
Presented at the 7th IFIP International Working Conferenceon Dependable Computing for Critical
Applications (DCCA-7), San Jose, CA, January 1999. Published inDependable Computing and
Fault-Tolerant Systems, Vol. 12, C. B. Weinstock and J. Rushby, eds., pp. 207–226, IEEE Computer
Society.

Formal Verification for Time-Triggered Clock Synchronizat ion�
Holger Pfeifer, Detlef Schwier, Friedrich W. von Henke

Universität Ulm
Fakultät für Informatik

D-89069 Ulmfpfeifer,schwier,vhenkeg@informatik.uni-ulm.de
Abstract

Distributed dependable real-time systems crucially depend on fault-
tolerant clock synchronization. This paper reports on the formal anal-
ysis of the clock synchronization service provided as an integral feature
by the Time-Triggered Protocol (TTP), a communication protocol par-
ticularly suitable for safety-critical control applications, such as in au-
tomotive “by-wire” systems. We describe the formal model extracted
from the TTP specification and its formal verification, usingthe PVS
system. Verification of the central clock synchronization properties is
achieved by linking the TTP model of the synchronization algorithm to
a generic derivation of the properties from abstract assumptions, es-
sentially establishing the TTP algorithm as a concrete instance of the
generic one by verifying that it satisfies the abstract assumptions. We
also show how the TTP algorithm provides the clock synchronization
that is required by a previously proposed general frameworkfor verify-
ing time-triggered algorithms.

1 Introduction

Distributed dependable real-time systems crucially depend on fault-tolerant clock
synchronization. This is particularly true in distributedarchitectures in which pro-
cesses (or nodes) perform their actions according to a pre-determined, static sched-
ule, i.e. triggered by the progress of time. Such “time-triggered architectures” are
commonly proposed or used in safety-critical applications, such as automotive con-
trol functions [5, 7]. Obviously, clock synchronization isa central element of a�This work has been partially supported by the European Commission under the ESPRIT OMI
project 23396 “Time-Triggered Architecture (TTA)”. c1999 IEEE. Personal use of
this material is permitted. However, permission to reprintor republish this material for advertising
or promotional purposes or for creating new collective works for resale or redistribution to servers
or lists, or to reuse any copyrighted component of this work in other works must be obtained from
the IEEE.

2 Pfeifer, Schwier, von Henke

time-triggered architecture for it to function properly: it is essential that the clocks
of all processes be kept sufficiently close together and thatthe synchronization be
able to tolerate faults to a limited extent.

The main purpose of this paper is to present a formal analysisof the clock syn-
chronization algorithm embedded in a specific time-triggered context, the “Time-
Triggered Protocol” (TTP) [8, 9]. TTP is the core of the communication level of
the Time-Triggered Architecture, an architecture that hasbeen developed and eval-
uated in two recent European projects: “Time-Triggered Architecture” (Esprit OMI
program) and “X-by-Wire” (Brite EuRam program). The Time-Triggered Archi-
tecture is intended to be employed in connection with devices controlling safety-
critical electronic systems without mechanical backup, so-called “by-wire”systems,
e. g. for steering, braking, or suspension control [16]. Hence, high trust must be
placed in its correct functioning. It has been argued that the kind of reliability re-
quired in such situations cannot be achieved without a careful formal analysis of
the mechanisms and algorithms involved [2].

In the Time-Triggered Protocol, several distinct services, such as clock synchro-
nization, group membership or redundancy management, are integrated. Among
these services, clock synchronization is the most basic since for achieving the re-
quired real-time properties the other services rely on its providing a time basis com-
mon to all processors. It is for this reason that clock synchronization has been cho-
sen as the starting point for a formal analysis of TTP. The different services provided
by TTP are so tightly integrated that for the formal analysisit is first necessary to ex-
tract a clock synchronization algorithm from the integrated protocol by abstracting
from those features that are irrelevant for synchronization. Furthermore, the exist-
ing description of TTP [8] is “structured English” that has to undergo a process of
formalization to obtain a formal specification. The resulting formal model can then
be subjected to a rigorous mathematical analysis. Distributed fault-tolerant algo-
rithms like those for clock synchronization are inherentlydifficult to reason about.
However, it has been observed (first by F. Schneider [17]) that the correctness ar-
guments, i. e. the verification of the essential properties,for many synchronization
algorithms are quite similar and can be derived from rather general assumptions.
In our verification of TTP clock synchronization we make use of this observation
and of our own formalization of the generic derivation in PVS[18]. However, the
existing PVS model could not directly be used for TTP, since the synchronization
algorithm of TTP differs from other algorithms in various ways: First, there are no
special synchronization messages that provide the readingof a node’s clock to other
nodes; instead, the delay in the arrival of incoming messages is used to estimate the
value of the sender’s clock. Second, TTP provides a means to collect timing infor-
mation only from selected nodes; this feature is intended for ignoring clock values
of nodes that are known to have oscillators of inferior quality. Finally, the estimated
readings of only four clocks are used for the calculation of acorrection term of a
node’s clock, even if the cluster consists of more than four nodes. Because of these
peculiarities of TTP the generic PVS model for verifying clock synchronization al-
gorithms had to be generalized. The main effort for proving the correctness of the

Formal Verification for Time-Triggered Clock Synchronization 3

TTP synchronization algorithm is then to establish a mapping from the specification
of the TTP algorithm to the notions that are used in the generic verification. The
formal development has been carried out using the PVS system[13]; in this way,
we have obtained a complete and mechanically checked formalverification of the
TTP algorithm.

To put our development into a larger context, we also link it to previous work by
J. Rushby (using PVS) on a general framework for verifying time-triggered algo-
rithms; specifically, we show how the TTP algorithm providesthe clock synchro-
nization that is required by that framework. The link is facilitated by our structuring
of specifications in such a manner that they “fit” the framework seamlessly. This
is similar to the demonstration by Di Vito and Butler [3] thatthe treatment of the
interactive convergence algorithm presented in [15] satisfies the synchronization
requirements of the Reliable Computing Platform.

