
Polytypic Abstraction in Type TheoryH. Pfeifer and H. Rue�Universit�at UlmFakult�at f�ur InformatikD-89069 Ulm, Germanyfpfeifer,ruessg@informatik.uni-ulm.deAbstract. This paper is concerned with formalizations and veri�cations in type theory that are ab-stracted with respect to a large class of datatypes; i.e polytypic formalizations. The main advantageof these developments are that they can not only be used to polytypically de�ne functions but alsoto formally state polytypic theorems and to interactively develop polytypic proofs using existing proofeditors. Polytypic program and proof construction in a type-theoretic setting is exempli�ed by thede�nition of a polytypic map function and by mechanized proofs of corresponding properties such aspreservation of composition and fusion theorems.1 IntroductionMany functional programming languages provide a prede�ned map functional on the list datatype. Applyingthis functional to a function f and a source list l yields a target list obtained by replacing each element aof l with the value of f (a), thereby preserving the structure of l . The type of map in a Hindley-Milner typesystem, as employed by current functional programming languages, is abstracted with respect to two typevariables A and B . map : 8A;B : (A! B)! (list(A)! list(B))Thus, map is a polymorphic function. The general idea of the map function of transforming elements whileleaving the overall structure untouched, however, is not restricted to lists and applies equally well to otherdatatypes. This observation gives rise to a new notion of polymorphism, viz. polytypy,1 for de�ning functionsuniformly on a class of datatypes T .map : 8T : 8A;B : (A! B)! (T (A)! T (B))Notice that the notion of polytypy is completely orthogonal to the concept of polymorphism, since every\instance" of the family of polytypic map-functions is polymorphic.Many interesting polytypic functions have been identi�ed and described in the literature [Mee92, She93,MFP91, Jeu95, JJ96, Mee96, Tui96]), and concepts from category theory have proven to be especially suitablefor expressing polytypic functions and reasoning about them. In this approach, datatypes are modeled asinitial objects in categories of functor-algebras [Mal90], and polytypic constructions are formulated usinginitiality without reference to the underlying structure of datatypes.This paper examines techniques for expressing polytypic abstraction in type theory. The main advantageof these developments is that they can not only be used to polytypically de�ne functions but also to formallystate polytypic theorems and to interactively develop polytypic proofs using existing proof editors. Theimportance of mechanizing polytypic abstraction is underlined by the fact that large parts of libraries insystems like Coq [CCF+95] or Lego [LP92, JM94] consist of rather trivial developments that have to berepeated and carried out separately for every datatype of interest. This increases the bulk of proving e�ortand reduces clarity. Formalization of polytypic abstraction in type theory opens the door to proving manyuseful facts about large classes of datatypes once and for all.1 Sheard [She93] calls these algorithms type parametric, Meertens [Mee92] calls them generic, and Jay and Cock-ett [JC94] refer to this concept as shape polymorphism.

The paper is structured as follows. The formal setting of type theory is sketched in Section 2, whileSection 3 includes type-theoretic formalizations of some basic notions from category theory that are neededto specify datatypes as initial objects in categories of functor-algebras. Polytypic abstraction with respectto the class of polynomial datatypes is exempli�ed with two well-known fusion theorems. In the rest of thepaper we develop techniques to replace the semantic condition of initiality in polytypic abstraction with asyntactic one. The main idea is to use representations that make the internal structure of datatypes explicit,and to compute type-theoretic speci�cations for all represented datatypes in a uniform way; developmentsabstracted with respect to datatype representations are said to be syntactically polytypic. Section 4 describesa simple representation of datatypes and Section 5 includes the details of syntactic polytypic abstraction.Section 6 concludes with some remarks.All constructions in this paper have been developed and checked with the Lego [LP92] system. For thesake of readability we present typeset versions of the original Lego terms and we take the freedom to usesome syntactic conventions|such as in�x notation|not available in Lego.2 PreliminariesOur starting point is the Extended Calculus of Constructions [Luo90] (ECC) enriched with some inductivedatatypes as implemented in the Lego system. The main purpose of this section is to sketch basic conceptsof this type theory, to �x the notation, and to discuss the treatment of datatypes in constructive type theory.The type constructor �x : A: B(x) is interpreted as the collection of dependent functions with domainA and codomain B(a) with a the argument of the function at hand. Whenever variable x does not occurfree in B(x), A ! B is used as shorthand for �x : A: B(x); as usual ! associates to the right. Types ofthe form �x : A: B(x) comprise dependent pairs. Moreover, types are collected in yet other types Prop andTypei (i 2 N). These universes are closed under the type-forming operations and form a fully cumulativehierarchy [Luo90]. Although essential to the formalization of many programming concepts, universes aretedious to use in practice, for one is required to make speci�c choices of universe levels. For this reason, weapply| carefully, without introducing inconsistencies|the typical ambiguity convention [HP89] and omitsubscripts i of type universes Typei .