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12,20, 21]. A tactic is a function written in a procedural meta-language (mostlysome version of ML) that splits a goal into a set of subgoals, and provides ajusti�cation to ensure soundness of each tactic invocation. This reduction stepcorresponds to backwards application of rules in the sense that the given goalmay be inferred by basic rules from the subgoals. Tactics and strategies built fromthem do not have to be proved correct since a safety kernel of the basic tacticmechanism assures that these proof search procedures may fail but will neverproduce incorrect proofs. In e�ect, each successful tactic invocation is expandedinto a proof of the original goal from the proofs of all computed subgoals, usingthe primitive inference rules of the underlying logic.It has been observed in the past, however, that tactics may not be the mostappropriate technique for constructing proofs of many facts that are express-ible as meta-level statements [1, 3, 4, 16]. An example may help to illustrate this.Consider proving the equality of two terms that contain some associative commu-tative operator. A tactic that solves such a task must chain together appropriateinstances of lemmas and rules. Using the analogy of tactic invocation with appli-cation of a meta-lemma, a tactic re-computes a proof object in terms of primitiverules for every instance of this meta-lemma, instead of taking the natural ap-proach of simply instantiating its proof. This results in sometimes rather messyconstruction of tactics and obliges the tactic writer always to concern himselfwith generating proofs in terms of basic inference rules; this can increase theintellectual e�ort involved in constructing theorem-proving procedures. More-over, all programming knowledge is implicitly contained in the tactic code. Thiscomplicates maintenance and modi�cation of deductive systems based on thetactics approach; furthermore, even though the user of a tactic may know, or beable to verify, that a given tactic will construct a correct proof of a given goal,the implementation must still execute the tactic and verify the result. Finally,it may be hard to achieve the e�ciency required to complete large veri�cationsat reasonable cost using the Lcf approach [6].An alternative to purely procedural tactics is to encode theorem-provingmethods as veri�able meta-functions in a self-referential system. Such a systemis able to refer to (parts of) itself; it consists of a base system, the so-called objectlevel, an internal representation of (parts of) itself, the meta level, and a reec-tion mechanism that expresses the relationship between the object level and itscorresponding meta-level encoding. In such a framework it is possible to makeformal statements about the behavior of meta-functions and verify their correct-ness. The main advantage of this approach lies in the fact that meta-theoreticresults, once proven, can be used without further justi�cation. Consider againthe associative-commutative example mentioned above. A natural approach isto view the left-hand and right-hand sides of an equation as trees and to checkwhether their fringes are permutations of each other.There are basically two di�erent paradigms of encoding theorem-proving ca-pabilities as veri�able meta-functions. Computational reection uses an inter-preter to associate meta-level representations with the values they denote [8,15,23]. In this approach meta-level representations are used to make the syntactic2



structures of object-level entities amenable to inspection and manipulation. Con-sequently, computational reection frameworks do not permit statements aboutprovability and the existence of proofs. The other approach can be termed de-ductive reection. The idea here is to encode a meta-level provability predicate,say Pr , for a certain subset of the object-level theory. This predicate Pr is usedto reduce the provability of a goal � to the provability of Pr(0�0); here, 0�0 is themeta-level representation of the object-level entity �. In a deductive reectionsystem the transitions between the meta-level and the object level are establishedby deductive reection rules. These rules can usually be shown to be admissiblein the object-level calculus