The remainder of this paper is structured as follows. The next sections give an
overview of the Time-Triggered Protocol to the extent needed for this paper and
describe the extraction of the clock synchronization algorithm. The formal verifi-
cation presented in Section 4 consists of two parts: the firstpart summarizes the
generic arguments, the assumptions on which they are based,and the adaptation of
the generic model required for TTP; in the second part, we show, by way of exam-
ple, how our formal model of TTP clock synchronization satisfies the assumptions.
A subsequent section discusses the embedding into the verification framework for
time-triggered algorithms. The concluding section summarizes the presented work
and gives an outlook of ongoing and planned extensions.

2 Clock synchronization in the Time-Triggered Protocol

The distinguishing characteristic of time-triggered systems is that all system ac-
tivities are initiated by the progress of time. From an abstract point of view, the
TTP protocol operates cyclically. Each node is supplied with a clock and a static
schedule, themessage descriptor list (MEDL). The schedule determines when cer-
tain actions have to be performed, in particular when messages of a certain type are
to be sent by a particular node. The message descriptor list contains an entry which
determines at which clock time a particular slot begins.

The MEDL contains global information common to all nodes in the cluster about
the communication structure, such as the duration of a givenslot or the identity
of the sending node. As the intended system behavior is thus known to all nodes,
important information can be obtained indirectly from the messages. For example,
explicit acknowledgments need not be sent since a receivingnode can determine
that a message is missing immediately after the anticipatedarrival time has passed.
Similarly, from the successful reception of a message is a sufficient condition for
the sending node to be considered active.

The nodes communicate via a replicated broadcast bus. Access to this bus
is determined by a time-division multiple access (TDMA) schema which is pre-
compiled into the schedule. Every node thus owns certain slots, in which it is

4 Pfeifer, Schwier, von Henke

allowed to send messages on the bus. A complete cycle during which every node
has had access to the bus once is called aTDMA round. After a TDMA round is
completed, the same temporal access pattern is repeated again. The length of the
message descriptor list reflects the number of different TDMA rounds and deter-
mines the duration of the so-calledcluster cyclewhich, as the name suggests, is
repeated over and over again.

In each slot, one of the nodes of a cluster sends a frame on eachof the two chan-
nels of the bus, whereas the other nodes listen on the bus for incoming messages
for a certain period of time, thereceive window. According to certain aspects of
the received message, such as content, arrival time, etc., each node then changes its
internal state at some point in time before the next slot begins. Each slot is con-
ceptually divided into two phases: during the first, thecommunication phase, the
current sender is broadcasting a message via the bus; in the second, in thecomputa-
tion phase, each node changes its internal state depending on the current state and
the received message. In TTP, these phases roughly correspond, respectively, to the
receive window, the time frame within which nodes expect messages to arrive, and
to the inter-frame gap, during which is silence on the bus.

Obviously, the clocks of the nodes must be synchronized tightly enough for them
to agree on the current slot and to scan the bus at appropriatetimes for messages
to arrive. To prevent a faulty node from speaking out of turn,the bus interface is
controlled by a “bus guardian” that has independent knowledge and gives access
to the bus only at appropriate times. Each node is supplied with a physical clock
that is typically implemented by a discrete counter. The counter is incremented
periodically, triggered by a crystal oscillator. As these oscillators do not resonate
with a perfectly constant frequency, the clocks drift apartfrom real time. It is the
task of clock synchronization algorithms to repeatedly compute an adjustment of a
node’s physical clock in order to keep it in agreement with the other nodes’ clocks.
The adjusted physical clock is what is used by a node during operation and it is
commonly called a node’slocal clock.

The general way clock synchronization algorithms operate is to gather estimates
of the readings of other nodes’ clocks to estimate an adjustment for the local clock.
Since every node knows beforehand at which time certain messages will be sent the
difference between the time a message is expected to be received by a node and the
actual arrival time can be used to calculate the deviation between the sender’s and
the receiver’s clock. In this way, no special synchronization messages are needed in
TTP. The time measurements are stored on a push-down stack ofdepth four with the
most recent one on top. Thus, older values get discarded after a while. In general,
there are more than four nodes in a cluster and hence not everynode contributes
to the calculation of a new correction term for a node’s localclock. This approach
is feasible under the hypothesis that at most one of the values on the stack may be
faulty in some sense, i. e. does not represent a proper clock reading.

TTP allows messages from nodes with clocks of minor quality to be excluded
from the calculation of adjustments in order to improve the precision of the syn-
chronization. This is accomplished by selecting the messages according to aSYF

Formal Verification for Time-Triggered Clock Synchronization 5

flag (forsynchronization frame) in the message descriptor list. If this flag is not set
in the MEDL for the current slot, the obtained time difference value is not stored on
the stack.

In some slots, after the communication, the adjustment termis calculated from
the time values on the stack. The slots in which this is to occur are marked in the
message descriptor list by a special flag namedCS(for clock synchronization). TTP
uses the Fault-Tolerant Average Algorithm (FTA) [10] to calculate the adjustment:
The largest and the smallest value are discarded and the average of the remaining
two is used as the new adjustment term.

To summarize, the TTP clock synchronization algorithm thatis executed by each
node individually can informally be described as follows: In every slot, perform the
following steps:

1. Determine the difference between expected and observed arrival time for the
incoming message.

2. If a valid message has been received and the SYF flag is set inthe message
descriptor list for the current slot, then push the measuredtime difference
value onto the stack; otherwise discard it.

3. If the CS flag is set in the message descriptor list for the current slot, calculate
a new correction term using the four values held on the stack and adjust the
local clock accordingly.

Obviously, there are certain constraints on how the SYF and CS flags can be
set in the message descriptor list for the various slots. First of all, the flags must be
equally set in the message descriptor lists of all nodes. Moreover, the SYF flag must
be set frequently enough in order to collect sufficiently many new time difference
values. As the TTP algorithm is designed to tolerate one arbitrary (Byzantine) fault
in every TDMA round, there must be at least four slots in everyTDMA round with
the SYF flag set.