�-abstraction is of the form (� x : A: M) and abstractions like (� x : A; y : B : M) are shorthand foriterated abstractions (� x : A: � y : B : M). Function application associates to the left and is written asM (N),as juxtaposition M N , or even in subscript notation MN . De�nitions like c(x1 : A1; : : : xn : An) : B ::= Mare used to introduce a name c for the term M (iteratively) abstracted with respect to x1 through xn ; thetyping B is optional and speci�es the type of the term M . Consider, for example, the de�nition of thepolymorphic identity function and function composition.I (A j Type; x : A) : A ::= x: � :(A;B j Type; f : B ! C ; g : A! B) : A! C ::= � x : A: f (g(x))Bindings of the form x j A are used to indicate parameters that can be omitted in function application;systems like Lego are able to infer the hidden arguments in applications like f � g automatically (see[LP92]).Using the principle of propositions-as-types, the dependent product type �x : A: B(x) is interpreted aslogical universal-quanti�cation and � x : A: M is interpreted as a proof term for the formula �x : A: B . Itis possible to encode in ECC all the usual logical connectives and quanti�ers (>, ?, 8, 9, ^, : ,), : : :)together with a natural-deduction style calculus for a higher-order constructive logic. A logical formula issaid to be valid if and only if it is inhabited, i.e. a proof term can be constructed for this formula. Leibnizequality (=) identi�es terms having the same properties.: = :(A j Type)(x ; y : A) : Prop ::= �P : A! Prop: P(x)! P(y)

This equality is intensional in the sense that a = b is inhabited in the empty context if and only if a and bare convertible; i.e. they are contained in the least congruence ' generated by �-reduction (and by reductionrules for datatypes, see below). Constructions in this paper employ, besides Leibniz equality, a (restricted)form of extensional equality : := : on functions.: := : (A;B j Type)(f ; g : A! B) : Prop ::= 8 x : A: f (x) = g(x)Inductive datatypes can be encoded in type theories like ECC by means of impredicative quanti�ca-tion [BB85]. For the well-known imperfections of these encodings|such as noninhabitedness of structuralinduction rules|however, we prefer the introduction of datatypes by means of formation, introduction, elim-ination, and equality rules [NPS90, CP90, PM93, JM94]. Consider, for example, the extension of type theorywith (inductive) products. The declared constant : � : forms the product type from any pair of types, andpairing (:; :) is the only constructor for this newly formed product type.:� : : Type ! Type ! Type(:; :) : �A;B j Type: A! B ! (A� B)The type declarations for the product type constructor and pairing represent the formation and introductionrules of the inductive product type, respectively. These rules determine the form of the elimination andequality rules on products.elim� : �A;B j Type; C : (A� B)! Type: (�a : A; b : B : C (a; b)) ! �x : (A� B): C (x)Elimination provides a means to construct proof terms (functions) of propositons (types) of the form �x :(A� B): C (x). The corresponding equality rule is speci�ed in terms of a left-to-right rewrite rule.elim�C f (a; b) ; f a bIt is convenient to specify a recursor as the non-dependent variant of elimination in order to de�ne functionssuch as the projections fst and snd .rec�(A;B ;C j Type) ::= elim�(� : A� B : C)fst : (A� B)! A ::= rec�(� x : A; y : B : x)snd : (A� B)! B ::= rec�(� x : A; y : B : y)Moreover, the (overloaded) :� : function plays a central role in categorical speci�cations of datatypes.h:; :i(C j Type)(f : C ! A)(g : C ! B) : C ! (A� B) ::= � x : C : (f x ; g x):� :(A;B ;C ;D j Type)(f : A! C)(g : B ! D) : (A� B)! (C �D) ::= hf � fstA;B ; g � sndA;B iThe specifying rules for coproducts A + B with injections inlA;B (a) and inrA;B (b). are dual to the onesfor products. Elimination on coproducts is named elim+ and its non-dependent variant [f ; g] is pronounced\case f or g".[:; :](A;B ;C j Type) : (A! C)! (B ! C)! (A+ B)! C ::= elim+(� : A+ B : C)Similar to the case of products, the symbol + is overloaded to also denote the bifunctor (see Def. 2 below)on coproducts.:+ :(A;B ;C ;D j Type; f : A! B ; g : C ! D) : (A+ C)! (B +D) ::= [inlB ;D � f ; inrB ;D � g]Unlike products or coproducts, the datatype of parametric lists with constructors nil and cons is anexample of a genuinely recursive datatype.list : Type ! Typenil : �A : Type: list(A)cons : �A j Type: A� list(A)! list(A)

These declarations correspond to formation and introduction rules and completely determine the form of listelimination2 elim list : �A j Type; C : list(A)! Type;(C (nilA)� (�(a; l) : (A� list(A)): C (l)! C (cons(a; l)))! � l : list(A): C (l)and of the rewrites corresponding to equality rules:elim listC f nilA ; fst(f)elim listC f cons(a; l) ; snd(f) (a; l) (elim listC f l)The non-dependent variants reclist and hom list of list elimination are used to encode structural recursivefunctions on lists.reclist (A;C j Type; f : C � ((A� list(A))! C ! C)) : list(A)! C ::=elim list (� : list(A): C)(f)hom list (A;C j Type; f : C � ((A� C)! C)) : list(A)! C ::=reclist (fst(f); �(a;) : A� list(A); y : C : snd(f)(a; y))The name hom list stems from the fact that hom list (f) can be characterized as a (unique) homomorphismfrom the algebra associated with the list datatype into an appropriate target algebra speci�ed by f [vH76].Consider, for example, the prototypical de�nition of the map functional by means of the homomorphicfunctional hom list . maplist (A;B j Type; f : A! B) : list(A)! list(B) ::=hom list (nilB ; �(a; y) : (A� list(B)): cons(f (a); y))In the rest of this paper we assume the inductive datatypes 0 , 1 , �, +, and list together with the usualstandard operators and relations on these types to be prede�ned.N -ary Products and Coproducts. Using higher-order abstraction, type universes, and parametric lists it ispossible to internalize n-ary versions of binary type constructors. Consider, for example, the n-ary productA1� : : :�An . It is constructed from the iterator
(:) applied to a list containing the types A1 through An .
