Presented at the 7th IFIP International Working ConferemcBependable Computing for Critical
Applications (DCCA-7), San Jose, CA, January 1999. Pubtish Dependable Computing and
Fault-Tolerant System&ol. 12, C. B. Weinstock and J. Rushby, eds., pp. 207-226EIEomputer
Society.

Formal Verification for Time-Triggered Clock Synchronization*®

Holger Pfeifer, Detlef Schwier, Friedrich W. von Henke
Universitat Ulm
Fakultat fur Informatik
D-89069 Ulm

{pfeifer,schw er, vhenke}@ nf ornati k. uni -ul m de

Abstract

Distributed dependable real-time systems crucially depen fault-
tolerant clock synchronization. This paper reports on tharfal anal-
ysis of the clock synchronization service provided as segnal feature
by the Time-Triggered Protocol (TTP), a communication gcot par-
ticularly suitable for safety-critical control applicains, such as in au-
tomotive “by-wire” systems. We describe the formal modélaeted
from the TTP specification and its formal verification, usthg PVS
system. Verification of the central clock synchronizatiapprties is
achieved by linking the TTP model of the synchronizatioorélgm to
a generic derivation of the properties from abstract asstioms, es-
sentially establishing the TTP algorithm as a concreteanst of the
generic one by verifying that it satisfies the abstract aggions. We
also show how the TTP algorithm provides the clock synchediun
that is required by a previously proposed general frameviorkerify-
ing time-triggered algorithms.

1 Introduction

Distributed dependable real-time systems crucially ddperfault-tolerant clock
synchronization. This is particularly true in distributacthitectures in which pro-
cesses (or nodes) perform their actions according to agierrdined, static sched-
ule, i.e. triggered by the progress of time. Such “timegeiged architectures” are
commonly proposed or used in safety-critical applicatiensh as automotive con-
trol functions [5, 7]. Obviously, clock synchronization ascentral element of a

*This work has been partially supported by the European Casiori under the ESPRIT OMI
project 23396 “Time-Triggered Architecture (TTA)". (©1999 IEEE. Personal use of
this material is permitted. However, permission to repointepublish this material for advertising
or promotional purposes or for creating new collective vedide resale or redistribution to servers
or lists, or to reuse any copyrighted component of this warlther works must be obtained from
the IEEE.

2 Pfeifer, Schwier, von Henke

time-triggered architecture for it to function properlyig essential that the clocks
of all processes be kept sufficiently close together andttigsynchronization be
able to tolerate faults to a limited extent.

The main purpose of this paper is to present a formal anatystse clock syn-
chronization algorithm embedded in a specific time-triggetontext, the “Time-
Triggered Protocol” (TTP) [8,9]. TTP is the core of the conmuation level of
the Time-Triggered Architecture, an architecture thatlieen developed and eval-
uated in two recent European projects: “Time-Triggeredhtecture” (Esprit OMI
program) and “X-by-Wire” (Brite EuRam program). The TimegQered Archi-
tecture is intended to be employed in connection with devaantrolling safety-
critical electronic systems without mechanical backupsaied “by-wire’systems,
e. g. for steering, braking, or suspension control [16]. ¢éerhigh trust must be
placed in its correct functioning. It has been argued thatkihd of reliability re-
quired in such situations cannot be achieved without a chfefmal analysis of
the mechanisms and algorithms involved [2].

In the Time-Triggered Protocol, several distinct servisegh as clock synchro-
nization, group membership or redundancy managementnsegrated. Among
these services, clock synchronization is the most basgedor achieving the re-
guired real-time properties the other services rely onriagigling a time basis com-
mon to all processors. It is for this reason that clock syocization has been cho-
sen as the starting point for a formal analysis of TTP. Thiedsht services provided
by TTP are so tightly integrated that for the formal analytsgsfirst necessary to ex-
tract a clock synchronization algorithm from the integdgpeotocol by abstracting
from those features that are irrelevant for synchroniratleurthermore, the exist-
ing description of TTP [8] is “structured English” that hasundergo a process of
formalization to obtain a formal specification. The reswgtformal model can then
be subjected to a rigorous mathematical analysis. Dig&bfault-tolerant algo-
rithms like those for clock synchronization are inhereulifficult to reason about.
However, it has been observed (first by F. Schneider [17})ttlecorrectness ar-
guments, i. e. the verification of the essential properf@snany synchronization
algorithms are quite similar and can be derived from ratlegregal assumptions.
In our verification of TTP clock synchronization we make u$é¢hos observation
and of our own formalization of the generic derivation in PM8]. However, the
existing PVS model could not directly be used for TTP, sirieegynchronization
algorithm of TTP differs from other algorithms in variousysa First, there are no
special synchronization messages that provide the reaflangode’s clock to other
nodes; instead, the delay in the arrival of incoming messegesed to estimate the
value of the sender’s clock. Second, TTP provides a meardlgcttiming infor-
mation only from selected nodes; this feature is intendedgfworing clock values
of nodes that are known to have oscillators of inferior gyakinally, the estimated
readings of only four clocks are used for the calculation obaection term of a
node’s clock, even if the cluster consists of more than fautes. Because of these
peculiarities of TTP the generic PVS model for verifyingatsynchronization al-
gorithms had to be generalized. The main effort for provimgdorrectness of the

Formal Verification for Time-Triggered Clock Synchronipat 3

TTP synchronization algorithm is then to establish a magfiiom the specification
of the TTP algorithm to the notions that are used in the genarification. The
formal development has been carried out using the PVS sy[4i8nin this way,

we have obtained a complete and mechanically checked farendication of the
TTP algorithm.

To put our development into a larger context, we also link prtevious work by
J. Rushby (using PVS) on a general framework for verifyimgetitriggered algo-
rithms; specifically, we show how the TTP algorithm provides clock synchro-
nization that is required by that framework. The link is faated by our structuring
of specifications in such a manner that they “fit” the framdwsgamlessly. This
is similar to the demonstration by Di Vito and Butler [3] tliae treatment of the
interactive convergence algorithm presented in [15] Basighe synchronization
requirements of the Reliable Computing Platform.