3 Formal model for the TTP synchronization algorithm

This section describes a formal specification of the TTP clock synchronization
algorithm that has been developed from an informal description of the TTP proto-
col [8]. Since in TTP many different services are tightly integrated the first step
towards a formal model is to abstract from those features that are not relevant for
clock synchronization in order to make the mechanical analysis feasible at all. In
particular, the internal state of a node which in the TTP implementation comprises
quite a number of registers for various purposes has been reduced in the model
to contain only a few components. More precisely, the internal state of a node is
modeled as a record consisting of the following elements:� a countercurrent slot which records the number of the current slot,

6 Pfeifer, Schwier, von Henke� a stacktimediffsof depth four for storing the time difference values,� two registerscurrent correctionandtotal correctionthat contain the value of
the most recently calculated clock adjustment and the sum ofall adjustments
calculated so far, respectively.

In addition we assume another stack, also of depth four, to record the slots in
which the corresponding entries of the stack of time values have been obtained. This
stack is not a component of the TTP data structure, but it is needed for verifying the
synchronization algorithm.

We use the PVS notation of projection functions to denote thecomponents of
the state record; thustimediffs(s), for example, denotes the stack of time difference
values of states.

Initially, the slot counter, the adjustment values, and theentries of the stack of
time difference values are all set to zero; the stack of slot numbers is initialized with
negative values in order to distinguish them from proper slot numbers; the latter are
represented by natural numbers. The functioninitialstatemaps every node to its
initial state.

Usually two views of time are distinguished: real time is given by some external
frame of reference while clock time is a node’s local approximation provided by
the physical clock. Real time is taken as ranging over the real numbers, and integer
values are used to model clock time. We adopt the convention of using lower-case
variables, such ast or ti

p to denote real-time entities whereas clock-time quantities
will be denoted by upper-case identifiers. In our formalization the physical clock
of a nodep is modeled by a functionPCp which maps real time to clock time; thus,
PCp(t) denotes the reading ofp’s physical clock at real timet. The rate at which a
physical clock may drift apart from real time is assumed to bebounded by a small
positive quantity.

The reading of the local clock of a nodep in some given states at real timet is
obtained by adding the adjustmentadjs to the reading of the node’s physical clock
PC.

adjs = current correction(s) + total correction(s)
LCs

p(t) = PCp(t) + adjs

In order to describe the state of a node at particular clock times we introduce a
function schedule(r) which denotes the clock time at which a given slotr starts.
The schedule is not directly available in TTP, but there is anentry for the duration
of each slotr in the message descriptor list; this is formally captured bythe func-
tion duration. Given a clock time constantsystemstart timewhich is assumed to
initially show up on every node’s local clock, it is a simple matter to defineschedule
by recursively summing up the duration of the slots:

schedule(r) = (
systemstart time if r = 0
schedule(r � 1) + duration(r � 1) if r > 0

Formal Verification for Time-Triggered Clock Synchronization 7

The state of a nodep at a certain clock timeT is given by a functionttss (for
time-triggered system state). The definitions involvingttssare adapted from work
by Rushby [14]. By the start of the first slot,p is in its initial state:

ttss(p)(schedule(0)) = initialstate(p)
Let commduration(r) denote the duration of the communication phase of a slot

r, during which a nodep waits for a message to arrive. Within the communication
phase the internal state ofp remains unchanged:

ttss(p)(T) = ttss(p)(schedule(r))
for schedule(r) � T � schedule(r) + commduration(r)

At some point during the computation phase nodep is changing its internal state
depending on its current state and the message it has received. This behavior is
described by a state transition functiontrans such thattrans(p;m)(s) denotes the
next state of a nodep that has received messagem in states. The state ofp is
unspecified during the computation phase; all that is said isthat by the beginning of
the next slotschedule(r + 1) nodep has changed into a new state.

ttss(p)(schedule(r + 1)) = trans(p; ttin(p;T))(ttss(p)(T))
where T = schedule(r) + commduration(r)

Here, the functionttin(p;T) models the messagep receives at clock timeT. As
the contents of the message is irrelevant as far as clock synchronization is concerned
(only the arrival times of messages are of importance) we need not to be too specific
about the reception of messages and leavettin uninterpreted. For our purpose it is
sufficient to assume a setMessageof messages with a distinguished elementnull to
model the case when a node has not received any message.

So far we have described the general behavior of a node in a time-triggered sys-
tem. What remains is to model the state transitions that a node performs in each slot,
i. e. the state transition functiontrans. This function formalizes the clock synchro-
nization algorithm that has informally been described in the previous section. From
the synchronization point of view there are two sorts of slots: “ordinary” ones in
which only message delays are measured, and slots in which a new correction term
is calculated. Accordingly, the definition of the state transition functiontrans is di-
vided into two parts: the first is described by the functiondo slot(p;m; s) which is
evaluated in every slot and gathers the time difference values and stores them on the
stack. The second function,update(p; s), computes new values for the correction
terms. The latter function is only evaluated if in the current slot the clock synchro-
nization algorithm is to be executed, i. e. when the CS flag is set in the message
descriptor list for the current slot.

trans(p;m)(s) = update(p; do slot(p;m; s))
The deviation of the arrival time of a message is measured by ahardware mech-

anism that is captured by the functionget time diff (p;m; s) in the formal model.

