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Abstract. This paper deals with formalizations and verifications in type
theory that are abstracted with respect to a class of datatypes; i.e poly-
typic constructions. The main advantage of these developments are that
they can not only be used to define functions in a generic way but also
to formally state polytypic theorems and to synthesize polytypic proof
objects in a formal way. This opens the door to mechanically proving
many useful facts about large classes of datatypes once and for all.

1 Introduction

It is a major challenge to design libraries for theorem proving systems that are
both sufficiently complete and relatively easy to use in a wide range of appli-
cations (see e.g. [6,26]). A library for abstract datatypes, in particular, is an
essential component of every proof development system. The libraries of the
Coq [1] and the LEGO [13] system, for example, include a number of functions,
theorems, and proofs for common datatypes like natural numbers or polymor-
phic lists. In these systems, myriads of mostly trivial developments are carried
out separately for each datatype under consideration. This increases the bulk
of proving effort, reduces clarity, and complicates lemma selection. In contrast,
systems like Pvs [20] or [SABELLE [22] support an infinite number of datatypes
by using meta-level functions to generate many standard developments from
datatype definitions. Pvs simply uses an extension of its implementation to gen-
erate axiomatized theories for datatypes including recursors and induction rules,
while [SABELLE’s datatype extension includes tactics to prove these theorems.
Both the Pvs and the ISABELLE approach usually work well in practice. On the
other hand, meta-level functions must be executed separately for each datatype
under consideration, and construction principles for proofs and programs are



operationalized and hidden in meta-level functions which are encoded in the
implementation language of the proof system.

In this paper we propose techniques for building up library developments
from a core system without resorting to an external meta level. Moreover, proof
objects are constructed explicitly and developments from the library can be used
by simply instantiating higher-order quantifiers. Hereby, we rely on the concept
of polytypic abstraction.

The map functional on the list datatype L illustrates the concept of polytypic
abstraction exceptionally well. Applying this functional to a function f and a
source list [ yields a target list obtained by replacing each element a of | with
the value of f(a), thereby preserving the structure of I. The type of map in a
Hindley-Milner type system, as employed by current functional programming
languages, is abstracted with respect to two type variables A and B:

map: YA,B. (A — B)— L(A) — L(B)

Thus, map is a polymorphic function. The general idea of the map function of
transforming elements while leaving the overall structure untouched, however,
is not restricted to lists and applies equally well to other datatypes. This obser-
vation gives rise to a new notion of polymorphism, viz. polytypy,' for defining
functions uniformly on a class of (parameterized) datatypes T:

map: VT.VA B. (A— B) = T(4) - T(B)

Notice that the notion of polytypy is completely orthogonal to the concept of
polymorphism, since every “instance” of the family of polytypic map-functions
is polymorphic. Many interesting polytypic functions have been identified and
described in the literature [10, 11, 15-17,25,27], and concepts from category
theory have proven especially suitable for expressing polytypic functions and
reasoning about them. In this approach, datatypes are modeled as initial objects
in categories of functor-algebras [14], and polytypic constructions are formulated
using initiality without reference to the underlying structure of datatypes.

The concept of polytypy, however, is not restricted to the definition of poly-
typic functions solely, but applies equally well to other entities of the program
and proof development process like specifications, theorems, or proofs. Consider,
for example, the no confusion theorem. This theorem states that terms built up
from different constructors are different. It is clearly polytypic, since it applies
to all initial datatypes.

In the following, we examine techniques for expressing polytypic abstrac-
tion in type theory. These developments can not only be used to polytypically
define functions but also to formally state polytypic theorems and to interac-
tively develop polytypic proofs using existing proof editors. Thus, formalization
of polytypic abstraction in type theory opens the door to proving many useful
facts about large classes of datatypes once and for all without resorting to an
external meta-language.

! Sheard [25] calls these algorithms type parametric, Meertens [15] calls them generic,
and Jay and Cockett [9] refer to this concept as shape polymorphism.