The remainder of this paper is structured as follows. The segtions give an
overview of the Time-Triggered Protocol to the extent neefie this paper and
describe the extraction of the clock synchronization athor. The formal verifi-
cation presented in Section 4 consists of two parts: thegdagt summarizes the
generic arguments, the assumptions on which they are basédhe adaptation of
the generic model required for TTP; in the second part, wevshy way of exam-
ple, how our formal model of TTP clock synchronization dasthe assumptions.
A subsequent section discusses the embedding into theca#iofi framework for
time-triggered algorithms. The concluding section suniresrthe presented work
and gives an outlook of ongoing and planned extensions.

2 Clock synchronization in the Time-Triggered Protocol

The distinguishing characteristic of time-triggered syss$ is that all system ac-
tivities are initiated by the progress of time. From an agtpoint of view, the
TTP protocol operates cyclically. Each node is suppliedhaitclock and a static
schedule, thenessage descriptor list (MEDLJhe schedule determines when cer-
tain actions have to be performed, in particular when messsafja certain type are
to be sent by a particular node. The message descriptoohsains an entry which
determines at which clock time a particular slot begins.

The MEDL contains global information common to all nodedhe tluster about
the communication structure, such as the duration of a giletnor the identity
of the sending node. As the intended system behavior is thowtk to all nodes,
important information can be obtained indirectly from thessages. For example,
explicit acknowledgments need not be sent since a receinaag can determine
that a message is missing immediately after the anticipat@ehl time has passed.
Similarly, from the successful reception of a message isffecmnt condition for
the sending node to be considered active.

The nodes communicate via a replicated broadcast bus. #édoethis bus
is determined by a time-division multiple access (TDMA) esgta which is pre-
compiled into the schedule. Every node thus owns certaits,sio which it is

4 Pfeifer, Schwier, von Henke

allowed to send messages on the bus. A complete cycle duhrdhwevery node
has had access to the bus once is call@dD&A round After a TDMA round is
completed, the same temporal access pattern is repeatied age length of the
message descriptor list reflects the number of different PDfdunds and deter-
mines the duration of the so-calletuster cyclewhich, as the name suggests, is
repeated over and over again.

In each slot, one of the nodes of a cluster sends a frame oroé#odtwo chan-
nels of the bus, whereas the other nodes listen on the busdoming messages
for a certain period of time, theeceive window According to certain aspects of
the received message, such as content, arrival time, ath,r@de then changes its
internal state at some point in time before the next slotrisegEach slot is con-
ceptually divided into two phases: during the first, temmunication phase¢he
current sender is broadcasting a message via the bus; ia¢dbed; in theeomputa-
tion phase each node changes its internal state depending on thentstage and
the received message. In TTP, these phases roughly conetsespectively, to the
receive window, the time frame within which nodes expectsagss to arrive, and
to the inter-frame gap, during which is silence on the bus.

Obviously, the clocks of the nodes must be synchronizedlyigimough for them
to agree on the current slot and to scan the bus at approgirnae for messages
to arrive. To prevent a faulty node from speaking out of tuhe bus interface is
controlled by a “bus guardian” that has independent knogdeaihd gives access
to the bus only at appropriate times. Each node is suppliéa ayhysical clock
that is typically implemented by a discrete counter. Thenteuis incremented
periodically, triggered by a crystal oscillator. As theseitlators do not resonate
with a perfectly constant frequency, the clocks drift afeoin real time. It is the
task of clock synchronization algorithms to repeatedly pata an adjustment of a
node’s physical clock in order to keep it in agreement witihakther nodes’ clocks.
The adjusted physical clock is what is used by a node durirggation and it is
commonly called a nodelscal clock

The general way clock synchronization algorithms operate gather estimates
of the readings of other nodes’ clocks to estimate an adpstihor the local clock.
Since every node knows beforehand at which time certainagesswill be sent the
difference between the time a message is expected to bgedd®i a node and the
actual arrival time can be used to calculate the deviatidwdsen the sender’s and
the receiver’s clock. In this way, no special synchron@atnessages are needed in
TTP. The time measurements are stored on a push-down stdeptbffour with the
most recent one on top. Thus, older values get discardedaaftéile. In general,
there are more than four nodes in a cluster and hence not awely contributes
to the calculation of a new correction term for a node’s latatk. This approach
is feasible under the hypothesis that at most one of the salnghe stack may be
faulty in some sense, i. e. does not represent a proper atackng.

TTP allows messages from nodes with clocks of minor quatitipe excluded
from the calculation of adjustments in order to improve thecjsion of the syn-
chronization. This is accomplished by selecting the messagcording to &YF

Formal Verification for Time-Triggered Clock Synchronipat 5

flag (for synchronization framdn the message descriptor list. If this flag is not set
in the MEDL for the current slot, the obtained time differen@alue is not stored on
the stack.

In some slots, after the communication, the adjustment tercalculated from
the time values on the stack. The slots in which this is to pece marked in the
message descriptor list by a special flag na@8gfor clock synchronization TTP
uses the Fault-Tolerant Average Algorithm (FTA) [10] toatdate the adjustment:
The largest and the smallest value are discarded and thagavef the remaining
two is used as the new adjustment term.

To summarize, the TTP clock synchronization algorithm ihaikecuted by each
node individually can informally be described as followselvery slot, perform the
following steps:

1. Determine the difference between expected and obserxied dme for the
incoming message.

2. If a valid message has been received and the SYF flag is et message
descriptor list for the current slot, then push the meastirad difference
value onto the stack; otherwise discard it.

3. Ifthe CS flag is set in the message descriptor list for theeatislot, calculate
a new correction term using the four values held on the stadkadjust the
local clock accordingly.