8 Pfeifer, Schwier, von Henke

Time difference values are only stored on the stack if the received message isvalid.
This is the case, e. g. if, among other things, it has been received within the re-
ceive window. In particular,null denoting that no message has been received is
not valid. We use a predicatenew timediff available?(p;m; s) to model whether
a time difference is available for being stored onp’s stack. In this case, function
do slot(p;m; s) pushes the current time difference value onto the stack; in addition,
the current slot number is pushed onto the second stack to record the origin of each
time measurement. Finally, the slot counter is increased.

do slot(p;m; s) = s0, where
current slot(s0) := current slot(s) + 1
and if new timediff available?(p;m; s) then:

timediffs(s0) := push(get time diff (p;m; s); timediffs(s))
slots(s0) := push(current slot(s); slots(s))

If the clock synchronization algorithm is to be executed in the current slot the
function updateupdates the values of the correction terms according to the re-
sult of the fault-tolerant average algorithm. The latter isspecified by the function
calculatecorrectionthat takes the stack of time difference values as its argument.
The predicatesyncround? is true if theCSflag is set in the message descriptor list
for the current slot.

update(p; s) = (
s0 if syncround?(current slot(s))
s otherwise

where current correction(s0) := calculatecorrection(timediffs(s))
total correction(s0) := current correction(s)+ total correction(s)

4 Verification of the TTP synchronization algorithm

Clock synchronization algorithms do not only have the task of keeping the clocks
of a cluster of nodes tightly together. As with distributed algorithms in general,
clock synchronization is usually required to work also in the presence of faults.
Algorithms differ in the number and kind of faults they are designed to tolerate. The
TTP algorithm, for example, is able to handle one asymmetric(Byzantine) fault in
each TDMA round, i. e., as long as at most one fault occurs in any consecutiven
slots, wheren is the length of a TDMA round, the algorithm is able to maintain the
clocks synchronized.

The required fault-tolerance of an algorithm makes it inherently difficult to rea-
son about it, since careful attention has to be drawn to faults and failed components.
Schneider [17] has observed, however, that the correctnessarguments of so-called
averaging algorithmsare quite similar. This class of algorithms is described using
a convergence function. Schneider stated several rather general assumptions on the
convergence function and showed that they are sufficient to prove the correctness
of the algorithm. Subsequently, Shankar used the EHDM system to mechanically

Formal Verification for Time-Triggered Clock Synchronization 9

specification of TTP clock
synchronization algorithm
timediffs(s), LCs

p(t)
abstracted version of TTP
algorithm
LCi

p, ftavg(�), S i
p \ S i

q

generic theory for clock
synchronization
ICi

p, Cfn(�), C

-6
verified clock synchronization

for TTP����	 @@@@R

Figure 1: Structure of the TTP instance of the generic theory for clocksynchroniza-
tion.

verify Schneider’s proof [19, 20] and Miner [12], and more recently Schwier and
v. Henke [18] have further improved the constraints and the organization of the
proof itself, respectively.

By following this general two-step approach to clock synchronization we can
make use of existing PVS formalizations of the generic synchronization proof. This
reduces the reasoning effort required to complete the proofcompared to a verifica-
tion directly from the low-level specification presented inSection 3. The argument
for the correctness of the synchronization is first derived from a set of generic as-
sumptions that are independent from a particular algorithm. The second step is then
to show that the assumptions on which the clock synchronization proof is based are
indeed satisfied by the concrete TTP algorithm.

For the verification of the TTP clock synchronization we utilize a variant of our
own formalization of the generic derivation in PVS [18]. This formalization is sim-
ilar to Miner’s development [12] in EHDM, a predecessor of the PVS verification
system, with the organization of the various PVS theories and proofs being im-
proved to also incorporate non-averaging algorithms. The existing formalization,
however, had to be generalized in order to accommodate it to the particular needs
of TTP. This generalization involved the modification of thesignatures of some of
the parameters, in particular that of the convergence function.

The remainder of this section first briefly summarizes the generic model for ver-
ifying clock synchronization algorithms. It is, however, beyond the scope of this
paper to restate in detail the proof of the synchronization property and all of the
assumptions this proof is based on. Instead, we take one of the central conditions

10 Pfeifer, Schwier, von Henke

on the convergence function as an example and describe the generalization that was
necessary to capture the peculiarities of the TTP algorithm. Then we explain how
the generic model is used to yield a correctness proof for theTTP synchronization
algorithm. The major task in deriving a TTP instance of the generic theory is to
gradually abstract the specification of the synchronization algorithm presented in
the previous section to the level of the generic model and to define an appropriate
translation between those two abstractions. The overall structure of this develop-
ment is depicted in Figure 1.

4.1 Generic model for verifying clock synchronization

A clock synchronization protocol implements avirtual clock1 by repeatedly ad-
justing a node’s physical clock. The task of the synchronization algorithm is to
bound theskew, i. e. the absolute difference between the virtual clock readings of
any two (non-faulty) nodesp andq by a small value� at any timet:j VCp(t)� VCq(t) j � �

This property is commonly calledagreementand relates the readings of two
clocks. The other important property,accuracy, is concerned with the quality of
the approximation to real time by a clock; this is, however, not discussed in this
paper.

The proof of this property is generally accomplished through mathematical in-
duction on the number of synchronization intervals. The induction hypothesis states
that at the beginning of each interval, the skew between any two clocks is bounded
by some value�S < �. Then it is shown that during the next interval, when the clock
readings drift apart, the skew does not exceed�. Finally one has to prove that the
application of the convergence function brings the clocks together again within�S.
The latter step is the harder one, since the former rather imposes certain constraints
on the maximum precision that can be achieved given concretevalues for the drift
rate� of the clocks and the length of a synchronization interval.

To facilitate the induction proof several additional concepts and notations have
proven useful, in particular the abstract notion ofinterval clocks. Instead of repeat-
edly applying adjustments to a local clock one could also think of a node starting
a new clock each time the synchronization algorithm has beenexecuted. These
clocks are indexed by the number of the synchronization interval i and are denoted
ICi

p(t). The value ofp’s interval clock in theith synchronization interval is obtained
by adding theith adjustment to the reading ofp’s physical clock:

ICi
p(t) = PCp(t) + adjip

These interval clocks are then put together to form the node’s virtual clock: in the
ith synchronization intervalp’s virtual clock corresponds to theith interval clock:

VCp(t) = ICi
p(t), for ti

p � t < ti+1
p

1In the description of the TTP algorithm the virtual clocks have been calledlocal clocks.