The paper is structured as follows. The formal setting of type theory is
sketched in Section 2, while Section 3 includes type-theoretic formalizations of
some basic notions from category theory that are needed to specify, in a uniform
way, datatypes as initial objects in categories of functor algebras. Furthermore,
Section 3 contains generalizations of the usual reflection and fusion theorems
for recursors on initial datatypes—as stated, for example, in [2]—to recursors of
dependent type, which correspond to structural induction schemes. These devel-
opments are polytypically abstracted for the semantically characterized class of
initial datatypes. This notion of semantic polytypy, however, is not appropriate
in many cases where inspection of the form of the definition of a datatype is
required. Consequently, in Section 4, we develop the machinery for abstracting
constructions over a certain syntactically specified class of datatypes. Since the
focus is on the generation of polytypic proofs rather than on a general formal-
ization of inductive datatypes in type-theory we restrict ourselves to the class
of parameterized, polynomial (sum-of-products) datatypes in order to keep the
technical overhead low. The main idea is to use representations that make the
internal structure of datatypes explicit, and to compute type-theoretic specifi-
cations for all these datatypes in a uniform way. This approach can be thought
of as a simple form of computational reflection (e.g. [23,29]). Developments that
are abstracted with respect to a syntactically characterized class of datatypes
are called syntactically polytypic in the following. We demonstrate the expres-
siveness of syntactic polytypy with a mechanized proof of the bifunctoriality
property for the class of polynomial datatypes and a polytypic proof of the no
confusion theorem. Finally, Section 5 concludes with some remarks.

The constructions presented in this paper have been developed with the help
of the LEGO [13] system. For the sake of readability we present typeset and edited
versions of the original LEGO terms and we take the freedom to use numerous
syntactic conventions such as infix notation and pattern matching.

2 Preliminaries

Our starting point is the Eztended Calculus of Constructions (ECC ) [12] en-
riched with the usual inductive datatypes. We sketch basic concepts of this type
theory, fix the notation, and discuss the treatment of datatypes in type theory.
More interestingly, we introduce n-ary (co-)products and define functions on
generalized (co-)products by recursing along the structure of the descriptions
of these types. This technique has proven to be essential for the encoding of
syntactic polytypy in Section 4.

The type constructor ITz : A. B(z) is interpreted as the collection of depen-
dent functions with domain A and codomain B(a) with a the argument of the
function at hand. Whenever variable 2 does not occur free in B(z), A — B is
used as shorthand for ITz : A. B(z); as usual, the type constructor — associates
to the right. A-abstraction is of the form (Az : A. M) and abstractions like
(Az : A,y : B. M) are shorthand for iterated abstractions (Az : A. Ay : B. M).
Function application associates to the left and is written as M (N), as juxtapo-



sition M N, or even in subscript notation My. Types of the form Xz : A. B(x)
comprise dependent pairs (.,.), and 7!, 72 denote the projections on the first and
second position, respectively. Sometimes, we decorate projections with subscripts
as in W}47B to indicate the source type X'z : A. B(z). Finally, types are collected
in yet other types Prop and Type; (i € N). These universes are closed under the
type-forming operations and form a fully cumulative hierarchy [12]. Although es-
sential to the formalization of many programming concepts, universes are tedious
to use in practice, for one is required to make specific choices of universe levels.
For this reason, we apply—carefully, without introducing inconsistencies—the
typical ambiguity convention [7] and omit subscripts 7 of type universes Type;.

Definitions like ¢(z; : A1,...2, : Ap) : B = M are used to introduce a
name c for the term M that is (iteratively) abstracted with respect to z; through
Zn- The typing : B is optional and specifies the type of the term M. Consider,
for example, the definition of the polymorphic identity function I and (infix)
function composition o.