(:) : list(Type)! Type ::= hom list (1 ; �)�(:) : list(Type)! Type ::= hom list (0 ; +)�(l) represents an n-ary coproduct constructor. Furthermore, pairing may be generalized to tupling, thereis a generalized projection function on tuples, and, most interestlingly, the bifunctors � and + can begeneralized to the n-ary functors
(:) and �(:) respectively.3 Semantic PolytypyIn this section we describe a type-theoretic framework for formalizing polytypic programs and programtransformations. Datatypes are modeled as initial objects in categories of functor-algebras [Mal90], andpolytypic constructions|both programs and proofs|are formulated using initiality without reference tothe underlying structure of datatypes. We exemplify polytypic program construction in this type-theoreticframework with the polytypic map function, corresponding properties such as preservation of composition,and polytypic fusion theorems; other polytypic developments from the literature can be added easily.2 Bindings may also employ pattern matching on pairs; for example, a is of type A and l of type list(A) in thebinding (a; l) : (A� list(A)).

Functors are twofold mappings: they map source objects to target objects, and they map morphisms ofthe source category to morphisms of the target category with the requirement that identity arrows andcomposition are preserved. Here, we restrict the notion of functors to the category of types (in a �xed, butsu�ciently large type universe Typei) with (total) functions as arrows.De�nition 1 Functor.Functor : Type ::=�Fobj : Type ! Type;Farr : �A;B j Type: (A! B)! FobjA! FobjB :�A : Type: Farr IA := IFobjA^ �A;B ;C : Type; g : A! B ; f : B ! C : Farr (f � g) := Farr (f) � Farr (g)Moreover, functorial(Fobj)(Farr) denotes the conjunction of the two preservation properties. 2Bifunctors are functors of type Type � Type ! Type or, using the equivalent curried form, of type Type !Type ! Type; they are used to describe polymorphic datatypes. For a bifunctor, the functor laws in Def. 1take the following form.De�nition 2 Bifunctor.Bifunctor : Type ::=�FFobj : Type ! Type ! Type;FFarr : �A;B ;C ;D j Type: (A! B)! (C ! D)! FFobjA C ! FFobjB D :�A;B : Type: FFarr IAIB := IFFobjA B^ �A;B ;C ;D ;E ;F : Type; h : A! B ; f : B ! C ; k : D ! E ; g : E ! F :FFarr (f � h)(g � k) := (FFarr f g) � (FFarrh k)The shorthand bifunctorial(Fobj)(Farr) is used to denote the preservation properties of bifunctors. 2Many interesting examples of bifunctors are constructed from type constructors like 1 , product, and coprod-uct. Seeing parameterized lists as cons-lists with constructors nilA : list(A) and consA : A� list(A)! list(A)we get the bifunctor FF list .Example 3 Polymorphic Lists.FF listobj (A;X : Type) : Type ::= 1 + (A�X)FF listarr (A;B ;C ;D j Type)(f : A! B)(g : C ! D) : (FF listobj A C)! (FF listobj B D) ::= I1 + (f � g)The proof that the proposition (bifunctorial FF listobj FF listarr) is inhabited closely follows the structure of thede�nition of FF listobj ; i.e. the proof uses coproduct induction elim+ followed by product induction in the(A�X) case; the resulting base equalities follow trivially from normalization.Fixing the �rst argument in a bifunctor yields a functor. The dot notation is used to project from elementsof �-types and obj , arr name the �rst and second projections, respectively, on (bi)functors.Proposition4. �FF : Bifunctor ; A : Type: functorial FF :obj (A) FF :arr(IA)Fusion and Reection in Initial Algebras. Using the notion of functor one de�nes the concept of datatype(algebra) as in Def. 5 without being forced to introduce a signature, that is, names and typings for theindividual sorts (types) and operations involved. An F -algebra for an arbitrary functor F is a functionf of type F A ! A. The existence of an initial F -algebra, say �, means that for any other F -algebra fthere is a unique homomorphism, say cata(f), from � to f ; i.e. cata(f) is the only F -algebra such thatcata(f) � � := f � Farr (cata(f)) . De�nition 5 makes these statements precise.