Formal Verification for Time-Triggered Clock Synchronization 11

Here,ti
p denotes the begin of theith synchronization interval. The way the ad-

justments to a node’s physical clock are computed is abstractly captured by the
concept of aconvergence function Cfn. The convergence function takes an array�i

p

of readings of the clocks of some or all other nodes to calculate a corrected clock
reading forp. The value�i

p(q) is p’s estimate ofq’s clock reading at timeti
p. The

adjustment top’s physical clock is then given by the difference of its physical clock
and the result of the convergence function; initially it is taken to be0:

adj0p = 0
adji+1

p = Cfn(p;�i+1
p)� PCp(ti+1

p)
Schneider has stated several conditions that are necessaryto complete the proof

of the bounded skew property. Some of them, e. g. those concerning the interrela-
tionships among the various quantities introduced, are of minor importance in that
they can be derived more easily for concrete algorithms. Themost important of the
conditions are concerned with the behavior of the convergence function that a clock
synchronization algorithm exploits. The usefulness of these conditions is for the
most part due to its isolation of purely mathematical properties from other concepts
such as, e. g., failed nodes. We consider one of them, calledprecision enhancement,
in more detail.

The propertyprecision enhancementis used to bound the skew between two
clocks immediately after the application of the convergence function. The actual
bound depends on the skews between the value in the array of estimated clock
readings. Given two such arrays and� used by two nodesp andq, respectively,
precision enhancement states that the absolute values of the convergence function
applied byp andq, respectively, do not differ by more than a quantity�(X;Y),
provided that corresponding entries in and� differ by no more thanX and the
values in and�, respectively, fall within a rangeY. Furthermore, it is required
that�(X;Y) < Y for the precision to be truly enhanced.

There is a bound�(X;Y) such that
if for all l 2 C: j (l)� �(l) j � X

and for alll;m2 C :j (l)� (m) j � Y andj �(l)� �(m) j � Y
then j Cfn(p;)� Cfn(q; �) j � �(X;Y)

This formalization of the precision enhancement property is taken from Schwier
and v. Henke’s work [18], except for some minor notational differences. Note the
use of the setC: in previous presentations of this property the convergence function
is assumed to use an array,� say, ofN clock readings, whereN is the number of
nodes. The preconditions of precision enhancement are required to be satisfied by
at leastN�F of these readings, withF being the number of faults to be tolerated by
the algorithm; this set of readings is denoted byC. For the algorithm to tolerate any
arbitrary (Byzantine) fault it is crucial thatN is at least3F+1 (cf. [4]). This ensures
that the sets of readings used in the convergence function bytwo nodes overlap.

12 Pfeifer, Schwier, von Henke

The intended interpretation ofC is the set of readings from non-faulty clocks.
This view is due to the implicit assumption that the array of clock readings is a map-
ping from nodes to clock time values. However, as we show, this is not necessarily
required. Moreover, the TTP algorithm does not allow for such an interpretation of
the array of readings. Of course one could use the senders of the messages that lead
to the time difference values on a node’s stack as the domain of � but the problem
arises with the interpretation of faulty readings: in the TTP protocol the reception
of a valid message at a nodeq is a sufficient condition forq to consider the sender
of the message to be correct. Thus, a new time difference value will only be stored
on the stack if being received from a non-faulty node and communication faults re-
sult in the lack of such a new value. Therefore the problem with the readings is not
that they come from some faulty node but rather that some of them might remain
on the stack for “too long” if they do not get pushed out by new values. Thus these
old values may not represent accurate estimates of the remote clock readings; in
the worst case they haven’t been even gathered in the most recent synchronization
interval.

For the verification of the TTP algorithm it was therefore necessary to generalize
the treatment of the array of clock readings and the actual form of the generic as-
sumptions that involve the convergence function. In particular, we allow the domain
of the array of clock readings to be any set of sizeN with different nodes possibly
having different sets and we defineC to be the intersection of the respective sets of
two nodes that is required to contain at leastN � F elements for any two nodes.

The two other of Schneider’s constraints on the convergencefunction, calledac-
curacy preservationandtranslation invariance, are affected by this generalization,
too. They are, however, omitted in this presentation. For a detailed explanation of
these and the other conditions we refer to Schneider [17] andMiner [12]; a com-
plete generic derivation of the synchronization property from these conditions is
given by Schneider [17] and Shankar [19].

4.2 Deriving abstract properties of the protocol

While the formal model of TTP is describing the clock synchronization algorithm
on the level of slots, the generic verification is based on thenotation of synchroniza-
tion intervals. In order to exploit the generic proof of clock synchronization for the
TTP algorithm the concrete model of TTP has to be abstracted to the level of the
concepts used in the generic model. This means in particularthat the definition
of the local clocks and the calculation of the adjustments needs to be in terms of
interval clocks and a convergence function.

A first step towards this goal is to derive from the slot-baseddescription of local
clocks an interval-based one. Obviously the adjustmentadjs is only changed if the
synchronization algorithm is executed in the current slot.The slots in which this
is to occur are marked in the message descriptor list with theCS flag set. Given a
functionsyncroundsuch thatsyncround(i) yields the number of the slot in which
the CS flag is set for theith time we can define theith adjustment ofp, denoted

Formal Verification for Time-Triggered Clock Synchronization 13

adjip, as the adjustmentadjs given in p’s state after the synchronization algorithm
has been invoked for theith time. Similarly, an interval-based description of the
local clock, denotedLCi

p, is defined:

adjip = adjsp
LCi

p(t) = LCs
p(t)

where s= (
initialstate(p) if i = 0
ttss(p)(schedule(syncround(i)+ 1)) if i > 0

It is easy to see that the following equation holds forLCi
p(t):