Obviously, there are certain constraints on how the SYF a8dl&ys can be
set in the message descriptor list for the various slotst Birall, the flags must be
equally set in the message descriptor lists of all nodes ebhar, the SYF flag must
be set frequently enough in order to collect sufficiently pnaaw time difference
values. As the TTP algorithm is designed to tolerate ondrarlgi(Byzantine) fault
in every TDMA round, there must be at least four slots in eViEMA round with
the SYF flag set.

3 Formal model for the TTP synchronization algorithm

This section describes a formal specification of the TTPkckymchronization
algorithm that has been developed from an informal desoripif the TTP proto-
col [8]. Since in TTP many different services are tightlyeigtated the first step
towards a formal model is to abstract from those featuresateanot relevant for
clock synchronization in order to make the mechanical ansligasible at all. In
particular, the internal state of a node which in the TTP enmntation comprises
quite a number of registers for various purposes has beearceddn the model
to contain only a few components. More precisely, the irdkstate of a node is
modeled as a record consisting of the following elements:

e a countercurrentslotwhich records the number of the current slot,

6 Pfeifer, Schwier, von Henke

e a stackiimediffsof depth four for storing the time difference values,

e two registercurrent correctionandtotal correctionthat contain the value of
the most recently calculated clock adjustment and the suaii afljustments
calculated so far, respectively.

In addition we assume another stack, also of depth four,dordethe slots in
which the corresponding entries of the stack of time valae® bbeen obtained. This
stack is not a component of the TTP data structure, but itesiee for verifying the
synchronization algorithm.

We use the PVS notation of projection functions to denotecttraponents of
the state record; thusnediffgs), for example, denotes the stack of time difference
values of stats.

Initially, the slot counter, the adjustment values, andehgies of the stack of
time difference values are all set to zero; the stack of slatlvers is initialized with
negative values in order to distinguish them from propetrralonbers; the latter are
represented by natural numbers. The funcimtialstate maps every node to its
initial state.

Usually two views of time are distinguished: real time isagivby some external
frame of reference while clock time is a node’s local appmadion provided by
the physical clock. Real time is taken as ranging over thiewgabers, and integer
values are used to model clock time. We adopt the convenfiasing lower-case
variables, such asor t‘p to denote real-time entities whereas clock-time quastitie
will be denoted by upper-case identifiers. In our formal@athe physical clock
of a nodep is modeled by a functioRC, which maps real time to clock time; thus,
PC,(t) denotes the reading pfs physical clock at real time The rate at which a
physical clock may drift apart from real time is assumed tibended by a small
positive quantity.

The reading of the local clock of a nogen some given stats at real timet is
obtained by adding the adjustmeatjs to the reading of the node’s physical clock
PC.

adjy = currentcorrections) + total corrections)
LC3(t) = PGCy(t) + adjs

In order to describe the state of a node at particular clouksiwe introduce a
function schedulér) which denotes the clock time at which a given gdldttarts.
The schedule is not directly available in TTP, but there iginy for the duration
of each slor in the message descriptor list; this is formally capturedhsyfunc-
tion duration Given a clock time constaistystemstart time which is assumed to
initially show up on every node’s local clock, it is a simplatter to defineschedule
by recursively summing up the duration of the slots:

schedulér) = systemstart time if r=0
| schedulér — 1) + durationr — 1) if r >0

Formal Verification for Time-Triggered Clock Synchronipat 7

The state of a nodp at a certain clock timd is given by a functiorttss (for
time-triggered system stgteThe definitions involvingtssare adapted from work
by Rushby [14]. By the start of the first slgtjs in its initial state:

ttsgp) (schedul€0)) = initialstate(p)

Let commduration(r) denote the duration of the communication phase of a slot
r, during which a nod@ waits for a message to arrive. Within the communication
phase the internal state pfemains unchanged:

ttsgp)(T) = ttsqp) (schedulér))
for schedulér) < T < schedulér) + commduration(r)

At some point during the computation phase npd&changing its internal state
depending on its current state and the message it has récelves behavior is
described by a state transition functitans such thatransp, m)(s) denotes the
next state of a nodp that has received messagein states. The state o is
unspecified during the computation phase; all that is salthisby the beginning of
the next sloschedulér + 1) nodep has changed into a new state.

ttsqgp)(schedulér + 1)) = trang(p, ttin(p, T))(ttsp)(T))
where T = schedulér) + commduration(r)

Here, the functiontin(p, T) models the messagereceives at clock tim&. As
the contents of the message is irrelevant as far as clocksynization is concerned
(only the arrival times of messages are of importance) we neeto be too specific
about the reception of messages and leameuninterpreted. For our purpose it is
sufficient to assume a skltessagef messages with a distinguished elemmaunt to
model the case when a node has not received any message.

So far we have described the general behavior of a node ineattiggered sys-
tem. What remains is to model the state transitions that a pedforms in each slot,
I. e. the state transition functidrans. This function formalizes the clock synchro-
nization algorithm that has informally been described aphevious section. From
the synchronization point of view there are two sorts ofssldordinary” ones in
which only message delays are measured, and slots in whieWw aarrection term
is calculated. Accordingly, the definition of the state #i¢ion functiontransis di-
vided into two parts: the first is described by the functitanslot(p, m, s) which is
evaluated in every slot and gathers the time differencesgadind stores them on the
stack. The second functionpdatép, s), computes new values for the correction
terms. The latter function is only evaluated if in the cutrglnt the clock synchro-
nization algorithm is to be executed, i. e. when the CS flagisrsthe message
descriptor list for the current slot.

trang(p, m)(s) = updatép, do_slot(p, m, s))

The deviation of the arrival time of a message is measurediardware mech-
anism that is captured by the functiget.time.diff (p, m, s) in the formal model.

8 Pfeifer, Schwier, von Henke

Time difference values are only stored on the stack if theivecl message i&lid.