De�nition 5 Initial Datatypes. Given the type declarations T : Type, F : Functor , and� : F :obj (T) ! Tcata : �A j Type: (F :obj (A) ! A)! (T ! A)we say that � is the initial F -algebra (with respect to cata) if the propositionunique extension(T)(F)(�)(cata) : Prop ::=�A j Type; h : T ! A; f : F :obj (A) ! A: h � � := f � F :arr(h) , h := cata(f)is inhabited; then, cata(f) is called a catamorphism.Catamorphisms enjoy many nice properties like reection or fusion laws, and � is an isomorphism withcata(F :arr(�)) as functional inverse.Lemma6. Given the type declarations for T , F , �, and cata in Def. 5 together with the hypothesesH1 : unique extension(T)(F)(�)(cata)H2 : �A j Type; f ; g : F :obj (A) ! A: f := g) cata(f) := cata(g)the following formulas are inhabited.cata(�) := IT (Reection)�A;B j Type; f : F :obj (A) ! A; g : F :obj (B) ! B ; h : A! B : (Fusion)h � f := g � F :arr(h)) h � cata(f) := cata(g)� � cata(F :arr(�)) := IT , cata(F :arr(�)) � � := IF :obj (T) (Lambek's lemma)The mechanized proofs of these properties are along the line of published equational proofs [BdM97]. For thefact that the equality := (see Section 2) on functions is not a congruence relation on terms, however, proofsare on the point level and the condition H2 is required to replace the functional argument in cata(f) withcata(g) when f := g . In the case of lists, the initial FF list (A)-algebra is de�ned by case split (see Section 2)and the corresponding catamorphism is a variant of the homomorphic functional on lists.Example 7. �list (A j Type) : (FF list A list(A))! list(A) ::= [nilA; consA]cata list (A;B j Type)(f : (FF list A B)! B) : list(A)! B ::= hom list (f � inl1 ;A�B ; f � inr1 ;A�B)According to Proposition 4 �xing the �rst argument of a bifunctor yields a functor. This fact is used tode�ne the induced type functor from a bifunctor FF with the collection of initial algebras �A.De�nition 8 Induced Type Functor. Given the type declarations T : Type ! Type, FF : Bifunctor ,and � : �A j Type: (FF :obj A) T (A)! T (A)cata : �A;B j Type: (((FF :obj A) B)! B)! (T (A)! B)the induced type functor Tarr is de�ned as follows:Tarr (A;B j Type)(f : A! B) : T (A)! T (B) ::= cata(alphaB � (FF :arr f IT(B)))Now, Theorem 9 states the well-known fact that indeed T , Tarr form a functor. The proof of this fact usesso-called type functor fusion, which can be regarded as an optimizing transformation that permits mergingtwo iterations of the form cata(h) � Tarr (g) into a single iteration. The essential step in the proof of typefunctor fusion is the application of fusion in Lemma 6.

Theorem9. Given the type declarations for T , FF, �, and cata in Def. 8 and the assumptionsH1 : �A j Type: unique extension (T A) (FF :obj A) (FF :arr IA) �A cataAH2 : �A;B j Type; f ; g : ((FF :obj A) B ! B): f := g) cata(f) := cata(g)the following propositions are inhabited:�A;B ;C j Type; h : (FF :obj B C)! C ; g : A! B : (Type Functor Fusion)cata(h) � Tarr (g) := cata(h � (FF :arr g IC))functorial T Tarr (Type Functor)The formal proofs of these facts are straightforward transliterations of the developments in Chapter 2of [BdM97]. Coming back to our running example, it is easy to see that the prerequisites of Theorem 9are ful�lled for parametric lists.�A : Type: unique extension list(A) FF listobj (A) FF listarr (IA) �listA cata listA�A;B : Type; f ; g : A! B : f := g) cata list (f) := cata list (g)The existence part of the unique extension property is proved by induction on the structure of FF list (asin the bifunctoriality proof for FF list above), while both the uniqueness part and the equality property forcata(f) require list induction elim list . In this way, one obtains, through simple instantiation, the usual mapfunctional on parametric lists together with proof (terms) of the facts that this map function preserves bothidentities and composition.More importantly, proofs for establishing the bifunctoriality condition or the unique extension propertyfollow certain patterns. The order of applying product and coproduct inductions in the proof of the existentialdirection of the unique extension property, for example, is completely determined by the structure of theunderlying bifunctor. Hence, one may develop specialized tactics that generate according proofs separatelyfor each datatype under consideration. Here, we go one step further by capturing the general patterns of theseproofs and internalizing them in type theory. In this way, polytypic proofs of the applicability conditions ofthe theory formalized in this section are constructed once and for all, and the proof terms for each speci�cdatatypes are obtained by simple instantiation.4 Representation of DatatypesThe essence of polytypic abstraction is that the syntactic structure of a datatype completely determinesmany developments on this datatype. Hence, we specify a syntactic representation for making the internalstructure of datatypes explicit, and generate, in a uniform way, bifunctors from datatype representations.In order to keep subsequent developments manageable and to concentrate on the underlying techniques wechose to restrict ourselves to representations of the{rather small|class of parametric, polynomial datatypes;similar developments, however, should be possible to deal with larger classes.A natural representation for polynomial datatypes is given by a list of lists, whereby the j th element inthe i th element list determines the type of the j th selector of the i th constructor. The type Rep below isused to represent datatypes with n constructors, where n is the length of the representation list, and thetype Sel restricts the arguments of datatype constructors to the datatype itself (at recursive positions) andto the polymorphic type (at non-recursive positions). Finally, rec and nonrec are used as suggestive namesfor the injection functions of the Kind coproduct.De�nition 10 (Representation Types).Kind : Type ::= rec : 1 + nonrec : 1Sel : Type ::= list(Kind)Rep : Type ::= list(Sel)