LCi
p(t) = PCp(t) + adjip

In previous work on clock synchronization clocks are also sometimes expressed in
terms of functions mapping clock time to real time [11,12,15]. Some of our defini-
tions and proofs are more naturally described this way and wetherefore introduce
the inverse mappingpcp of p’s physical clock;pcp(T) denote the earliest real time
thatp’s physical clock readsT. Thus, we can define an inverse mapping ofLCi

p as

lci
p(T) = pcp(T � adjip)

In order to castLCi
p into the form used in the definition of the interval clock

ICi
p several additional notations have to be introduced. First,we define the real

time instantti
p at whichp invokes the synchronization algorithm for theith time by

means oflci
p. Here, the clock timescheduledsynctime(i) denotes some instant in

the computation phase of theith synchronization slot at which the synchronization
algorithm is executed.

ti
p = (

lc0p(systemstart time) if i = 0
lci�1

p (scheduledsynctime(i)) if i > 0
The next step is to formulate the adjustmentsadjip in terms of a convergence

function. First, the array of clock readings�i
p has to be defined. As described

above, each nodep maintains a stack of time difference values. These values are
used to calculate an estimate of the reading of a remote clockby adding the time
difference to the value ofp’s local clock at timeti

p. As explained in the previous
subsection, the array of readings can not be modeled by a function mapping nodes to
clock readings. Under certain conditions it can even occur that there are two values
from the same sender on the stack2. Therefore it is not the sender of a message but
the slot number in which the message was sent that is the domain of the function�i

p. The slot numbers are recorded separately on a additional stack. Note again
that this stack is only an abstract concept that is used for the verification but is not
implemented in the protocol.

2This might be the case in a cluster of four nodes when a communication fault occurs in the last
TDMA-round before the synchronization.

14 Pfeifer, Schwier, von Henke

We useS i
p to denote the set of slot numbers that are contained onp’s stack in the

ith synchronization interval. Moreover,idxi
p is a mapping that yields for every slot

numbers the index onp’s stack at whichs is stored. The elements of the stack are
denotedstack:0 (top) to stack:3 (bottom). The array of clock readings�i

p is then
modeled as a function mapping the values of the stack of slotsto the corresponding
entries of the stack of time difference values:S i

p = fs : N j s= stack:0_ s= stack:1_ s= stack:2_ s= stack:3g�i
p = � s2 S i

p:LCi�1
p (ti

p) + stack:idxi
p(s)

where stack= timediffs(ttss(p)(schedule(syncround(i)+ 1)))
TTP uses the fault-tolerant average algorithm [10] to calculate the adjustments.

In general, the algorithm takesN clock readings among which up toF readings
might be faulty in some sense. The readings are sorted and theF largest and the
F smallest values are discarded. The algorithm then returns the average of the
remainingN� 2 �F readings as its result. In the case of TTP, each node hasN = 4
readings to calculate the adjustment and it is assumed that at most one of them does
not represent a proper time difference value, i. e.F = 1.

The formalization of the fault-tolerant average algorithmftavgassumes a func-
tion for sorting an array of readings� that can be used to find the second largest and
second smallest element, denoted�(1) and�(2), respectively.

ftavg(�) = ��(1) + �(2)2 �
Cfn(p;�i

p) = ftavg(�i
p)

Now we have collected all the ingredients to define the interval clocksICi
p:

adjip = (0 if i = 0
Cfn(p;�i

p)� PCp(ti
p) if i > 0

ICi
p(t) = PCp(t) + adjip

Despite the various additional notations the interval clocks are nothing but an
abstracted version of the local clocks introduced in the previous section. In fact,
one can prove the following theorem that relates interval clocks to local clocks:

For allp, i, andt: ICi
p(t) = LCi

p(t)
For the rest of this section we briefly sketch the derivation of the precision en-

hancement property described in the previous subsection for the TTP convergence
functionCfn. The formalized proof follows closely the one presented by Miner [12]
for the fault-tolerant midpoint algorithm which coincideswith the TTP algorithm
since only two values are used for averaging. For both of these convergence func-
tions, the bound�(X;Y) is given by�(X;Y) = �

X + Y2 �

Formal Verification for Time-Triggered Clock Synchronization 15

The crucial step in the proof of precision enhancement is to show that for any
two nodes there is at least one good reading in the range of values that are selected
for the computation of the average by those nodes; this is more formally stated in
the following lemma:

Given two arrays of readings� and, there exists al 2 C such that(l) � (1) and �(2) � �(l)
For the TTP instance we defineC as the intersection of the domainsS i

p andS i
q

of the two readings� and, respectively. In order to accomplish the proof of this
lemma,C has to contain at leastN � F elements andN must be greater or equal3F + 1. While the latter constraint is trivially true for TTP asN equals 4 andF
is 1, the former requires more effort to be validated. In the concrete TTP instance
this constraint requires us to show that the intersection ofthe slot numbers on the
stacks of any two nodesp andq contains at least3 elements. The derivation of this
property can informally be described as follows:

Case 1: The messages that are sent in the last four slots immediatelybefore the
invocation of the synchronization algorithm are received correctly by
bothp andq.

Hence, both nodes have the same slot numbers on their stacks and thus
the size ofC is 4.

Case 2: A fault occurred in the last four slots immediately before the invocation
of the synchronization algorithm.

In this case, one of the two nodes has received a valid message, while
the other has not. In TTP it is assumed that at most one such fault oc-
curs in anyn consecutive slots wheren is the length of a TDMA round.
For the TTP algorithm to tolerate a Byzantine faultn must be greater
or equal 4. If less than 4 nodes are left in the network, the Byzantine
requirement is waived for TTP [8]. In the case of a fault one ofthe two
nodes stores a new time difference value and the corresponding slot
number,x say, on its stacks while the other does not. At this time,C
would contain3 elements. The size of the set of common slots can be
further decreased only if another fault occurs before the “bad” valuex is
pushed out of the stack, that is, within the next three slots.This is, how-
ever, contrary to the hypothesis that faults occur at least 4slots apart.
Hence, any two given nodes have at least three time difference values
from the same set of slots on their stacks at the time the synchronization
algorithm is executed.