This is the case, e. g. if, among other things, it has beenvestavithin the re-
ceive window. In particularnull denoting that no message has been received is
not valid. We use a predicateew timediff_available’(p, m s) to model whether

a time difference is available for being stored @s stack. In this case, function
dao_slot(p, m, s) pushes the current time difference value onto the stacldditian,

the current slot number is pushed onto the second stackaodréwe origin of each
time measurement. Finally, the slot counter is increased.

doslot(p, m,s) = s, where
currentslot(s) := currentslot(s) + 1
and if new.timediff_available’(p, m,s) then:
timedifffs) := pushgettimediff (p, m,s), timediff{s))
slotys) := pushcurrentslot(s), slotys))

If the clock synchronization algorithm is to be executedha turrent slot the
function updateupdates the values of the correction terms according todhe r
sult of the fault-tolerant average algorithm. The lattespecified by the function
calculate correctionthat takes the stack of time difference values as its argtimen
The predicatesyncround is true if theCSflag is set in the message descriptor list
for the current slot.

| ¢ if syncround(currentslot(s))
updatep, s) = { s otherwise
where current.corrections) := calculatecorrectiontimediffgs))
total corrections') := currentcorrection(s)
+ total_correction(s)

4 \ferification of the TTP synchronization algorithm

Clock synchronization algorithms do not only have the td¢eeping the clocks
of a cluster of nodes tightly together. As with distributddasithms in general,
clock synchronization is usually required to work also ie fhresence of faults.
Algorithms differ in the number and kind of faults they arsigmed to tolerate. The
TTP algorithm, for example, is able to handle one asymmé@yzantine) fault in
each TDMA round, i. e., as long as at most one fault occurs yncansecutiven
slots, wheren is the length of a TDMA round, the algorithm is able to maintéie
clocks synchronized.

The required fault-tolerance of an algorithm makes it iehdy difficult to rea-
son about it, since careful attention has to be drawn todauntl failed components.
Schneider [17] has observed, however, that the correcargasnents of so-called
averaging algorithmsare quite similar. This class of algorithms is describeagisi
aconvergence functiorSchneider stated several rather general assumptiongon th
convergence function and showed that they are sufficientdeepthe correctness
of the algorithm. Subsequently, Shankar used the@M system to mechanically

Formal Verification for Time-Triggered Clock Synchronipat 9

verified clock synchronization

for TTP
abstracted version of TTP generic theory for clock
algorithm _ _ » synchronization
LC,, ftavg®), S, N Sy ICy,, Cin(9), C

A

specification of TTP clock
synchronization algorithm
timediffgs), LC3(t)

Figure 1: Structure of the TTP instance of the generic theory for ckyaichroniza-
tion.

verify Schneider’s proof [19, 20] and Miner [12], and moreestly Schwier and
v. Henke [18] have further improved the constraints and tlgamzation of the
proof itself, respectively.

By following this general two-step approach to clock symctization we can
make use of existing PVS formalizations of the generic syomization proof. This
reduces the reasoning effort required to complete the mawipared to a verifica-
tion directly from the low-level specification presentedSection 3. The argument
for the correctness of the synchronization is first derivethfa set of generic as-
sumptions that are independent from a particular algorifiine second step is then
to show that the assumptions on which the clock synchrapizatroof is based are
indeed satisfied by the concrete TTP algorithm.

For the verification of the TTP clock synchronization weigaéla variant of our
own formalization of the generic derivation in PVS [18]. $iormalization is sim-
ilar to Miner’s development [12] in EDM, a predecessor of the PVS verification
system, with the organization of the various PVS theorie$ pnoofs being im-
proved to also incorporate non-averaging algorithms. Tigtiag formalization,
however, had to be generalized in order to accommodate hiet@articular needs
of TTP. This generalization involved the modification of gignatures of some of
the parameters, in particular that of the convergence ifmmct

The remainder of this section first briefly summarizes theegermodel for ver-
ifying clock synchronization algorithms. It is, howevegyond the scope of this
paper to restate in detail the proof of the synchronizati@perty and all of the
assumptions this proof is based on. Instead, we take oneafeihtral conditions

10 Pfeifer, Schwier, von Henke

on the convergence function as an example and describenleeadieation that was
necessary to capture the peculiarities of the TTP algorithhen we explain how
the generic model is used to yield a correctness proof fol iffé synchronization
algorithm. The major task in deriving a TTP instance of thaaye theory is to
gradually abstract the specification of the synchronipasilgorithm presented in
the previous section to the level of the generic model ancefme an appropriate
translation between those two abstractions. The overalttsire of this develop-
ment is depicted in Figure 1.

4.1 Generic model for verifying clock synchronization

A clock synchronization protocol implementwiatual clock! by repeatedly ad-
justing a node’s physical clock. The task of the synchrdiomaalgorithm is to
bound theskew i. e. the absolute difference between the virtual clockliregs of
any two (non-faulty) nodeg andq by a small valué at any timet:

| VG() = VG() [<6

This property is commonly calledgreementand relates the readings of two
clocks. The other important properggccuracy is concerned with the quality of
the approximation to real time by a clock; this is, howevet discussed in this
paper.

The proof of this property is generally accomplished thiongathematical in-
duction on the number of synchronization intervals. Theigtobn hypothesis states
that at the beginning of each interval, the skew betweenwayctocks is bounded
by some valués < 4. Then itis shown that during the next interval, when thekloc
readings drift apart, the skew does not excée&inally one has to prove that the
application of the convergence function brings the clocigether again withins.
The latter step is the harder one, since the former rathewsegpcertain constraints
on the maximum precision that can be achieved given coneedties for the drift
ratep of the clocks and the length of a synchronization interval.