by proving the correctness and completeness of themeta-level encoding, and, consequently, the extended reective system is a con-servative extension of the base-level system. While such a conservative approachcan not give a reection principle in the logicians' sense,1 it allows a single sys-tem to simulate a large amount of meta-reasoning and gives the assurance thatthe resulting system remains consistent.Sound extension by means of a self-referential system has several pragmaticadvantages over tactics. First, theorem-proving procedures are ordinary pro-grams of the object language that examine and manipulate representations ofobject-language expressions. Second, veri�ed meta-programs do not have to dealexplicitly with justi�cations. Instead, the procedures are justi�ed by separatecorrectness arguments. Correctness is established once and for all and its proof\reused" every time the procedure is called. In contrast to Lcf tactics, proofsare not re-computed but merely instantiated. This is especially important, sinceformal proofs of interesting developments in both mathematics and computerscience tend to be rather large objects. Last but not least, for the very samereasons as for any other piece of software, formalized proof procedures permitbuilding up and modifying libraries in a controlled and mathematical way, andformalized and (mechanically) proved properties of the procedures help in un-derstanding their e�ects.Despite these apparent advantages of veri�ed meta-programs over tactics,reective systems have had almost no impact on the design of theorem provingsystems and sound extension by means of reection is not yet ready to push backthe boundaries of what is feasible in mechanized theorem proving [14]. Thereare two main reasons for this failure. First, although the underlying techniquesof reection needed to guarantee sound extension are well understood it is atowering (and rather thankless) task to build a reective system: starting froma small kernel system enriched with some notion of reection, a plethora ofveri�ed proof procedures must be added in the bootstrapping process in orderto provide a useful initial system. Second, the practicality of reective systemsrelies heavily on a notion of fast execution of the encoded proof procedures,since the basic idea of reection is to replace deduction at the object level bymeta-level computation. Unfortunately, many existing theorem proving systems1 The logicians' use of reection is a way of extending theories by adding axiomsand rules which are not derivable in a conservative extension of the system underconsideration [17, 25]. 3



| likeHol, Coq, Lego, Pvs, all of which are based on some sort of type theory| do not support e�cient evaluation, although their underlying calculi clearlyinclude the notions of evaluation and normalization. Consequently, a successfulreective system can be built only by taking the \programming" part of theoremproving systems serious and treating it as full-edged programming language.The purpose of this paper is to demonstrate by examples that existing theo-rem provers can be extended to provide a useful and practical notion of reectionin order to soundly extend theorem proving capabilities. Our starting point isthe Pvs system. We �rst extend the implementation of this system by an e�-cient evaluation mechanism to get Lisp-like speed of function evaluation. Thisextended system forms a suitable basis for verifying formalized proof proceduresand applying them in the proof process. Proof procedures work on representa-tions of a|rather small|part of the underlying logic and correctness thereof isexpressed at the object level using a computational reection function. Typically,showing correctness of such a meta function involves showing that the functionis equality-preserving or that the target expression is a re�nement of the sourceexpression. We distinguish three phases of applying formalized proof functions.In the rei�cation phase, Pvs strategies are used to compute representations ofsome parts of the current proof goal; the subsequent normalization and reectionphases rely exclusively on evaluation. We exemplify this process with a detaileddescription of the encoding of cancellation in commutative monoids and applica-tions of