I(A]| Type, x:A): A == xz

0o (A,B|Type, f:B—>C, g:A—=>B): A= C == Xz:A f(g9(z))

Bindings of the form z | A are used to indicate parameters that can be omitted in
function application. Systems like LEGO are able to infer the hidden arguments
in applications like f o g automatically (see [13]).

Using the principle of propositions-as-types, the dependent product type ITz :
A. B(z) is interpreted as logical universal-quantification and if M (a) is of type
B(a) for all a : A then Az : A. M(z) is interpreted as a proof term for the
formula ITz : A. B(z). It is possible to encode in ECC all the usual logical
connectives (T, L, A, V, =, =, ...) and quantifiers (V, 3, 3, ...) together with
a natural-deduction style calculus for a higher-order constructive logic. A logical
formula is said to be valid if and only if it is inhabited, i.e. a proof term can
be constructed for this formula. Leibniz equality (=) identifies terms having the
same properties.

.= .(A| Type)(z,y: A): Prop = IIP:A— Prop. P(z) = P(y)

This equality is intensional in the sense that a = b is inhabited in the empty
context if and only if @ and b are convertible; i.e. they are contained in the least
congruence ~ generated by (-reduction. Constructions in this paper employ,
besides Leibniz equality, a (restricted) form of extensional equality (denoted
=) on functions.

.= .(A,B| Type)(f,g: A— B): Prop == Vz:A f(z) = g(x)

Inductive datatypes can be encoded in type theories like FCC by means
of impredicative quantification [3]. For the well-known imperfections of these
encodings—such as noninhabitedness of structural induction rules—however, we
prefer the introduction of datatypes by means of formation, introduction, elimi-
nation, and equality rules [4,18,21]. Consider, for example, the extension of type



theory with (inductive) products. The declared constant . x . forms the product
type from any pair of types, and pairing (.,.) is the only constructor for this
newly formed product type.

. X . Type — Type — Type
(,.):ITA, B | Type. A— B — (A x B)
The type declarations for the product type constructor and pairing represent

the formation and introduction rules of the inductive product type, respectively.
These rules determine the form of the elimination and equality rules on products.

elim* : ITA,B | Type, C: (A x B) — Type.
(ITa: A,b: B. C(a,b)) — Iz : (A x B). C(x)

Elimination provides a means to construct proof terms (functions) of proposi-
tions (types) of the form ITz : (A x B). C(z). The corresponding equality rule
is specified in terms of a left-to-right rewrite rule.

elimy f (a,b) ~ f(a)(b)

It is convenient to specify a recursor as the non-dependent variant of elimination
in order to define functions such as the first and second projections.

rec* (A, B, C | Type) elim{ .5 o
fst:(AxB)—= A == rec*(Az:4,y:B.xz)
snd: (AxB)—= B == rec*(Az:4,y:B.y)

Moreover, the (overloaded) . x . functional is a bifunctor (see also Def. 2) and
plays a central role in categorical specifications of datatypes; it is defined by
means of the split functional (f, g).

(. )C | Type)(f : C - A, g: C > B): C— (AxB)
w= Az: C. (f(x), g(z))

X .(A,B,C,D | Type)(f :A—- C, g:B—D): (Ax B)— (CxD)
n= (fofstap, gosndap)

The specifying rules for coproducts A+ B with injections inla g(a) and inra g (b)
are dual to the ones for products. Elimination on coproducts is named elim™
and its non-dependent variant [f, g] is pronounced “case f or g”.

[,.](A,B,C | Type): (A= C)—>(B—-C)—> (A+B)—>C

4
ehmx_;A+B. c

Similar to the case of products, the symbol + is overloaded to also denote the
bifunctor on coproducts.

.+.(A,B,C,D | Type, f:A— B, g:C—->D):(A+C)— (B+D)
= [inlg,pof, inrg p o g]



Unlike products or coproducts, the datatype of parametric lists with con-
structors n4l and (. ::.) is an example of a genuinely recursive datatype.