To facilitate the induction proof several additional copiseand notations have
proven useful, in particular the abstract notionrdérval clocks Instead of repeat-
edly applying adjustments to a local clock one could alsokhuf a node starting
a new clock each time the synchronization algorithm has lexecuted. These
clocks are indexed by the number of the synchronizatiomvaté and are denoted
IC})(t). The value of's interval clock in thath synchronization interval is obtained
by adding theth adjustment to the reading p% physical clock:

IC}(t) = PGy(t) + adj,

These interval clocks are then put together to form the modegual clock: in the
ith synchronization intervad’s virtual clock corresponds to théh interval clock:

VG(t) = ICL(1), for t, <t <)t

LIn the description of the TTP algorithm the virtual clocks@&een calletbcal clocks

Formal Verification for Time-Triggered Clock Synchronipat 11

Here,tliD denotes the begin of théh synchronization interval. The way the ad-
justments to a node’s physical clock are computed is alistreaptured by the
concept of a&onvergence function CfiThe convergence function takes an ar@‘:@,y
of readings of the clocks of some or all other nodes to calewdacorrected clock
reading forp. The value@:o(q) is p's estimate ofg’s clock reading at time';). The
adjustment tg's physical clock is then given by the difference of its plogdiclock
and the result of the convergence function; initially itagen to be):

adip = 0
adj,"* = Cin(p,0,"") — PCy(ty™)

Schneider has stated several conditions that are necassamynplete the proof
of the bounded skew property. Some of them, e. g. those coingethe interrela-
tionships among the various quantities introduced, areiobmmportance in that
they can be derived more easily for concrete algorithms.mibst important of the
conditions are concerned with the behavior of the convergé&mction that a clock
synchronization algorithm exploits. The usefulness okéheonditions is for the
most part due to its isolation of purely mathematical prapsifrom other concepts
such as, e. g., failed nodes. We consider one of them, qadésision enhancement
in more detail.

The propertyprecision enhancemend used to bound the skew between two
clocks immediately after the application of the convergefunction. The actual
bound depends on the skews between the value in the arraytimfag=d clock
readings. Given two such arraysand# used by two nodep andq, respectively,
precision enhancement states that the absolute valuege abtivergence function
applied byp andq, respectively, do not differ by more than a quantityX,Y),
provided that corresponding entriesynand @ differ by no more tharX and the
values iny andd, respectively, fall within a rang¥. Furthermore, it is required
thatTI(X,Y) < Y for the precision to be truly enhanced.

There is a boundl(X, Y) such that
if foralll € C:|~(1)—6(1)| <X

and foralll,me C:| y(I) —y(m) | <Y and
[6(1) —0(m) | <Y
then | Cfn(p,) — Cfn(q,) | < II(X,Y)

This formalization of the precision enhancement propertyaken from Schwier
and v. Henke’s work [18], except for some minor notation#fiedences. Note the
use of the se€: in previous presentations of this property the convergéuaoction
is assumed to use an arrdysay, ofN clock readings, wherbl is the number of
nodes. The preconditions of precision enhancement aréreeljo be satisfied by
at leasiN — F of these readings, with being the number of faults to be tolerated by
the algorithm; this set of readings is denotedbyFor the algorithm to tolerate any
arbitrary (Byzantine) fault it is crucial that is at leasBF + 1 (cf. [4]). This ensures
that the sets of readings used in the convergence functitwdyodes overlap.

12 Pfeifer, Schwier, von Henke

The intended interpretation @ is the set of readings from non-faulty clocks.
This view is due to the implicit assumption that the arraylo€tk readings is a map-
ping from nodes to clock time values. However, as we show,ifhmot necessarily
required. Moreover, the TTP algorithm does not allow fortsan interpretation of
the array of readings. Of course one could use the senddrs oféssages that lead
to the time difference values on a node’s stack as the donidrbot the problem
arises with the interpretation of faulty readings: in thePTgrotocol the reception
of a valid message at a nodes a sufficient condition fog to consider the sender
of the message to be correct. Thus, a new time difference waillonly be stored
on the stack if being received from a non-faulty node and camioation faults re-
sult in the lack of such a new value. Therefore the problerh tiie readings is not
that they come from some faulty node but rather that someeshtmight remain
on the stack for “too long” if they do not get pushed out by nalues. Thus these
old values may not represent accurate estimates of the eethatk readings; in
the worst case they haven’t been even gathered in the masttregnchronization
interval.

For the verification of the TTP algorithm it was therefore essary to generalize
the treatment of the array of clock readings and the actual fuf the generic as-
sumptions that involve the convergence function. In palaic we allow the domain
of the array of clock readings to be any set of S\zwvith different nodes possibly
having different sets and we defifeto be the intersection of the respective sets of
two nodes that is required to contain at lddst F elements for any two nodes.

The two other of Schneider’s constraints on the convergamesion, calledac-
curacy preservatioandtranslation invarianceare affected by this generalization,
too. They are, however, omitted in this presentation. Fogtaitbd explanation of
these and the other conditions we refer to Schneider [17]Minér [12]; a com-
plete generic derivation of the synchronization properont these conditions is
given by Schneider [17] and Shankar [19].

4.2 Deriving abstract properties of the protocol

While the formal model of TTP is describing the clock synctization algorithm
on the level of slots, the generic verification is based omttation of synchroniza-
tion intervals. In order to exploit the generic proof of dt®ynchronization for the
TTP algorithm the concrete model of TTP has to be abstraci¢let level of the
concepts used in the generic model. This means in partithiédrthe definition
of the local clocks and the calculation of the adjustmentededo be in terms of
interval clocks and a convergence function.