the resulting proof procedure. In a similar manner, the kernel of a BDDpackage has been encoded as a meta function that can be used as a decisionprocedure for propositional logic.The remainder of the paper is structured as follows. Section 2 provides aninformal introduction to the Pvs system. The implementation of an evaluationmechanism for functional expressions of PVS is described in Sect. 3. Section 4discusses in detail the encoding, veri�cation, and application of a proof procedurefor cancelling in Abelian groups, while Sect. 5 gives a tour through our encodingsof a BDD package. Section 6 closes with a comparison to related work and �nalremarks.2 Formal BackgroundThe Pvs system combines an expressive speci�cation language with an inter-active proof checker; see [19] for an overview. This section provides a brief de-scription of the Pvs language and prover, and introduces some of the conceptsneeded in this paper. More details can be found in [11].The Pvs speci�cation language builds on classical typed higher-order logicwith the usual base types, bool, nat, int, among others, the function type con-structor [D!R], and the product type constructor [A,B]. The type system ofPvs is augmented with dependent types and abstract data types. In Pvs, predi-cates over some type A are, as usual, boolean-valued functions on A, and pred[A]is an abbreviation for the function type [A!bool]. A distinctive feature of thePvs speci�cation language are predicate subtypes: the subtype fx:D | P(x)g4



consists of exactly those elements of type D satisfying predicate P. The expres-sion (P) is an abbreviation for the predicate subtype fx:D | P(x)g. Predicatesubtypes are used for explicitly constraining domains and ranges of operations ina speci�cation and for de�ning partial functions. In general, type-checking withpredicate subtypes is undecidable; the type-checker generates proof obligations,so-called type correctness conditions (TCCs), if satisfaction of the restrictingpredicate cannot immediately be derived. A large number of TCCs are dis-charged by specialized proof strategies; a Pvs expression is not considered to befully type-checked until all generated TCCs have been proved. Pvs speci�cationsare packaged as theories that can be parametric in types and constants.Consider, for example, the theory alist in 1 for implementing associationlists.2 This theory is parameterized with respect to two nonempty types D andR and de�nes an abstract datatype maybe with two constructors yes and no.1alist [D,R : TYPE+] : THEORYBEGINmaybe : DATATYPEBEGINyes(arg:R) : yes?no : no?END maybealist : TYPE = [D! maybe]v : VAR D; c : VAR R; a : VAR alistempty : alist = �v: noupdate(a,v,c) : alist = a WITH [v := yes(c)]insert(a,v,c) : alist =CASES a(v) OFyes(y) : a,no : update(a,v,c)ENDCASESEND alistFurthermore, alist is de�ned to be the type of functions with domain D andcodomain maybe, the clause v : VAR D declares the type of variable v to be D, theexpression a WITH [v := yes(c)] denotes the update of function a at positionv with value yes(c), and the insert operation is de�ned through a simple casesplit such that an alist is updated at position v unless a binding for v alreadyexists.A theory can use the de�nitions and theorems of another theory by importingit. Parameterized theories can be imported in either of two ways: as an instanceof the theory by providing actual values for the formal parameters, or uninstan-tiated. In the latter case, all possible instantiations of the imported theory may2 To increase the readability of PVS speci�cations the syntax has liberally been mod-i�ed by replacing some ASCII codings with a more familiar mathematical notation.5