L : Type — Type
nil : ITA: Type. L(A)
(.::.) : ITA| Type. A x L(A) = L(A)

These declarations correspond to formation and introduction rules and com-
pletely determine the form of list elimination,?

elim® : ITA| Type, C: L(A) — Type.
(C(nila) x (II(a,l) : (Ax L(A)). C(l) = C(a::1))
— II1: L(4). C(I)

and of the rewrites corresponding to equality rules:

elimb f nila  ~  fst(f)
elimb f (a=1) ~  snd(f) (a,1) (elimb f 1)

The non-dependent variants rec” and hom?” of list elimination are used to encode
structural recursive functions on lists.

rect(A, C' | Type)(f : C x (A x L(A)) = C = C)) : L(A) = C
n= elim/\L_:L(A)‘ o(f)

hom™(A, C' | Type)(f : C x (Ax C) — C)): L(A) = C
c= rech(fst(f), Aa,-): A x L(A), y: C. snd(f)(a,y))

The name hom?” stems from the fact that hom”(f) can be characterized as a
(unique) homomorphism from the algebra associated with the L datatype into
an appropriate target algebra specified by f [28]. Consider, for example, the
prototypical definition of the map” functional by means of the homomorphic
functional hom®.

map” (A, B | Type)(f : A— B): L(A) — L(B)
== hom®(nilg, X a,y):(Ax L(B)). f(a)::y)

In the rest of this paper we assume the inductive datatypes 0, 1, x, +, B, N,
and L together with the usual standard operators and relations on these types
to be predefined.

N -ary Products and Coproducts. Using higher-order abstraction, type universes,
and parametric lists it is possible to internalize n-ary versions of binary type
constructors. Consider, for example, the n-ary product A; x ... x A,. It is

2 Bindings may also employ pattern matching on pairs; for example, o is of type A
and [ of type L(A) in the binding (a,!) : (A x L(A)).



constructed from the iterator ®(.) applied to a list containing the types A;
through A,,.

®(.) : L(Type) = Type == hom%(1, x)
®(.) : L(Type) = Type == hom™(0, +)

@(I) represents an n-ary coproduct constructor. Furthermore, pairing may be
generalized to tupling, and there is a generalized projection function on tuples
proj : P, where

P == IIl| L(Type). ®() = In:N, p: (n<len(l)). (nth I n p)

The type (n < m) is a proposition which holds if and only if the natural number
n is less than m, and the function that selects the nth element of a list is of type
ITA | Type, 1 : L(A), n:N. (n <len(l)) = A. In the definition of proj below
abort stands for a term that uses the contradiction (n < 0) to construct a term
of the required type.

proj(l | L(Type)) = P(I) ==
elim5 (A_: 1, n:N, p: (n <0). abort n p (nth nilyy,. n p))
(AMA : Type, U' : L(Type), y: P(l').
LET | == A=,
C == Am:N IIq: (m <len(l)). (nth I m q)

INAa: @), n:N, p: (n<len(l)).
elimf, (A_: (0 < len(l)). fst(a))

(An:N, _: C(n).

)/\q : (suce(n) < len(l)). (y snd(a) n q))
nop

The main recursion in this definition is along the (hidden) list of types [ that
are used to describe the generalized product ®(I), and the elimination on elim"
runs in parallel to the main recursion. The definition of proj clearly demonstrates
that fully synthesized terms are, mainly for the mixture of functional parts and
proofs, close to incomprehensible. In these cases, we only state characteristic
equations and we omit the proof parts. Using these conventions the definition of
the generalized projection function proj simplifies to two equations:

proj a 0 = fst(a)

proj a succ(n) = proj snd(a) n

The map” function on lists can be used to generalize . + . and . X . to also
work for the n-ary coproduct @(.) and the n-ary product ®(.), respectively.
Let A | Type, D,R : A — Type, f : Iz : A. D(a) — R(a), then recursion along
the structure of the n-ary type constructors is used to define these generalized



mapping functions.

map™t(f) : (IT1| L(A). ®(map™ D 1) — ®(map™ R 1))
= elim” Iy (A\(a,1), y. f(a) +y)

map* (f) : (IT1| L(A). ®(map® D 1) - @(map* R 1))
c=elim® (A_. %) (\(a,1), y. f(a) x y)

Although these mappings explicitly exclude tuples with independent types, they
are sufficiently general for the purpose of this paper.