A first step towards this goal is to derive from the slot-bageskription of local
clocks an interval-based one. Obviously the adjustradjtis only changed if the
synchronization algorithm is executed in the current sldie slots in which this
is to occur are marked in the message descriptor list witlCtBdlag set. Given a
function syncroundsuch thatsyncroundi) yields the number of the slot in which
the CS flag is set for thigh time we can define thigh adjustment op, denoted

Formal Verification for Time-Triggered Clock Synchronipat 13

adj:o, as the adjustmeradis given in p’s state after the synchronization algorithm
has been invoked for thigh time. Similarly, an interval-based description of the
local clock, denotediC‘p, is defined:

adj, = adj
LC,(t) = LCi(t)
where s — { initialstate(p) if i=0
ttsgp) (schedulésyncroundi) + 1)) if i >0

It is easy to see that the following equation holdslf@g(t):
LCy(t) = PGy(t) + adj,

In previous work on clock synchronization clocks are alsmstimes expressed in
terms of functions mapping clock time to real time [11, 13, Eome of our defini-
tions and proofs are more naturally described this way anthexefore introduce
the inverse mappingc, of p's physical clock;pc,(T) denote the earliest real time
thatp’s physical clock read$. Thus, we can define an inverse mappingﬁf) as

Icy(T) = pe(T — adjy)

In order to casLCliD into the form used in the definition of the interval clock
IC,, several additional notations have to be introduced. Fwstdefine the real
time instant, at whichp invokes the synchronization algorithm for tfk time by
means ofc,. Here, the clock timscheduledsynctiméi) denotes some instant in
the computation phase of thih synchronization slot at which the synchronization
algorithm is executed.

i Ic3(systernstart time) if i=0
P~] lc, '(scheduledsynctimgi)) if i>0

The next step is to formulate the adjustmeadﬂp in terms of a convergence
function. First, the array of clock readingy, has to be defined. As described
above, each node maintains a stack of time difference values. These values ar
used to calculate an estimate of the reading of a remote dlp@adding the time
difference to the value gf's local clock at timet}). As explained in the previous
subsection, the array of readings can not be modeled by #dnmapping nodes to
clock readings. Under certain conditions it can even odeafrthere are two values
from the same sender on the stackherefore it is not the sender of a message but
the slot number in which the message was sent that is the davhéhe function
@‘p. The slot numbers are recorded separately on a additionck.stNote again
that this stack is only an abstract concept that is used &véhification but is not
implemented in the protocol.

2This might be the case in a cluster of four nodes when a consatian fault occurs in the last
TDMA-round before the synchronization.

14 Pfeifer, Schwier, von Henke

We useSL to denote the set of slot numbers that are containgusostack in the
ith synchronization interval. Moreovedx, is a mapping that yields for every slot
numbers the index orp’s stack at whictsis stored. The elements of the stack are
denotedstack0 (top) to stack3 (bottom). The array of clock readin@p is then
modeled as a function mapping the values of the stack of &ldke corresponding
entries of the stack of time difference values:

Sip = {s: N | s=stack0 v s = stackl Vs = stack2 v s = stack3}
Op = Ase 8,.LC, () + stackidx(s)
where stack= timediff§ttsgp) (schedulésyncroundi) + 1)))

TTP uses the fault-tolerant average algorithm [10] to dateuthe adjustments.
In general, the algorithm takd$ clock readings among which up t readings
might be faulty in some sense. The readings are sorted arfe lagest and the
F smallest values are discarded. The algorithm then retimasaverage of the
remainingN — 2 x F readings as its result. In the case of TTP, each nodé&lhast
readings to calculate the adjustment and it is assumedtthadst one of them does
not represent a proper time difference value, F e 1.

The formalization of the fault-tolerant average algoritfiavg assumes a func-
tion for sorting an array of readingghat can be used to find the second largest and
second smallest element, denofed andf,), respectively.

ftavg(f) = {7‘%1) ;‘MJ

Cfn(p, ©,) = ftavg©})
Now we have collected all the ingredients to define the iraie(rkocksICL:
0 if i=0
_ Cfn(p, ©}) — PCy(t,) if i>0
IC,(t) = PCy(t) + adj,

adj, =

Despite the various additional notations the interval k$oare nothing but an
abstracted version of the local clocks introduced in theiptes section. In fact,
one can prove the following theorem that relates intenaks to local clocks:

Forallp, i, andt: ICy(t) = LC,(t)

For the rest of this section we briefly sketch the derivatibthe precision en-
hancement property described in the previous subsectiahdol TP convergence
functionCfn. The formalized proof follows closely the one presented liydvi[12]
for the fault-tolerant midpoint algorithm which coincidesth the TTP algorithm
since only two values are used for averaging. For both oftleesvergence func-
tions, the boundI(X, Y) is given by

(X, Y) = {x+ g}

Formal Verification for Time-Triggered Clock Synchronipat 15

The crucial step in the proof of precision enhancement ihtwsthat for any
two nodes there is at least one good reading in the range wév&hat are selected
for the computation of the average by those nodes; this i€ fowmally stated in
the following lemma:

Given two arrays of readingsand-, there exists &< C such that
(1) < vy and b2y < 6(1)

For the TTP instance we defifi@as the intersection of the domai8§ andSiq
of the two reading¥ and~, respectively. In order to accomplish the proof of this
lemma,C has to contain at lea®l — F elements andN must be greater or equal
3F + 1. While the latter constraint is trivially true for TTP &6 equals 4 andr
is 1, the former requires more effort to be validated. In tbecrete TTP instance
this constraint requires us to show that the intersectici@flot numbers on the
stacks of any two nodgsandq contains at least elements. The derivation of this
property can informally be described as follows:

Case 1: The messages that are sent in the last four slots immedia¢édye the
invocation of the synchronization algorithm are receivedectly by
bothp andg.

Hence, both nodes have the same slot numbers on their statkisues
the size ofC is 4.

Case 2: Afault occurred in the last four slots immediately before thvocation
of the synchronization algorithm.

In this case, one of the two nodes has received a valid message
the other has not. In TTP it is assumed that at most one suétofau
curs in anyn consecutive slots whereis the length of a TDMA round.
For the TTP algorithm to tolerate a Byzantine fanlinust be greater
or equal 4. If less than 4 nodes are left in the network, theaBiine
requirement is waived for TTP [8]. In the case of a fault onéheftwo
nodes stores a new time difference value and the correspgprsit
number,x say, on its stacks while the other does not. At this tiQe,
would contain3 elements. The size of the set of common slots can be
further decreased only if another fault occurs before tlael"lvaluex is
pushed out of the stack, that is, within the next three slbhss is, how-
ever, contrary to the hypothesis that faults occur at leado® apart.
Hence, any two given nodes have at least three time differgalues
from the same set of slots on their stacks at the time the sgnization
algorithm is executed.