be used, and ambiguities can be resolved by quali�cation. A built-in prelude andloadable libraries provide standard speci�cations and proved facts for a largenumber of theories.Proofs in Pvs are presented in a sequent-calculus style. The atomic com-mands of the Pvs prover include induction, quanti�er instantiation, conditionalrewriting, simpli�cation using arithmetic and equality decision procedures andtype information, and propositional simpli�cation.Pvs has an Lcf-like strategylanguage for combining inference steps into more powerful proof strategies. Thestrategy combinator (then <strat-list>), for example, successively applies alist of strategies, while (spread <strat> <strat-list>) applies the strategy<strat> to the current goal and then pairs the strategies in <strat-list> withthe subgoals. Furthermore, the strategy language includes the constructs if forbranching and let for binding variables in the body of a strategy to the resultsof Lisp computations. The most comprehensive strategies manage to generatemany proofs fully automatically.3 E�cient EvaluationA subset of the Pvs speci�cation language can be considered as an executable,functional programming language; it includes all kinds of operations on expres-sions of basic types, several forms of conditionals (IF, CASES, COND, TABLE), totalrecursive functions (by means of measure recursion), and homomorphic function-als [27] on abstract datatypes. Although the Pvs prover provides basic strategieslike beta|which is based on an (ine�cient) implementation of a substitutioncalculus|for executing these functional programs, it has been observed manytimes that e�cient evaluation has the potential of speeding up and automatingmany proofs, e.g. simulation proofs. For this reason we have extended Pvs toconsiderably improve on the speed of computing normal forms. Hereby, we usethe idea of inverse evaluation by Berger and Schwichtenberg [5] and compute anormal form for a Pvs expression in three successive steps: �rst, an expressionis translated into the corresponding Lisp program, second, the Lisp program isexecuted using Lisp's evaluation function eval , and, �nally, the result of Lispevaluation is translated back to a corresponding Pvs expression. In this way,we obtain Lisp-like execution speed for normalizing Pvs expressions, and wemay readily use Lisp compilers to produce e�cient machine code for Pvs func-tions. In addition to normal programming languages constructs, the evaluatoralso handles uninterpreted constant and function symbols; conditions involvinguninterpreted symbols may be decided by calling the Pvs prover; these features,however, are not used in the sequel. For the purpose of this paper it su�cesto presuppose an e�cient symbolic evaluator for normalizing Pvs expressionthat faithfully implements the reduction relation of the underlying Pvs logic(including abstract datatypes); technical details can be found in [22].As interface to the e�cient evaluator described above, we have extended thePvs prover with a new basic strategy (NORM). This strategy takes as argument aPvs expression e and replaces it with its corresponding normalized expression.6



4 Cancellation in Commutative MonoidsCancellation in the particular structure (Z;+; 0) has already been consideredin the context of Computational Logic [7] by Boyer and Moore [8]. Theydevelop a meta function cancel that reduces, for example, the equation(a + i) + (b + k) = j + (k + (i + x ))to a + b = j + xThe main step in the cancel algorithm is to compute the fringes of both sides ofthe source equation, to delete all common terms, and to compute the simpli�edtarget equation by means of a meaning function that associates syntactic repre-sentations of equations with an equation. Boyer and Moore's cancel function isrestricted to the particular structure (Z;+; 0), but the abstraction mechanismsof Pvs permit generalizing their development to arbitrary commutativemonoidssatisfying the left cancellation property.The development of the cancel function is carried out in a generic theorycancel (see 2 ) that takes the components of a commutative monoid (A; � ; e) asarguments. Here, � is a binary operator on A and e is the identity; the semanticconstraints on the theory parameters are stated in the assumption part of thetheory. 2cancel [A:TYPE, �:[A,A! A], e:A] : THEORYBEGINASSUMINGA: ASSUMPTION associative?(�)C: ASSUMPTION commutative?(�)I: ASSUMPTION left_identity?(� )(e)L: ASSUMPTION 8(x,y,z:A): x � y = x �z ) y = zENDASSUMINGThe �rst step is to de�ne types trm and equality (see 3 ) for representingterms built up from the binary operator � and equations, respectively. These(meta-level) representations simply make the internal structure of equations onterms of type A explicit and permit inspecting and manipulating the structureof equalities on expressions of type A. 3vars: TYPE = nat % Infinite supply of meta variablestrm : DATATYPEBEGINmk_neutral : neutral?mk_var(name : vars) : var?mk_app(left,right : trm) : app?END trmequality : TYPE = [# lhs, rhs : trm #]7