3 Semantic Polytypy

In this section we describe a type-theoretic framework for formalizing polytypic
programs and proofs. Datatypes are modeled as initial objects in categories of
functor-algebras [14], and polytypic constructions—both programs and proofs—
are formulated using initiality without reference to the underlying structure of
datatypes. We exemplify polytypic program construction in this type-theoretic
framework with a polytypic version of the well-known map function. Other poly-
typic developments from the literature (e. g. [2]) can be added easily. Further-
more we generalize some categorical notions to also work for eliminations and
lift a reflection and a fusion theorem to this generalized framework. It is, how-
ever, not our intention to provide a complete formalization of category theory
in type theory; we only define certain categorical notions that are necessary to
express the subsequent polytypic developments. For a more elaborated account
of category theory within type theory see e. g. [8].

Functors are twofold mappings: they map source objects to target objects and
they map morphisms of the source category to morphisms of the target cate-
gory with the requirement that identity arrows and composition are preserved.
Here, we restrict the notion of functors to the category of types (in a fixed, but
sufficiently large type universe Type;) with (total) functions as arrows.

Definition 1 (Functor).

Functor : Type ::=
YFop » Type — Type,
Forr : ITIA, B | Type. (A — B) — Fu;(A) = Fopi(B).
HA| Type. FMT(IA) = IFobj(A)
ANITA,B,C | Type, g: A— B, f: B — C.
Forr(f 0 9) = Fare(f) © Farr(9)

n times

A

Bifunctors. Generalized functors are functors of type Type X ... x Type — Type;
they are used to describe datatypes with n parameter types. In order to keep the
technical overhead low, however, we restrict ourselves in this paper to modeling



datatypes with one parameter type only by means of bifunctors. Bifunctors are
functors of type Type x Type — Type or, using the isomorphic curried form, of
type Type — Type — Type. For a bifunctor, the functor laws in Definition 1
take the following form:

Definition 2 (Bifunctor).

Bifunctor : Type =
Y FFo 0 Type — Type — Type,
FFo: ITA,B,C,D | Type. (A— B) —» (C - D) —
FFobj AC— FFObj B D.
HA,B | Type. FFGM- IA IB = IFFobj A B
ANITA,B,C,D,E,F | Type,
h:A—B, f:B—>C,k:D—FE, g:E—F.
FFo(f o h)(gok) = (FFu f g) 0 (FFary h k)

Many interesting examples of bifunctors are constructed from the unit type and
from the product and coproduct type constructors. Seeing parameterized lists
as cons-lists with constructors nils : L(A) and conss : A x L(A) — L(A) we get
the bifunctor FF..

Ezample 1 (Polymorphic Lists). There exists a proof term p such that:

FF': Bifunctor :=
(MNA, X : Type. 1 4+ (A x X),
MNAB, X, Y | Type, f: A= B, g: X > Y.L +(f xg),
p)

The construction of the proof term p of bifunctoriality closely follows the struc-
ture of the definition of 7! (FFT); i.e. the proof uses coproduct induction elim®
followed by product induction in the (A x X) case; the resulting base equalities
follow trivially from normalization.

Fixing the first argument in a bifunctor yields a functor.