Consider the representations for lists and binary trees below. The lists nil and (nonrec :: rec) in the repre-sentation DT list of the list datatype, for example, describe the signatures of the list constructors nil andcons , respectively.Example 11. DT list : Rep ::= nilKind :: (nonrec :: rec)DT btree : Rep ::= nilKind :: (nonrec :: rec :: rec)The term Constr(A;X ; l) denotes a schematic type for the constructor represented by the list l . The corre-sponding argument type Arg(A;X ; l) is computed from the representation l by placing type A at nonrecursivepositions, type X at recursive positions, and by forming the n-ary product of the resulting list of types.De�nition 12. Arg(A;X : Type; l : Sel) : Type ::=
(map (rec+ X A) l)Constr(A;X : Type; l : Sel) : Type ::= (Arg A X l)! XNext, a polytypic bifunctor FF poly is computed uniformly for the class of representable datatypes. The objectpart of these functors is easily computed by forming the n-ary sum of the list of argument types (products)of constructors.De�nition 13. FF polyobj (dt : Rep; A;X : Type) : Type ::= �(map (Arg A X) dt)Likewise, the arrow part FF polyarr is computed by recursing over the structure of the representation type Repof datatypes; i.e. by recursing on the outer list, the inner lists, and by case analysis on the elements of typeKind . This time, however, the recursion is a bit more involved, since the resulting function type depends onthe representation itself.De�nition 14. Let dt : Rep, A;B ;X ;Y j Type, g : A! B , and f : X ! Y ; then:FF polyarr (dt ; A;B ;X ;Y ; g ; f) : (FF polyobj dt A X)! (FF polyobj dt B Y) ::=elim list (� l : Rep: (FF polyobj l A X)! (FF polyobj l B Y))(I0 ; � a : Sel ; l : Rep; y : (FF polyobj l A X)! (FF polyobj l B Y):(prodarr g f l a) + y)dtprodarr (A;B ;X ;Y ; g ; f) : Sel ! (Arg A X dt)! (Arg B Y dt) ::=elim list (� l : Sel : (Arg A X l)! (Arg B Y l))(I1 ; � a : Arg ; l : Sel ; y : (Arg A X l)! (Arg B Y l):elim+ (� k : Kind : (Arg A X cons(k ; l))! (Arg B Y cons(k ; l)))(f � y) (g � y) a)2Recall that elimination on lists is of the form elim list (C)(fnil ; fcons), where C determines the (dependent)target type and fnil , fcons specify the computations in the nil and in the cons case, respectively. Applicationof FF polyarr yields the identity function on the 0 type in case of an empty datatype representation; otherwiseit sums the function (prodarr g f a) with the function y as accumulated by recursive calls. This productfunction is de�ned in a similar fashion by inducting on the list of selectors followed by case analysis: ifthe current argument a describes a recursive (nonrecursive) position then one multiplies f (g) with therecursively computed function y .It is not hard to verify that FF polyobj , FF polyarr preserve identities and composition for every possible datatyperepresentation dt by generalizing the proof for establishing bifunctoriality of FF list in Section 3.

Proposition15. �dt : Rep: bifunctorial FF polyobj (dt) FF polyarr (dt)The inductive proof of this fact parallels the structure of the recursive de�nition of FF polyarr (dt). More precisely,this induction proceeds by inducting on the number of coproduct inductions elim+ as determined by thelength of the representation type dt followed by an induction on the number of product inductions elim� inthe induction step; the outer (inner) induction employs one coproduct (product) induction elim+ (elim�)in its induction step. Thus, tupling the terms FF polyobj (dt), FF polyarr (dt), and the proof term constructed aboveyields an element, say FF poly (dt) of type Bifunctor (see De�nition 2).5 Syntactic PolytypyFor the class of representable datatypes dt as introduced in Section 4, we now extend the underlying typetheory with four (families of) constants Tdt , introdt , elimdt , eqsdt corresponding to the formation, introduc-tion, elimination, and equality rules of parametric, polynomial datatypes. These constant declarations arecompletely internalized in that the types of the declared constants are computed, by means of type-theoreticfunctions, in a uniform way from datatype representations dt .De�nition 16.T : rep ! Type ! Typeintro : �dt : Rep; A : Type: (FF polyobj dt A Tdt (A))! Tdt (A)elim : �dt : Rep; A : Type; C : Tdt (A)! Type: (IndSteps dt A C)! �x : Tdt (A): C (x)eqs : �dt : Rep; A : Type; C : Tdt (A)! Type; f : (IndSteps dt A C): Equalities dt A C fThe family of constants Tdt can be regarded as names for parametric, polynomial datatypes, while