In the next step, we encode denotation functions for computing object-levelterms from corresponding representations of types equality and trm. Thesefunctions require, besides a representation, a context that associates elements oftype vars with terms of the object level. Here, a context c of a term t is rep-resented as a function of type alist: TYPE = [vars!A], with the additionalrequirement that all variables occurring in t also occur in c. 4x : VAR vars; c : VAR alist; v : VAR A;t : VAR trm; eq : VAR equality;contains_all_vars?(t)(c) : bool =8x: occurs?(x,t) ) 9v: c(x) = yes(v)TrmContext(t) : TYPE = (contains_all_vars?(t))contains_all_vars?(eq)(c) : bool = % Note the use of overloading herecontains_all_vars?(lhs(eq))(c)^ contains_all_vars?(rhs(eq))(c)EqContext(eq) : TYPE = (contains_all_vars?(eq))Now it is a simple matter to de�ne the (overloaded) functions [[t,c ]] and [[eq,c ]]to compute denotations of representations of terms and equations, respectively,with respect to a context c. 5[[ ]](t:trm,c:TrmContext(t)) : RECURSIVE A = % ReflectionCASES t OFmk_neutral : e,mk_var(x) : arg(c(x)),mk_app(t1,t2) : [[t1,c ]] � [[t2,c ]]ENDCASES MEASURE t BY �[[ ]](eq:equality,c:EqContext(eq)) : bool =[[lhs(eq),c]] = [[rhs(eq),c]]Recall that cancellation works by computing fringes from terms. These fringescan be represented conveniently by bags. We omit here the realization of bagsin terms of lists. In the following, we use b1 [b2 to denote the union of twobags, :r : for the di�erence and :\ : for the intersection of bags; the de�nitionsof the functions are omitted. The functions fringe and tree in 6 are simpleconversions between terms and bags. 8



6IMPORTING bags[vars]fringe(t:trm) : RECURSIVE Bag =CASES t OFmk_neutral : null,mk_var(x) : cons(x,null),mk_app(t1,t2) : fringe(t1)[ fringe(t2)ENDCASES MEASURE t BY �tree(b:Bag) : RECURSIVE trm =CASES b OFnull : mk_neutral,cons(x,l) : mk_app(mk_var(x),tree(l))ENDCASES MEASURE b BY �Now we have collected all the ingredients to encode the cancel function in 7 .Cancellation works by computing two bags of argument terms of � from theleft hand side and the right hand side of the equality under consideration. Now,common terms are cancelled in both bags, simpli�ed terms are computed fromthese bags, and the target equality is formed from these simpli�ed terms. 7cancel(eq:equality) : equality =LET b1 = fringe(lhs(eq)),b2 = fringe(rhs(eq)),common = b1 \ b2,new_lhs = b1 rcommon,new_rhs = b2 rcommonIN (# lhs := tree(new_lhs), rhs := tree(new_rhs) #)Theorem preserves eq in 8 states that the function cancel preserves equality,i.e. the denotations of some source equality eq and the corresponding targetequality cancel(eq) are equivalent. 8preserves_eq: THEOREM8(eq:equality,c:EqContext(eq)): [[eq,c ]] = [[cancel(eq),c]]END cancelThe proof of the correctness theorem follows closely the one describedby Boyer and Moore [8]. The main step is accomplished using lemmameaning difference in 9 , which essentially states that splitting a term intotwo arbitrary parts preserves the denotation. 9meaning_difference : LEMMA8(b1,b2:Bag, c:TrmContext(tree(b2))):subbag?(b1,b2) ) [[ tree(b2),c ]] = [[tree(b1),c ]] � [[ tree(b2rb1),c ]]Theorem preserves eq is used to de�ne the strategy cancel in Fig. 1. Thisstrategy takes three strings typ, op, and e, selects the formula fml of the cur-rent proof sequent (line 3), and type checks the argument strings (lines 4 and9



5). If these operations are successful and fml is indeed an equality (line 6) thenthe call to function quote-eqn (see Appendix A) yields a representation repfor fml of type equality and an association list for all argument terms of theoperator op1 in fml (lines 7{9). This information is used to instantiate theo-rem preserves eq (line 10), followed by a call to the normalization strategyNORM (see Sect. 3) and term rewriting with this normalized equality. Finally,the newly introduced equation is hidden from the current sequent (lines 11-13).The PVS prover generates a type correctness condition for the instantiation ofpreserves eq, since the association