Definition 3. For all (FF,y;, FFqrr, q) @ Bifunctor and A : Type there ezists a
proof term p such that

induced(FFop;, FForr, q)(A) : Functor =
(FFobj(A)a AX, Y| Type, f: X = Y. FFoy 14 f, p)

Example 2. F¥ : Type — Functor := induced(FF")

Functor Algebras. Using the notion of Functor one defines the concept of data-
type (see Def. 8) without being forced to introduce a signature, that is, names
and typings for the individual sorts (types) and operations involved. The central
notion is that of a functor algebra Alg(F, X)), where F' is a functor. The second
type definition below just introduces a name for the signature type X¢(F, T)
of so-called catamorphisms (| . |).



Definition 4. Let F : Functor and X, T : Type; then:
Alg(F,X) : Type u= Fui(X)—> X
YC(F,T): Type == IIX | Type. Alg(F,X) — (T — X)
The initial F-algebra, denoted «, is an initial object in the category of F-

algebras. That is, for every F-algebra f there exists a unique object, say (| f |,
such that the following diagram commutes:

F(T)a4>T

f110] J/(IfD

F(X)—— > x

In the case of lists, the initial F*(A)-algebra o’ is defined by case split (see
Section 2) and the corresponding catamorphism is a variant of the homomorphic
functional on lists.

Ezample 3.
(A | Type) : Alg(F*(A),L(A)) == [nily, consa]
(- D"(A]| Type) : EC(FE(A), L(A)) AX | Type, f: Alg(F"(A), X).

hom™ (f o inl axx, foinr axx)

Paramorphisms correspond to structural recursive functions, and can be ob-
tained by computing not only recursive results as is the case for catamorphisms
but also the corresponding data structure. The definition of functor algebras
and signatures for paramorphisms are a straightforward generalization of Defi-
nition 4.

Definition 5. Let F : Functor and X, T : Type; then:
AlgP(F,T,X) : Type == Fou(TxX)—> X
YP(F,T) : Type == X | Type. AlgP(F,T,X) — (T — X)

Any F-algebra f can be lifted to the corresponding notion for paramorphisms
using the function 1 (.) in Definition 6.

Definition 6. Let F : Functor, T, X : Type; then:
t(f: Alg(F,X)): AlgP(F,T,X) == fo Fm-r(ﬂ'?nx)

It is well-known that the notions of catamorphisms and paramorphisms are in-
terchangeable, since one can define a paramorphism {.} from a catamorphism
( . ) and vice versa.
(.): ZC(F,T) == XX| Type.{.}o1(.)
[.}: XP(F,T) == XX| Type, g: AlgP(F,T,X), t:T.
w2 ((Xz: F(T x X). (t, 9(2)) )())

10



F(T) -

F(Rc(f))l Re(f)

F(Zz:T. Cla)) —2<Y o 5

He—-

C(x)

Fig. 1. Universal Property.

Eliminations, however, are a genuine generalization of both catamorphisms and
paramorphisms in that they permit defining functions of dependent type. In this
case, the notion of functor algebras generalizes to a type Alg®(F,C,a) that
depends on an F-algebra «, and the signature type X¢(F, T, a) for eliminations
is expressed in terms of this generalized notion of functor algebra.

Definition 7. Let F : Functor, T : Type, C : T — Type, o : Alg(F, T) ; then:

Alg®(F,C,a) : Type == Iz:Fou;(Zx:T. C(z)). C((ao Forr(n ) 2)
YE(F, T,a) : Type = IIC: T — Type. Alg*(F,C,a) — Iz : T. C(z)

These definitions simplify to the corresponding notions for paramorphisms (see
Def. 5) when instantiating C' with a non-dependent type of the form (A_: T. X).
Moreover, the correspondence between the induction hypotheses of the intuitive
structural induction rule and the generalized functor algebras Alg® (FL, C, o)
is demonstrated in [19].

The definition of ¢¢ below is the key to using the usual categorical no-

tions like initiality, since it transforms a generalized functor algebra f of type
Algé(F, C,a) to a functor algebra Alg(F, ¥z : T. C(x)).?