The formal verification of this property in PVS turned out duite challenging,
especially because the additional feature of discardingcbmessages from some
nodes according to th8YFflag had to be taken into account, too. This required
some subtle reasoning about the cardinality of various &festot numbers. The
complete PVS formalization contains quite a number of tHendi®ns and proved
formulas of which only the fewest can be described in thisepap

16 Pfeifer, Schwier, von Henke

5 Integration into a general framework for time-triggered systems

As in the context of general program verification it is a natapproach to ver-
ify the various aspects of fault-tolerant algorithms atetént levels of abstraction
that capture the essence of the property under concernowkod this idea of a
hierarchical treatment J. Rushby has presented a framdamalsystematic formal
verification of time-triggered implementations of rounalskd algorithms [14].

The algorithm is first specified as a functional program — enfthrat is best suited
for a formal and mechanical analysis since at this level tlo®fg are generally
accomplished by (more or less) simple inductions. Then tinetfonal program
is transformed into an untimed synchronous system. Althdbgg transformation
can be carried out systematically to some some extent [ltHeltorrectness of this
step must be accomplished separately. The last step isdirefirie the untimed
system into a time-triggered implementation. The corress$rof the latter step can
be verified independently of the algorithm concerned. Thusyided care is taken
with respect to fault modes, properties and the correctoiethe algorithm directly
carry over from the untimed system to the time-triggeredi@mentation.

For the proof of the correctness of this latter transfororatt is required, how-
ever, that the clocks of the nodes in the cluster are synctedn The state of a
nodep in the untimed synchronous system model after a given numbierounds
is specified by a functionun(r) that applies the state transition functitvansto
the current state gb by recursing orr. While in the untimed system all nodes
proceed in discrete steps one has to find a certain instamewhe nodes of the
time-triggered system all are in the same round in order laige¢he global state
of the time-triggered system to the one of the untimed moRekhby defines the
global start timeof a roundr, denotedgs(r), to be the real time when the slowest
clock begins this round and proves by establishing a sinoulaglationship that for
all rounds the states of the two systems correspond:

ttsgp) (VCy(gs(r))) = run(r)(p)

Synchronization of the clocks is now required to ensureftster clocks do not
drift too far that some other node would have already statseztbmputation phase
(and possibly changed its state).

In order to provide the necessary synchronization we has@rorated our de-
velopment for the TTP clock synchronization into Rushbysd®l. This required
some re-organization of the PVS theories, but the ovemalcsire of the proofs
needed not to be changed. Figure 2 shows the structure oktaeded model.
The two boxes on the top represent a fault-tolerant algorgpecified as a func-
tional program and expressed in an untimed synchronousrays¢spectively. The
dashed arrow between these boxes indicates that the nsaipobetween these two
representations of the algorithm must be established byaae correctness proof.
The box at the bottom stands for the time-triggered implaatern of the algorithm
that can generically be shown to be a refinement of the untsysttm, hence the
use of a solid arrow here.

Formal Verification for Time-Triggered Clock Synchronipat 17

functional specification

Y

untimed synchronous system

synchronized time-triggered system

time-triggered system

abstraction using Rushby’s model
convergence function

Y

basic behavior of
time-triggered
systems

specification of TTP

generic verification ;
algorithm

of clock
synchronization

Figure 2: Structure of the general model for verifying time-triggér@gorithms
extended by the proof of clock synchronization.

Linking the clock synchronization proof to this generalnfi@vork gives more
structure to the formal model of time-triggered systenhgsitated by the box at the
bottom: the right-hand side of it represents what is our adapf Rushby’s PVS
theory. Some of definitions concerning the description ettasic behavior of time-
triggered systems have been separated out to be used irettiecgtion of the clock
synchronization algorithm of TTP, cf. Sect. 3. The derwatf abstract properties
of the algorithm together with the remaining definitions afdRby’s model form
the time-triggered implementation of the TTP clock syndization algorithm that
makes use of the generic derivation to verify the synchairon property.

In this framework it is now possible to specify other sergioéthe TTP protocol
such as group membership on the level of untimed synchrosysiems (cf. [6]).
This more abstract level is justified by the existence of bymized clocks. Link-

18 Pfeifer, Schwier, von Henke

ing the clock synchronization proof to this level of absti@t thus makes the inter-
relationship between various protocol services more expli

6 Conclusion

We have presented the formal verification of the clock symieization algorithm
that is implemented in the Time-Triggered Protocol (TTPE Wave developed a
formal model of TTP in the verification systems PVS. In ordemntake the me-
chanical analysis feasible the model abstracts from allifea that are not relevant
for clock synchronization.

For the actual verification, major emphasis has been givemaling use of pre-
vious work on formally verifying clock synchronization algthms. This led to
splitting up the proof into a generic part in which the symeheation property is
proved based on several abstract assumptions, and a TTRiespart in which the
specification of the algorithm is shown to satisfy those agsions. This two-step
approach reduced the overall verification effort, even gfiothe existing generic
proofs needed to be adapted and generalized to accommabdatarticular needs
of TTP. The specification and verification system PVS thatbeen used as me-
chanical proof assistant directly supports such an appraheorems can be based
on assumptions, and when using concrete instances of thesems PVS serves
as a book keeper that requires proofs for the concrete vatusatisfy all the as-
sumptions.

For the generic part of the verification with PVS we used aardrof the theory
of Schwier and v. Henke [18] for averaging algorithms; forPTWwe had to gener-
alize some of the abstract parameters of the model and dedagimptions. In the
course of proving the validity of the generic assumptiongiie TTP algorithm a
major task has been to abstract the algorithm specificat@ihtas been developed
from the existing informal TTP specification to a level at @it is expressed in
terms of the concepts that are used in the generic proofsontrast to previous
work on clock synchronization, the fault hypothesis of TTé&wd not be captured
appropriately if faults were directly related to certairdee. Instead of considering
faulty nodes, it was therefore necessary to reason abouhaher not a fault oc-
curred in a given slot; this made it quite challenging to fyetinat at the times of
synchronization all the nodes have readings that origifnate a sufficiently large
common set of slots.