list computed by quote-eqnmust be a con-text for rep. This TCC, however, is easily proved by unfolding the de�nitionsinvolved (lines 14 and 15).1: (defstep cancel (typ op e &optional (fnum 1))2: (let ((sforms (s-forms (current-goal *ps*)))3: (fml (formula (car (select-seq sforms (list fnum)))))4: (op1 (typecheck (pc-parse op 'expr)))5: (e1 (typecheck (pc-parse e 'expr))))6: (if (not (equality? fml)) (skip)7: (let ((rep-alist (quote-eqn fml op1 e1))8: (rep (first rep-alist))9: (alist (second rep-alist)))10: (spread (lemma "preserves_eq" :subst ("c" alist "eq" rep))11: ((then (NORM -1)12: (replace -1)13: (hide -1))14: (then (auto-rewrite "update" "insert" ...)15: (reduce))))))) ...)Fig. 1. De�ned strategy for cancellation.Consider, for example, simpli�cation of the following proof goal, where f is someuninterpreted function, by means of the cancellation strategy.|-------f1g x + (f(y) + z) = (z + f(u)) + (z + f(y))Applying the strategy (cancel "real" "+" "0") yields the simpli�ed sequent|-------f1g x = f(u) + ztogether with four TCCs corresponding to the assumptions on the parametersof theory cancel (see 2 ) instantiated with the actual parameters real, +, and0. One way to avoid repetitive generation of identical TCCs when applying thecancel strategy is to import an instance of the cancel theory|e.g. IMPORTING10



cancel[real, +, 0]. This causes the Pvs type checker to suppress TCCs cor-responding to theory instantiation, since it is able to detect that identical TCCshave already been generated; in those cases, calls to the cancel strategy yieldexactly one subgoal, namely the simpli�ed equation.If the basic strategy NORM has been implemented correctly, the strategycancel is \correct by construction" since it obeys the Pvs prover interface; inparticular, Lisp functions like quote-eqn can not alter soundness of the systemas long as they do not update internal prover structures. The major di�erencebetween Pvs strategies and Lcf-like tactics is that in Pvs there is no safety ker-nel to guarantee that some de�ned strategy conforms to the speci�ed interface.35 Ordered Binary Decision DiagramsOrdered Binary Decision Diagrams (OBDDs) represent Boolean functions in aform that is both canonical and compact for many practical cases. They havefound widespread use in CAD applications such as formal veri�cation, logic syn-thesis, and test generation, since OBDDs are manipulated by e�cient graph al-gorithms. Here, we encode OBDDs together with a core library of veri�ed OBDDmanipulations in Pvs and use these functions as a veri�ed decision procedurefor propositional logic. Our OBDD implementation follows the description in [2].An OBDD is a rooted, directed acyclic graph with one or two terminal nodeslabeled 0 and 1 of out-degree zero, a set of non-terminal nodes of out-degree twowith one outgoing edge labeled low and the other high, a variable name attachedto each non-terminal node such that on all paths from the root to the terminalnodes these variables respect a given linear order. Furthermore, no non-terminalnode has identical 0 and 1-successor.OBDDs may be represented by a function tab that maps node indices tonodes (see 10 ) and satis�es the additional properties concerning variable or-dering and reduction of common successors as mentioned above. The �rst twoentries in the OBDD table are reserved for the terminal nodes 0 and 1, whereasthe remaining indices point to non-terminal nodes. The latter are elements oftype Node comprising triples of variable names (encoded as numbers with theordering on natural numbers) and the two successor nodes. Technically, the func-tion tab is de�ned as the inverse of a function lookup, which computes for everynode a unique node index by a twofold application of Cantor's diagonalizationtechnique. Since lookup is strictly monotonically increasing in all of its argu-ments the corresponding graph is assured to be acyclic.3 It is straightforward, however, to write such a checker.11