the poly-typic bifunctor FF polyobj (Def. 13) determines the type of the constructors introdt of the datatype Tdt . Thede�nitions below introduce, for example, suggestive names for the formation type and constructors corre-sponding to the representation DT btree as de�ned in Example 11.btree : Type ! Type ::= T (DT btree)leaf (A : Type) : 1 ! btree(A) ::= (intro DT btree A) � inl1 ;A�btree(A)�btree(A)+0node(A j Type) : (A� btree(A)� btree(A)� 1)! btree(A) ::=(intro DT btree A) � inr1 ;A�btree(A)�btree(A)+0 � inlA�btree(A)�btree(A);0Next, constant elim in De�nition 16 speci�es the polytypic elimination rule. The conjunction of inductionsteps (IndSteps dt A C) in the type of elim are computed by recursing over the datatype representation dtas in De�nition 14. The type of elim(DT btree), for example, is convertible with�A : Type; C : Tdt (A)! Type:(C (leaf (A))� (�(a; l ; r ;) : (A� btree(A)� btree(A)� 1):((C (l) � C (r)� 1)! C (node(a; l ; r)))) � 1)! �x : Tdt (A): C (x)Details of the recursive de�nitions for computing types corresponding to induction steps in elimination rulesand of the conjunctions of equality rules can be found in Appendix A. Notice also that these de�nitions onlyrely on the presence of the datatypes 0 , 1 , product, coproduct, and polymorphic lists.Hence, one may conclude that the declared constants T , intro, elim, and eqs characterize the class ofparametric, polynomial datatypes. This extension of the base calculus with new constants can be viewed asan internalization of what is usually achieved by introducing new typing rules to the underlying calculus. In

the rest of this section it is demonstrated how internalized datatype representations can be used to specifysyntactically polytypic constructions; i.e. constructions abstracted with respect to a class of representabledatatypes.De�nition 17.rec(dt : Rep;A : Type;Y j Type) ::= elimdt A (� : Tdt (A): Y)cata(dt j Rep;A;X j Type)(f : FF polyobj (dt) A X) : Tdt (A)! X ::=rec dt A (insert recs dt A f (introdt (A)))The polytypic recursor rec is de�ned in the usual way as the non-dependent variant of elimination andcata is de�ned from rec by transforming collections of functions of type FF polyobj (dt) A X to elements of typeIndSteps dt A C ; this transformation insert recs is easily de�ned by means of recursing on the structure ofrepresentations.Now we have collected all the ingredients to use semantically polytypic developments like the ones inSection 3 to de�ne syntactically polytypic functions, since initial algebras and catamorphisms correspond topolytypic constructors introdt and the polytypic catamorphism catadt , respectively. Consider, for example,the instantiation of the induced type functor Tarr (De�nition 8) for de�ning the syntactically polytypic mapfunction.Example 18 Polytypic Map.map(A;B j Type; f : A! B) : �dt j Rep: Tdt (A)! Tdt (B) ::=(Tarr Tdt FF polydt introdt catadt) fFor the hidden binding dt j Rep in the de�nition of map, Lego's inference mechanism may be used toautomatically infer the appropriate datatype representation dt when applying themap f function to elementsof type Tdt (A). For example, Lego is capable of inferring the hidden argument DT btree for representingbinary trees from the application (map f leaf (a; l ; r)), since leaf (a; l ; r) is of type T (DT btree). Hence, thee�ect of synthesizing hidden datatype representations in Lego is similar to the one obtained by extendingtype systems with a polytypic construct as described in [Jan97]. Moreover, by applying Theorem 9, thepolytypic function map can readily be shown to be functorial and to satisfy equations like induced typefunctor fusion, since introdt are initial algebras with respect to the catamorphisms catadt (and catadt satis�esthe extraneous extensionality property required in Theorem 9).6 ConclusionsWe have shown how to formalize two conceptually di�ering notions of polytypism, namely semantic andsyntactic polytypism, in a type-theoretic setting. Semantically polytypic developments like the type functorfusion theorem are formulated using initiality without reference to the underlying structure of datatypes. Onthe other hand, syntactic polytypism is obtained by �xing a certain class of datatypes such a the class de�nedby polynomial functors. We internalize the description of polynomial datatypes in type theory by de�ning anumber of type-producing functions in type theory for computing, in a uniform fashion, datatype speci�ca-tions corresponding to introduction, formation, elimination, and equality rules. This internalization permitsabstracting theorems, proofs, and programs with respect to the class of representable datatypes. Further-more, since every polynomial datatype is expressible as the initial object in a functor algebra, it is possible toinstantiate semantically polytypic developments for this syntactically speci�ed class of datatypes once andfor all. This fact has been used in this paper to instantiate, in a formal setting, program transformationslike fusion theorems for all polynomial datatypes. In addition to the examples described in this paper, wehave also experimented with expressing and proving standard properties on datatypes like a (syntactically)polytypic freeness theorem.