Definition 8. Let F : Functor, T : Type, a : Alg(F, T), elim : X¢(F,C,a).
Furthermore, let C : T — Type and f : Alg®(F, C,a) ; then:

¢C(f) : Alg(Fv Yo T. C(:L’)) a= (ao Farr(ﬂ-lT,C)a f>

Now, we get the initial algebra diagram in Figure 1 [19], where R (f) denotes
the unique function which makes this diagram commute. It is evident that the
first component must be the identity. Thus, Rc(f) is of the form (I, elima(f))
where the term elima(f) is used to denote the unique function which makes
the diagram commute for the given f of type Alg®(F, C,a). Altogether, these
considerations motivate the following universal property for describing initiality.

% Here and in the following the split function (., .) is assumed to also work for function
arguments of dependent types; i.e.(f,g9) : Xz:B. C(z) == (f(z),g(z)) where
A,B: Type, C: B — Type, f: A— B, g:IIz : A. C(f(z)), and z : A.

11



Definition 9.

universal® (F, T,a) : Prop =
IIC : T — Type, f: Alg°(F,C,a).
3'E: (IIz: T. C(z)).
LET Re(f) == (I, E) IN
Ro(f)oa = ¢c(f) o F(Re(f))

Witnesses of this existential formula are denoted by elimc(f) and Re(f) is de-
fined by (I, elimc(f)) .

Reflection and Fusion. Eliminations enjoy many nice properties. Here, we con-
centrate on some illustrative laws like reflection or fusion, but other laws for
catamorphisms as described in the literature can be lifted similarly to the case
of eliminations.

Lemma 1 (Reflection). Let universal® (F, T,a) be inhabited; then:

Ry_r. v(t (@) om% ¢ = copyr
where copyr == Ax:T.(z,1)
This equality follows directly from uniqueness and some equality reasoning.

copyT o &
= (o F(ry 7)o F(copyr), avo F(n7 1) o F(copyr))
= (ao F(my 1), a0 F(n7 1)) o F(copyr)
= ¢c(1 (a)) o F(copyr)

The fusion law for catamorphism is central for many program manipula-
tions [2]. Now, this fusion law is generalized to also work for eliminations.

Lemma 2 (Fusion). For functor F and type T, let C,D : T — Type, [ :
Alg®(F,C,a), g : Alg°(F,D,a), h : ¥x:T. C(z) = Yz:T.D(z), and
assume that the following holds:
H, : universal® (F, T, a)
Hy : IS : Type,E : S — Type, u,v : Alg®(F,E,q).
u = v = elimg(u) = elimg(v)
Then:
ho¢c(f) = ép(g) o F(h) = hoRc(f) = Rp(g)

The proof of this generalized fusion theorem is along the lines of the fusion
theorem for catamorphisms [2].

F(T) — D e sp . 7. c) — " s F(S2:T. D(a))

ai ltbc(f) laﬁn(g)

_— Y A —_— > B
T o) Yr:T. C(x) - Yz :T.D(x)

12



This diagram commutes because the left part does (by definition of elimination)
and the right part does (by assumption). (Extensional) equality of h o Re(f)
and Rp(g) follows from the uniqueness part of the universality property and the
functoriality of F'. The extra hypothesis H; is needed for the fact that the binary
relation = (see Section 2) on functions is not a congruence in general.

Catamorphisms and Paramorphisms. A paramorphism is simply a non-depend-
ent version of an elimination scheme and a catamorphism is defined in the usual
way from a paramorphism.