10bdd : THEORYBEGINname : TYPE = natindex : TYPE = natnodeindex : TYPE = upfrom(2)Node : TYPE = [# variable: name, low: index, high: index #]l,h,i : VAR index; n : VAR nodeindex; v : VAR name;pairing(l,h) : index = ((l+h)*(l+h+1))/2 + llookup(v,l,h) : nodeindex = 2 + pairing(pairing(v,l),h)tab(n) : Node =LET T = inverse(lookup)(n) IN(# variable:=PROJ_1(T), low:=PROJ_2(T), high:= PROJ_3(T) #)leaf?(i) : bool = i < 2rank(i) : nat = IF leaf?(i) THEN 0 ELSE 1+variable(tab(i)) ENDIFordered?(i) : RECURSIVE bool =IF leaf?(i) THEN TRUEELSE LET t = tab(i) IN(leaf?(low(t)) _ variable(t) > variable(tab(low(t))))^ (leaf?(high(t)) _ variable(t) > variable(tab(high(t))))^ ordered?(low(t)) ^ ordered?(high(t))ENDIF MEASURE rank(i)reduced?(i:(ordered?)) : RECURSIVE bool =IF leaf?(i) THEN TRUEELSE low(tab(i)) 6=high(tab(i))^ reduced?(low(tab(i))) ^ reduced?(high(tab(i)))ENDIF MEASURE rank(i)OBDD : TYPE = (reduced?)Given an environment � of type [name!bool] for associating variable nameswith some boolean expression, one can easily de�ne the meaning [[b ]](�) of anOBDD b by recursively computing the corresponding if-then-else normal form.11[[ ]](b:OBDD)(�:[name! bool]): RECURSIVE bool =IF b = 0 THEN FALSEELSIF b = 1 THEN TRUEELSIF �(variable(tab(b)))THEN [[high(tab(b))]](�)ELSE [[low(tab(b)) ]](�)ENDIF MEASURE rank(b)We have encoded in Pvs a number of fundamental functions for building upOBDDs. The apply function (see [9, 2]), for example, combines two source12



OBDDs into a target OBDD according to the binary Boolean operation � ; thisfact is expressed and formally veri�ed in theorem apply correct. 12� : VAR [bool, bool -> bool]; b,l,h : VAR OBDDdecr?(v)(b) : bool = leaf?(b) _ v > variable(tab(b))makenode(v,(l,h:(decr?(v)))): fb | rank(l)� rank(b)^ rank(h)�rank(b)g= IF l = h THEN l ELSE lookup(v,l,h) ENDIFapply(�,l,h) : RECURSIVE fb | rank(b)�rank(l)_ rank(b)� rank(h)g =IF leaf?(l)^ leaf?(h) THENbool2bit(bit2bool(l)�bit2bool(h))ELSIF leaf?(l)^:leaf?(h) THENmakenode(variable(tab(h)),apply(�,l,low(tab(h))), apply(� ,l,high(tab(h))))ELSIF :leaf?(l)^ leaf?(h) THENmakenode(variable(tab(l)),apply(�,low(tab(l)),h), apply(� ,high(tab(l)),h))ELSIF variable(tab(l)) = variable(tab(h)) THENmakenode(variable(tab(l)),apply(�,low(tab(l)),low(tab(h))),apply(�,high(tab(l)),high(tab(h))))ELSIF variable(tab(l)) < variable(tab(h)) THENmakenode(variable(tab(h)),apply(� ,l,low(tab(h))), apply(�,l,high(tab(h))))ELSE makenode(variable(tab(l)),apply(� ,low(tab(l)),h), apply(�,high(tab(l)),h))ENDIF MEASURE rank(l) + rank(h)apply_correct : THEOREM[[apply(� ,l,h) ]](�) = [[l ]](�) � [[ h ]](�)END bddThe OBDD encodings can be used to construct a veri�ed|and reasonablye�cient|procedure for deciding validity (or unsatis�ability) of some proposi-tional formula p by means of computational reection. Since the overall struc-ture is a straightforward variant of the application of cancellation in Sect. 4,we restrict ourselves to a rough outline of this procedure; details of the Pvsde�nitions can be found in Appendix B.First, a specialized tactic computes a syntactic representation rep of p to-gether with an environment � for associating variable names with the argumentsof the Boolean operators in p such that p = [[rep ]](�). The meaning [[rep ]](�) ofrepresentation rep (with respect to �) is computed by recursing on rep. Second,compute an OBDD build(rep) by recursively applying the OBDD constructorapply. Theorem apply correct in 12 is used to prove the correctness of thisprocedure: 13



[[ rep ]](�) = [[build(rep)]](�)Third, depending on whether the original formula p is valid or unsatis�able, theevaluation of the right hand side of the equation above yields TRUE or FALSE,respectively. In all other cases one has the choice of replacing p with an equivalentif-then-else normal form or leaving p unchanged.It is not hard to see how this procedure can be expressed|as a variant of thede�nition of the cancellation strategy in Sect. 4|as a de�ned strategy bddprop.We have applied this strategy to numerous examples. Figure 2, for example,states the run times4 for deciding various pigeon hole formulas (with n holesand n +1 pigeons). These numbers indicate that our veri�ed decision procedureis e�cient enough to be used for a number of problems that occur in practice.n 1 2 3 4 5 6 7 8 9 10 11 12sec. 1.48 7.83 23.73 20.62 39.84 68.59 154.93 151.81 184.09 293.57 418.18 489.49Fig. 2. Deciding pigeon hole formulas6 ConclusionsThe main thesis of this paper is that current theorem provers like Pvs canreadily be extended to provide a reasonably e�cient and practical