The constructions in this paper have been developed and checked with the Lego system [LP92, Pol94];This system implements the Extended Calculus of Constructions, but similar encodings should be possiblefor other type theories such as Martin-L�of type theories [NPS90] with universes or the inductive calculusof constructions. In our experience, it has been rather straightforward to encode semantic polytypy in typetheory and to transliterate equational proofs of properties like fusion theorems from the unique extensionproperty. For the lack of extensional equality in Lego, however, equality proofs have to be performed at thepoint level. Moreover, it proved to be surprisingly di�cult to internalize polytypic abstraction with respectto the|rather small|class of polynomial datatypes; this complication is mainly due to the restriction tostructural recursion and the clumsiness of de�ning recursive functions with dependent types.A lot of work remains to be done to internalize a larger class of datatypes including mutually recursivedatatypes, in�nitely-branching datatypes, and codatatypes; good starting points seem to be the extensionsof type-theoretic calculi with inductive types as described by Ore [Ore92] or Paulin-Mohring [PM93].Shankar's [Sha96] veri�cation of a fusion theorem due to [Bir95] shows that current theorem-provingcapabilities can e�ectively be used to formalize and verify advanced program transformations. His analysis,however, is not polytypic and restricted to one speci�c datatype. In Paulson's [Pau96] extension of theIsabelle system, (co)inductive datatypes are speci�ed as �xedpoints of monotonic predicate transformers,and tactics construct, from such a datatype de�nition, proofs of theorems corresponding to introduction and(co)induction rules. Although structural recursors are omitted in Paulson's package it is still more practicaland powerful than ours in that it supports basically all datatypes of interest. On the other hand, Paulson'spackage is written in a meta-language and functions in this package must be executed separately for eachdatatype under consideration, while our formalizations are internalized in type theory and permit expressing(syntactically) polytypic theorems and interactive proof construction for these theorems.The main conclusion of this paper is that the expressiveness of type theory can be used to internalizemany interesting polytypic program development steps and theorems that are usually thought to be metaconstructions and meta theorems. In this way, polytypic abstraction in type theory has the potential to addanother level of exibility in the reusability of formal proofs and in the design of libraries for program andproof development systems.References[BB85] C. B�ohm and A. Berarducci. Automatic synthesis of type �-programs on term algebras. TheoreticalComputer Science, 39:135{154, 1985.[BdM97] R. Bird and O. de Moor. Algebra of Programming. International Series in Computer Science. PrenticeHall, 1997.[Bir95] R.S. Bird. Functional Algorithm Design. In B. M�oller, editor, Mathematics of Program Construction '95,Lecture Notes in Computer Science, pages 2{17. Springer, 1995.[CCF+95] C. Cornes, J. Courant, J.C. Fillâtre, G. Huet, P. Manoury, C. Mu~noz, Ch. Murthy, C. Parent, Chr. Paulin-Mohring, A. Sa��bi, and B. Werner. The Coq Proof Assistant Reference Manual - Version 5.10. INRIA,Rocquencourt, July 1995.[CP90] Th. Coquand and Chr. Paulin. Inductively de�ned types. In Proc. COLOG 88, volume 417 of LectureNotes in Computer Science, pages 50{66. Springer-Verlag, 1990.[HP89] R. Harper and R. Pollack. Type Checking, Universal Polymorphism, and Type Ambiguity in the Calcu-lus of Constructions. In TAPSOFT'89, volume II, Lecture Notes in Computer Science, pages 240{256.Springer-Verlag, 1989.[Jan97] P. Jansson. Functional Polytypic Programming: Use and Implementation. PhD thesis, Department ofComputer Science, Chalmers University of Technology, 1997.[JC94] C.B. Jay and J.R.B. Cockett. Shapely Types and Shape Polymorphism. In D. Sannella, editor, Pro-gramming Languages and Systems { ESOP'94, number 788 in Lecture Notes in Computer Science, pages302{316. Springer-Verlag, 1994.[Jeu95] J. Jeuring. Polytypic Pattern Matching. In Conference on Functional Programming Languages and Com-puter Architecture (FPCA '95), pages 238{248, La Jolla, CA, June 1995. ACM Press.