The formal verification of this property in PVS turned out to be quite challenging,
especially because the additional feature of discarding correct messages from some
nodes according to theSYFflag had to be taken into account, too. This required
some subtle reasoning about the cardinality of various setsof slot numbers. The
complete PVS formalization contains quite a number of the definitions and proved
formulas of which only the fewest can be described in this paper.

16 Pfeifer, Schwier, von Henke

5 Integration into a general framework for time-triggered systems

As in the context of general program verification it is a natural approach to ver-
ify the various aspects of fault-tolerant algorithms at different levels of abstraction
that capture the essence of the property under concern. Following this idea of a
hierarchical treatment J. Rushby has presented a frameworkfor a systematic formal
verification of time-triggered implementations of round-based algorithms [14].

The algorithm is first specified as a functional program – a form that is best suited
for a formal and mechanical analysis since at this level the proofs are generally
accomplished by (more or less) simple inductions. Then the functional program
is transformed into an untimed synchronous system. Although this transformation
can be carried out systematically to some some extent [1,14], the correctness of this
step must be accomplished separately. The last step is then to refine the untimed
system into a time-triggered implementation. The correctness of the latter step can
be verified independently of the algorithm concerned. Thus,provided care is taken
with respect to fault modes, properties and the correctnessof the algorithm directly
carry over from the untimed system to the time-triggered implementation.

For the proof of the correctness of this latter transformation it is required, how-
ever, that the clocks of the nodes in the cluster are synchronized. The state of a
nodep in the untimed synchronous system model after a given numberr of rounds
is specified by a functionrun(r) that applies the state transition functiontrans to
the current state ofp by recursing onr. While in the untimed system all nodes
proceed in discrete steps one has to find a certain instant where the nodes of the
time-triggered system all are in the same round in order to relate the global state
of the time-triggered system to the one of the untimed model.Rushby defines the
global start timeof a roundr, denotedgs(r), to be the real time when the slowest
clock begins this round and proves by establishing a simulation relationship that for
all rounds the states of the two systems correspond:

ttss(p)(VCp(gs(r))) = run(r)(p)
Synchronization of the clocks is now required to ensure thatfaster clocks do not

drift too far that some other node would have already startedits computation phase
(and possibly changed its state).

In order to provide the necessary synchronization we have incorporated our de-
velopment for the TTP clock synchronization into Rushby’s model. This required
some re-organization of the PVS theories, but the overall structure of the proofs
needed not to be changed. Figure 2 shows the structure of the extended model.
The two boxes on the top represent a fault-tolerant algorithm specified as a func-
tional program and expressed in an untimed synchronous system, respectively. The
dashed arrow between these boxes indicates that the relationship between these two
representations of the algorithm must be established by a separate correctness proof.
The box at the bottom stands for the time-triggered implementation of the algorithm
that can generically be shown to be a refinement of the untimedsystem, hence the
use of a solid arrow here.

Formal Verification for Time-Triggered Clock Synchronization 17

functional specification?
untimed synchronous system?

synchronized time-triggered system

generic verification
of clock
synchronization

time-triggered system������	
specification of TTP
algorithm

abstraction using
convergence function? Rushby’s model

basic behavior of
time-triggered
systems

Figure 2: Structure of the general model for verifying time-triggered algorithms
extended by the proof of clock synchronization.

Linking the clock synchronization proof to this general framework gives more
structure to the formal model of time-triggered systems, illustrated by the box at the
bottom: the right-hand side of it represents what is our adaption of Rushby’s PVS
theory. Some of definitions concerning the description of the basic behavior of time-
triggered systems have been separated out to be used in the specification of the clock
synchronization algorithm of TTP, cf. Sect. 3 . The derivation of abstract properties
of the algorithm together with the remaining definitions of Rushby’s model form
the time-triggered implementation of the TTP clock synchronization algorithm that
makes use of the generic derivation to verify the synchronization property.

In this framework it is now possible to specify other services of the TTP protocol
such as group membership on the level of untimed synchronoussystems (cf. [6]).
This more abstract level is justified by the existence of synchronized clocks. Link-

18 Pfeifer, Schwier, von Henke

ing the clock synchronization proof to this level of abstraction thus makes the inter-
relationship between various protocol services more explicit.

6 Conclusion

We have presented the formal verification of the clock synchronization algorithm
that is implemented in the Time-Triggered Protocol (TTP). We have developed a
formal model of TTP in the verification systems PVS. In order to make the me-
chanical analysis feasible the model abstracts from all features that are not relevant
for clock synchronization.

For the actual verification, major emphasis has been given tomaking use of pre-
vious work on formally verifying clock synchronization algorithms. This led to
splitting up the proof into a generic part in which the synchronization property is
proved based on several abstract assumptions, and a TTP-specific part in which the
specification of the algorithm is shown to satisfy those assumptions. This two-step
approach reduced the overall verification effort, even though the existing generic
proofs needed to be adapted and generalized to accommodate the particular needs
of TTP. The specification and verification system PVS that hasbeen used as me-
chanical proof assistant directly supports such an approach: theorems can be based
on assumptions, and when using concrete instances of those theorems PVS serves
as a book keeper that requires proofs for the concrete valuesto satisfy all the as-
sumptions.

For the generic part of the verification with PVS we used a variant of the theory
of Schwier and v. Henke [18] for averaging algorithms; for TTP we had to gener-
alize some of the abstract parameters of the model and related assumptions. In the
course of proving the validity of the generic assumptions for the TTP algorithm a
major task has been to abstract the algorithm specification that has been developed
from the existing informal TTP specification to a level at which it is expressed in
terms of the concepts that are used in the generic proofs. In contrast to previous
work on clock synchronization, the fault hypothesis of TTP would not be captured
appropriately if faults were directly related to certain nodes. Instead of considering
faulty nodes, it was therefore necessary to reason about whether or not a fault oc-
curred in a given slot; this made it quite challenging to verify that at the times of
synchronization all the nodes have readings that originatefrom a sufficiently large
common set of slots.

