:T A}(C x)];

$[elim : EliminationType];

(F — e *)
(* Equality rules *)
(F — e *)
(x F [1 _ -> void *)
(*x F [rec,L] (al,a2,..,ak) -> ((elim fcts al), F L (a2,...,ak)) *)
(* F [nonrec,L] (al,a2,..,ak) -> F L (a2,..,an) *)

[RecCalls = [DT|Repl [fcts:IndSteps (intro DT)]1[1|Sell
list_elim Kind ([1:Sel]{a:Arg A (T A) 1}(IndHyps a))
([_:Arg A (T A) noargs]void)
(Kind_elim
([arg:Kind]{1:Sel}
({a:Arg A (T A) 1}(IndHyps a))->
{a:Arg A (T A) (cons arg 1)}(IndHyps a))
([1:Sel]l[y:{a:Arg A (T A) 1}(IndHyps a)l
[arg:Arg A (T A) (cons rec 1)]
Pair (elim fcts (Fst arg))
(y (Snd arg)))
([1:Sel]l[y:{a:Arg A (T A) 1}(IndHyps a)l
[arg:Arg A (T A) (cons nonrec 1)]
(y (Snd arg))))

11;
(x F [1 _ _ --> true *)
(* F [11,12,...,1n] (introl,intro2,...,intron) (f1,f2,...,fn) --> *)
(* eql /\ (F [12,...,1n] (intro2,...,intromn) (£f2,...,fn)) *)
(* where eql := (elim (f2,...,fn) (introl a)) *)
(% == (f1 a (RecCalls (f1,f2,...,fn) a)) *)

[Equalities = {DT|Rep}{fcts:IndSteps (intro DT)}
list_elim Sel

([DT:Repl{intro:IntroductionType DT}(IndSteps intro)->Prop)

([_:empty->T A][_:unit]trueProp)

([1:Sel] [DT:Repl
[y:{intro:IntroductionType DT}(IndSteps intro)->Prop]
[intro:IntroductionType (cons 1 DT)]
[introl = compose intro (injectl 1 DT A (T A))]
[intro2 = compose intro (injectr 1 DT A (T A))]
[fs:IndSteps introl
(and ({a:Arg A (T A) 1}(Eq (elim fcts (introl a))

((Fst fs) a (RecCalls fcts a))))
(y intro2 (Snd fs))))
DT (intro DT) fcts];

$[eqs : Equalities];

Discharge A;

This article was processed using the ITEX macro package with LLNCS style