notion of re-ection in order to soundly extend theorem proving capabilities. To substantiatethis claim, we have extended the Pvs system by veri�ed proof procedures|suchas cancellation of equations and a decision procedure based on OBDDs|anddemonstrated how to apply these procedures through (Pvs) tactics and compu-tational reection. More precisely, the proof procedures are functions encodedin the underlying logic that work on representations of parts of this logic it-self. Functional proof procedures are applied by sequencing a number of Pvsstrategies to compute a representation from the current proof goal, to computethe normal form of the proof procedure applied to this representation, and tocompute a corresponding simpli�ed term by means of computational reection.The practicality of such an extension depends heavily on e�cient normalizationof functional expressions.The overall architecture of computational reection is essentially a re-castingof computational reection as described in [8]. Our mechanism, however, is muchmore exible|and therefore more widely applicable|in that we can abstractmeta theorems with respect to classes of structures. Moreover, our approachallows for de�ning di�erent representations, lifting of terms/formulas to these4 Run times on a Sparc Ultra-II as reported by Pvs. Disturbances in the expectedmonotonicity are due to garbage collection.14
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A Auxiliary Functions for Cancel Strategy(defun argument1 (app) (first (exprs (argument app))))(defun argument2 (app) (second (exprs (argument app))))(defun quote-eqn (eqn op e &key (modinst ""))"Compute a representation together with an association list for aequality."(multiple-value-bind (rep1 trms1)(quote-trm (argument1 eqn) op e :modinst modinst)(multiple-value-bind (rep2 trms2)(quote-trm (argument2 eqn) op e :trms trms1 :modinst modinst)(let* ((rep(format nil "(# lhs := ~a, rhs := ~a #):~a.equality"rep1 rep2 modinst))(trms (union trms1 trms2 :test #'tc-eq))(alist (generate-alist (reverse trms) :modinst modinst)))(list rep alist)))))(defun quote-trm (trm op e &key trms (modinst ""))"Compute a representation together with an association list forargument terms of an equation."(cond ((tc-eq trm e)(values (format nil "~a.mk_neutral" modinst) trms))((and (application? trm) (tc-eq (operator trm) op))(let ((arg1 (argument1 trm))(arg2 (argument2 trm)))(multiple-value-bind (rep1 trms1)(quote-trm arg1 op e :trms trms :modinst modinst)(multiple-value-bind (rep2 trms2)(quote-trm arg2 op e :trms trms1 :modinst modinst)(let ((rep (format nil "~a.mk_app(~a,~a)"modinst rep1 rep2)))(values rep trms2))))))(t (let* ((new-trms (adjoin trm trms :test #'tc-eq))(pos (position trm (reverse new-trms) :test #'tc-eq))(rep (format nil "~a.mk_var(~a)" modinst pos)))(values rep new-trms)))))(defun generate-alist (l &key (acc "empty") (count 0) (modinst ""))"Compute an association list for the list of terms t1,...,tnof the form (insert(...insert(insert(empty, t1, 0), t2, 1),...))."(if (null l) acc(let ((newacc (format nil "~a.insert(~a,~a,~a)"modinst acc count (car l))))(generate-alist (cdr l) :acc newacc :count (1+ count):modinst modinst))))17



B Auxiliary De�nitions for BDD PackageDatatype for representing Boolean expressions: 13BExpr : DATATYPEBEGINmk_true : true?mk_false : false?mk_var(i : name) : variable?mk_not(arg : BExpr) : negation?mk_and(left,right : BExpr) : conjunction?mk_or(left,right : BExpr) : disjunction?mk_implies(left,right : BExpr) : implication?END BExprThe meaning of representation rep with respect to an environment �: 14[[ ]](rep:BExpr)(�:[name! bool]) : RECURSIVE bool =CASES rep OFmk_false : FALSE,mk_true : TRUE,mk_var(x) : �(x),mk_not(v) : :[[ v ]](�),mk_and(v,w) : [[v ]](�) ^ [[w ]](�),mk_or(v,w) : [[v ]](�) _ [[w ]](�),mk_implies(v,w) : [[v ]](�) ) [[w ]](�)ENDCASES MEASURE rep BY �Function build computes an OBDD for a represention rep by recursively ap-plying the OBDD constructor apply. 15build(rep:BExpr): RECURSIVE OBDD =CASES rep OFmk_false : 0,mk_true : 1,mk_var(v) : lookup(v,0,1),mk_not(v) : apply(�x,y: :x, build(v), 0),mk_and(v,w) : apply(^ , build(v), build(w)),mk_or(v,w) : apply(_ , build(v), build(w)),mk_implies(v,w) : apply(), build(v), build(w)),ENDCASES MEASURE rep BY �
18