[JJ96] J. Jeuring and P. Jansson. Polytypic Programming. In T. Launchbury, E. Meijer, and T. Sheard, editors,Advanced Functional Programming, Lecture Notes in Computer Science, pages 68{114. Springer-Verlag,1996.[JM94] C. Jones and S. Maharaj. The Lego Library. distributed with Lego System, February 1994.[LP92] Z. Luo and R. Pollack. The Lego Proof Development System: A User's Manual. Technical Report ECS-LFCS-92-211, University of Edinburgh, 1992.[Luo90] Z. Luo. An Extended Calculus of Constructions. Technical Report CST-65-90, University of Edinburgh,July 1990.[Mal90] G. Malcolm. Data Structures and Program Transformation. Science of Computer Programming, 14:255{279, 1990.[Mee92] L. Meertens. Paramorphisms. Formal Aspects of Computing, 4(5):413{425, 1992.[Mee96] L. Meertens. Calculate Polytypically. In H. Kuchen and S.D. Swierstra, editors, Programming Languages,Implementations, Logics, and Programs (PLILP'96), Lecture Notes in Computer Science, pages 1{16.Springer-Verlag, 1996.[MFP91] E. Meijer, M. Fokkinga, and R. Paterson. Functional Programming with Bananas, Lenses, Envelopes, andBarbed Wire. In Proceedings of the 5th ACM Conference on Functional Programming Languages andComputer Architecture, pages 124{144, 1991.[NPS90] B. Nordstr�om, K. Petersson, and J.M. Smith. Programming in Martin-L�of's Type Theory. Number 7 inInternational Series of Monographs on Computer Science. Oxford Science Publications, 1990.[Ore92] Ch.E. Ore. The Extended Calculus of Constructions (ECC) with Inductive Types. Information andComputation, 99, Nr. 2:231{264, 1992.[Pau96] L.C. Paulson. A Fixedpoint Approach to (Co)Inductive and (Co)Datatype De�nition. Technical report,Computer Laboratory, University of Cambridge, England, 1996.[PM93] Chr. Paulin-Mohring. Inductive De�nitions in the System Coq, Rules and Properties. In J.F. GrooteM.Bezem, editor, Typed Lambda Calculi and Applications, number 664 in Lecture Notes in ComputerScience, pages 328{345. Springer-Verlag, 1993.[Pol94] R. Pollack. The Theory of LEGO: A Proof Checker for the Extended Calculus of Constructions. PhDthesis, University of Edinburgh, 1994.[Sha96] N. Shankar. Steps Towards Mechanizing Program Transformations Using PVS. Preprint submitted toElsevier Science, 1996.[She93] T. Sheard. Type parametric programming. Oregon Graduate Institute of Science and Technology, Port-land, OR, USA, 1993.[Tui96] D. Tuijnman. A Categorical Approach to Functional Programming. PhD thesis, Universit�at Ulm, 1996.[vH76] F. W. von Henke. An Algebraic Approach to Data Types, Program Veri�cation, and Program Synthesis. InMathematical Foundations of Computer Science, Proceedings. Springer-Verlag Lecture Notes in ComputerScience 45, 1976.A Polynomial Datatypes in LegoModule poly_datatypes Import poly_functors;[A:Type]; (* parameter type *)[DT:Rep]; (* representation of datatype *)(* -- *)(* Formation *)(* -- *)[FormationType = Rep->Type->Type];$[T_DT : FormationType];$[T = T_DT DT];

(* -- *)(* Introduction *)(* -- *)[IntroductionType = [dt:Rep](FFobj dt A (T A))->T A];$[intro : {dt:Rep}IntroductionType dt];(* -- *)(* Elimination *)(* -- *)(* F [] _ -> unit *)(* F [rec,L] (a1,a2,..,ak) -> C(a1) * (F L (a2,...,ak)) *)(* F [nonrec,L] (a1,a2,..,ak) -> F L (a2,..,an) *)[C:(T A)->Type];[IndHyps = [l|Sel]list_elim Kind ([l:Sel](Arg A (T A) l)->Type)([_:Arg A (T A) noargs]unit)(Kind_elim([a:Kind]{l:Sel}((Arg A (T A) l)->Type)->(Arg A (T A) (cons a l))->Type)([l:Sel][y:(Arg A (T A) l)->Type][arg:Arg A (T A) (cons rec l)](prod (C (Fst arg)) (y (Snd arg))))([l:Sel][y:(Arg A (T A) l)->Type][arg:Arg A (T A) (cons nonrec l)](y (Snd arg))))l];(* IndSteps: yields product of induction steps for each constructor *)(* F [] _ --> unit *)(* F [l1,l2,...,ln] (c1,c2,...,cn) --> *)(* IndStep1 * (F [l2,...,ln] (c2,...,cn)) *)(* where IndStep1 := {a:Arg A (T A) l1}(IndHyps a)->C (c1 a) *)[IndSteps = [DT|Rep]list_elim Sel ([DT:Rep](IntroductionType DT)->Type)([_:empty->(T A)]unit)([l:Sel][DT:Rep][y:(IntroductionType DT)->Type][intro:IntroductionType (cons l DT)][intro1 = compose intro (injectl l DT A (T A))][intro2 = compose intro (injectr l DT A (T A))](prod ({a:Arg A (T A) l}(IndHyps a)->C (intro1 a))(y intro2)))DT];[EliminationType ={DT|Rep}(IndSteps (intro DT))->{x:T A}(C x)];

$[elim : EliminationType];(* -- *)(* Equality rules *)(* -- *)(* F [] _ -> void *)(* F [rec,L] (a1,a2,..,ak) -> ((elim fcts a1), F L (a2,...,ak)) *)(* F [nonrec,L] (a1,a2,..,ak) -> F L (a2,..,an) *)[RecCalls = [DT|Rep][fcts:IndSteps (intro DT)][l|Sel]list_elim Kind ([l:Sel]{a:Arg A (T A) l}(IndHyps a))([_:Arg A (T A) noargs]void)(Kind_elim([arg:Kind]{l:Sel}({a:Arg A (T A) l}(IndHyps a))->{a:Arg A (T A) (cons arg l)}(IndHyps a))([l:Sel][y:{a:Arg A (T A) l}(IndHyps a)][arg:Arg A (T A) (cons rec l)]Pair (elim fcts (Fst arg))(y (Snd arg)))([l:Sel][y:{a:Arg A (T A) l}(IndHyps a)][arg:Arg A (T A) (cons nonrec l)](y (Snd arg))))l];(* F [] _ _ --> true *)(* F [l1,l2,...,ln] (intro1,intro2,...,intron) (f1,f2,...,fn) --> *)(* eq1 /\ (F [l2,...,ln] (intro2,...,intron) (f2,...,fn)) *)(* where eq1 := (elim (f2,...,fn) (intro1 a)) *)(* == (f1 a (RecCalls (f1,f2,...,fn) a)) *)[Equalities = {DT|Rep}{fcts:IndSteps (intro DT)}list_elim Sel([DT:Rep]{intro:IntroductionType DT}(IndSteps intro)->Prop)([_:empty->T A][_:unit]trueProp)([l:Sel][DT:Rep][y:{intro:IntroductionType DT}(IndSteps intro)->Prop][intro:IntroductionType (cons l DT)][intro1 = compose intro (injectl l DT A (T A))][intro2 = compose intro (injectr l DT A (T A))][fs:IndSteps intro](and ({a:Arg A (T A) l}(Eq (elim fcts (intro1 a))((Fst fs) a (RecCalls fcts a))))(y intro2 (Snd fs))))DT (intro DT) fcts];$[eqs : Equalities];Discharge A;This article was processed using the LATEX macro package with LLNCS style