The verified clock synchronization theory has been linke®a@shby’s general
approach to verifying time-triggered algorithms [14]. $Hramework assumes
clocks to be synchronized; we have shown how the clock spmiration of TTP
can be integrated, within a common PVS context, with the éaork to provide the
assumed service. This allows other protocol services tomblyzed at the level of
untimed synchronous systems, rather than at the level wittme-triggered imple-
mentation, without losing the completeness in the chaimoh&l argumentation.

Future work will be concerned with extending the formal middenclude other
aspects and services of TTP. Currently, we are examiningheworrectness proof

Formal Verification for Time-Triggered Clock Synchronipat 19

for a group membership protocol similar to the one of TTP [&) be adapted to
the actual TTP algorithm. Moreover, the general framewadkid be expanded to
capture initialization and re-integration of nodes.

References

[1] W. Bevier and W. Young. The Design and Proof of Correcsénesa Fault-
Tolerant Circuit. In J. Meyer and R. Schlichting, editddgpendable Comput-
ing for Critical Applications volume 6 ofDependable Computing and Fault-
Tolerant Systempages 243-260. Springer-Verlag, 1991.

[2] R. W. Butler and G. B. Finelli. The Infeasibility of Quafyting the Reliability
of Life-Critical Real-Time SoftwarelEEE Trans. on Software Engineering
19(1):3-12, Jan. 1993.

[3] B. Di Vito and R. Butler. Formal Techniques for Synchroed Fault-Tolerant
Systems. IlDependable Computing for Critical Applications ;- I3ependable
Computing and Fault-Tolerant Systems, pages 279-30&gWerlag, 1992.

[4] D. Dolev, J. Halpern, and H. Strong. On the Possibilitg ampossibility of
Achieving Clock Synchronizatiordournal of Computer and System Sciences
36(2):230-250, April 1986.

[5] G. Heiner and T. Thurner. Time-Triggered Architectuoe Safety-Related
Distributed Real-Time Systems in Transportation Systeim$roc. 28th In-
ternational Symposium on Fault-Tolerant Computing (FT@®. IEEE Com-
puter Society, 1998.

[6] S. Katz, P. Lincoln, and J. Rushby. Low-Overhead Tim&dered Group
Membership. In Marios Mavronicolas and Philippas Tsigdgoes, 11th In-
ternational Workshop on Distributed Algorithms (WDAG "9vplume 1320
of Lecture Notes in Computer Sciengeages 155-169. Springer Verlag,
September 1997.

[7] H. Kopetz. The Time-Triggered Approach to Real-Time t8ys Design. In
B. Randell, J.-C. Laprie, H. Kopetz, and B. Littlewood, eds, Predictably
Dependable Computing SysterSpringer, 1995.

[8] H. Kopetz. Specification of the Basic TTP/C Protocol.elmial project docu-
ment, not publicly available, 1998.

[9] H. Kopetz and G. Grunsteidl. TTP — A Time Triggered Pauibfor Fault-
Tolerant Real-Time Systemi#=EE Computer27(1):14—-23, January 1994.

[10] H. Kopetz and W. Ochsenreiter. Clock Synchronizatiomistributed Real-
Time SystemslEEE Trans. Computer$86(8):933-940, August 1987.

20

Pfeifer, Schwier, von Henke

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

L. Lamport and P. M. Melliar-Smith. Synchronizing Chkxcin the Presence
of Faults.JACM, 32(1):52-78, Jan. 1985.

P. S. Miner. Verification of Fault-Tolerant Clock Symohization Systems.
NASA Technical Paper 3349, NASA Langley Research Centayaky 1994.

S. Owre, J. Rushby, N. Shankar, and F. von Henke. Forredfisation for
Fault-Tolerant Architectures: Prolegomena to the Desfdg?Ms. IEEE Trans.
on Software Engineerin@1(2):107-125, February 1995.

J. Rushby. Systematic Formal Verification for Faultéfant Time-Triggered
Algorithms. In M. Dal Cin, C. Meadows, and W. H. Sanders, @ditDepend-
able Computing for Critical Applications — pages 203—222. IEEE Computer
Society, March 1997.

J. Rushby and F. von Henke. Formal Verification of Algfams for Critical
SystemsIEEE Trans. on Software Engineerintf(1):13-23, January 1993.

C. Scheidler, G. Heiner, R. Sasse, E. Fuchs, H. Kopetd, @. Temple.
Time-Triggered Architecture. In Jean-Yves Roger, Briaan&ird-Smith, and
Paul T. Kidd, editorsAdvances in Information Technologies: The Business
Challenge. Proceedings of EMMSEC’97 - European MultimeMeropro-
cessor Systems and Electronic Commel©& Press, 1997.

F. B. Schneider. Understanding Protocols for Byzant@ock Synchroniza-
tion. Technical Report 87-859, Cornell University, Aug8Y9

D. Schwier and F. W. von Henke. Mechanical VerificatidrCtock Synchro-
nization Algorithms. In Anders P. Ravn and Hans Rischelfoegj Formal
Techniques in Real-Time and Fault-Tolerant Systemamber 1486 in LNCS,
pages 262—-271. Springer, September 1998.

N. Shankar. Mechanical Verification of a Schematic Byrge Clock Syn-
chronization Algorithm. Technical Report CR-4386, NASAR91.

N. Shankar. Mechanical Verification of a Generalizedt®col for Byzan-
tine Fault-Tolerant Clock Synchronization. In J. Vytogitlitor,Formal Tech-
niques in Real-Time and Fault-Tolerant Systewatume 571 of_ecture Notes
in Computer Scien¢g@ages 217-236. Springer-Verlag, January 1992.