The verified clock synchronization theory has been linked toRushby’s general
approach to verifying time-triggered algorithms [14]. This framework assumes
clocks to be synchronized; we have shown how the clock synchronization of TTP
can be integrated, within a common PVS context, with the framework to provide the
assumed service. This allows other protocol services to be analyzed at the level of
untimed synchronous systems, rather than at the level of their time-triggered imple-
mentation, without losing the completeness in the chain of formal argumentation.

Future work will be concerned with extending the formal model to include other
aspects and services of TTP. Currently, we are examining howthe correctness proof

Formal Verification for Time-Triggered Clock Synchronization 19

for a group membership protocol similar to the one of TTP [6] can be adapted to
the actual TTP algorithm. Moreover, the general framework could be expanded to
capture initialization and re-integration of nodes.

References

[1] W. Bevier and W. Young. The Design and Proof of Correctness of a Fault-
Tolerant Circuit. In J. Meyer and R. Schlichting, editors,Dependable Comput-
ing for Critical Applications, volume 6 ofDependable Computing and Fault-
Tolerant Systems, pages 243–260. Springer-Verlag, 1991.

[2] R. W. Butler and G. B. Finelli. The Infeasibility of Quantifying the Reliability
of Life-Critical Real-Time Software.IEEE Trans. on Software Engineering,
19(1):3–12, Jan. 1993.

[3] B. Di Vito and R. Butler. Formal Techniques for Synchronized Fault-Tolerant
Systems. InDependable Computing for Critical Applications – 3, Dependable
Computing and Fault-Tolerant Systems, pages 279–306. pringer Verlag, 1992.

[4] D. Dolev, J. Halpern, and H. Strong. On the Possibility and Impossibility of
Achieving Clock Synchronization.Journal of Computer and System Sciences,
36(2):230–250, April 1986.

[5] G. Heiner and T. Thurner. Time-Triggered Architecture for Safety-Related
Distributed Real-Time Systems in Transportation Systems.In Proc. 28th In-
ternational Symposium on Fault-Tolerant Computing (FTCS ’98). IEEE Com-
puter Society, 1998.

[6] S. Katz, P. Lincoln, and J. Rushby. Low-Overhead Time-Triggered Group
Membership. In Marios Mavronicolas and Philippas Tsigas, editors,11th In-
ternational Workshop on Distributed Algorithms (WDAG ’97), volume 1320
of Lecture Notes in Computer Science, pages 155–169. Springer Verlag,
September 1997.

[7] H. Kopetz. The Time-Triggered Approach to Real-Time System Design. In
B. Randell, J.-C. Laprie, H. Kopetz, and B. Littlewood, editors,Predictably
Dependable Computing Systems. Springer, 1995.

[8] H. Kopetz. Specification of the Basic TTP/C Protocol. Internal project docu-
ment, not publicly available, 1998.

[9] H. Kopetz and G. Grünsteidl. TTP – A Time Triggered Protocol for Fault-
Tolerant Real-Time Systems.IEEE Computer, 27(1):14–23, January 1994.

[10] H. Kopetz and W. Ochsenreiter. Clock Synchronization in Distributed Real-
Time Systems.IEEE Trans. Computers, 36(8):933–940, August 1987.

20 Pfeifer, Schwier, von Henke

[11] L. Lamport and P. M. Melliar-Smith. Synchronizing Clocks in the Presence
of Faults.JACM, 32(1):52–78, Jan. 1985.

[12] P. S. Miner. Verification of Fault-Tolerant Clock Synchronization Systems.
NASA Technical Paper 3349, NASA Langley Research Center, January 1994.

[13] S. Owre, J. Rushby, N. Shankar, and F. von Henke. Formal Verification for
Fault-Tolerant Architectures: Prolegomena to the Design of PVS. IEEE Trans.
on Software Engineering, 21(2):107–125, February 1995.

[14] J. Rushby. Systematic Formal Verification for Fault-Tolerant Time-Triggered
Algorithms. In M. Dal Cin, C. Meadows, and W. H. Sanders, editors,Depend-
able Computing for Critical Applications – 6, pages 203–222. IEEE Computer
Society, March 1997.

[15] J. Rushby and F. von Henke. Formal Verification of Algorithms for Critical
Systems.IEEE Trans. on Software Engineering, 19(1):13–23, January 1993.

[16] C. Scheidler, G. Heiner, R. Sasse, E. Fuchs, H. Kopetz, and C. Temple.
Time-Triggered Architecture. In Jean-Yves Roger, Brian Stanford-Smith, and
Paul T. Kidd, editors,Advances in Information Technologies: The Business
Challenge. Proceedings of EMMSEC’97 - European Multimedia, Micropro-
cessor Systems and Electronic Commerce. IOS Press, 1997.

[17] F. B. Schneider. Understanding Protocols for Byzantine Clock Synchroniza-
tion. Technical Report 87-859, Cornell University, Aug. 1987.

[18] D. Schwier and F. W. von Henke. Mechanical Verification of Clock Synchro-
nization Algorithms. In Anders P. Ravn and Hans Rischel, editors, Formal
Techniques in Real-Time and Fault-Tolerant Systems, number 1486 in LNCS,
pages 262–271. Springer, September 1998.

[19] N. Shankar. Mechanical Verification of a Schematic Byzantine Clock Syn-
chronization Algorithm. Technical Report CR-4386, NASA, 1991.

[20] N. Shankar. Mechanical Verification of a Generalized Protocol for Byzan-
tine Fault-Tolerant Clock Synchronization. In J. Vytopil,editor,Formal Tech-
niques in Real-Time and Fault-Tolerant Systems, volume 571 ofLecture Notes
in Computer Science, pages 217–236. Springer-Verlag, January 1992.