Definition 10. Let universal® (F, T, a) be inhabited and X : Type; then:

[.}: ZP(F,T) == XX| Type. elim,_.r. x)
(.): X(F, T) == XX| Type.{.}o1()

Lemma 3. If f : Alg(F,X), g : AlgP(F,T,X), and universal®(F, T,q) is
inhabited then {.} and ( . |) are the unique functions satisfying the equations:

(fhoa=foF((f))
{g}oa = goF({Ir,{g}))

Ezample 4. Let FF : Bifunctor then the polytypic map function is defined by
map(f) : T(A) = T(B) == (aoF(f)(Irsm))

Uniform Specification of Datatypes in ECC. Now, the previous developments
are used to specify, in FCC, classes of parametric datatypes in a uniform way.
The exact extension of this class is unspecified, and we only assume that there
is a name, say dt, and a describing bifunctor, say FFy;, for each datatype in this
class; see Figure 2. Then it is straightforward to declare three constants T, «,
elim corresponding to formation, introduction, and elimination rule, respectively
(see Figure 2). Thus, we are left with specifying an equality rule. The equality
induced by the diagram in Figure 1 is

elimc(f) oca = f o F(RC)

It gives the following reduction (computation) rule by expressing the equality
on the point level and by replacing equality by reducibility (z : F(T)):

elimo(f)((z)) ~ f(F Re x)

There is a slight complication, however, since the left-hand side of this reduction
rule is of type C(a(x)) while the right-hand side is of type C(a((F(r} o) o
F(Rc(f))) z). These two types, although provably Leibniz-equal, are not con-
vertible. Consequently, an additional reduction rule, which is justified by the
functoriality of F', is needed. This extraneous reduction rule is not mentioned
for the extension of ECC with datatypes in [19], since the implicit assumption
is that a reduction rule is being added for each functor of a syntactically closed
class of functors. In this case, the types of the left-hand and right-hand sides are
convertible for each instance. Since we are interested in specifying datatypes uni-
formly, however, we are forced to abstract over the class of all functors, thereby
loosing convertibility between these types.
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Let name : Type and FF : name — Bifunctor; then define the induced functor

F(dt : name) : Type — functor = induced(FFa)
Formation:
T : name — Type — Type
Introduction:
a : ITdt | name, A| Type. Alg(Fa:(A), Tar(A))
Elimination:

elim : IIdt|name, A| Type. ¢ (Fu(A), Tur(A), ar, 1)
Equality: (C: T — Type)

(Far(A)(h,c) 0 Far(A)(Re()  ~ Loy (ay(maian
elimo(f)(a(z)) ~  f(Fu(A) Re a)

Fig. 2. Specifying Datatypes in ECC

4 Syntactic Polytypy

The essence of polytypic abstraction is that the syntactic structure of a datatype
completely determines many developments on this datatype. Hence, we specify a
syntactic representation for making the internal structure of datatypes explicit,
and generate, in a uniform way, bifunctors from datatype representations. Proofs
for establishing the bifunctoriality condition or the unique extension property
follow certain patterns. The order of applying product and coproduct inductions
in the proof of the existential direction of the unique extension property, for
example, is completely determined by the structure of the underlying bifunctor.
Hence, one may develop specialized tactics that generate according proofs sep-
arately for each datatype under consideration. Here, we go one step further by
capturing the general patterns of these proofs and internalizing them in type
theory. In this way, polytypic proofs of the applicability conditions of the theory
formalized in this section are constructed once and for all, and the proof terms
for each specific datatypes are obtained by simple instantiation.

These developments are used to instantiate the abstract parameters name
and FF in order to specify a syntactically characterized class of datatypes. Fixing
the shape of datatypes permits defining polytypic constructions by recursing
(inducting) along the structure of representations. The additional expressiveness
is demonstrated by means of defining polytypic recognizers and a polytypic no
confusion theorem.

In order to keep subsequent developments manageable and to concentrate on
the underlying techniques we choose to restrict ourselves to representing the—
rather small—class of parametric, polynomial datatypes; it is straightforward,
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however, to extend these developments to much larger classes of datatypes like
the ones described by (strictly) positive functors [5,19]. The only restriction on
the choice of datatypes is that the resulting reduction relation as specified in
Figure 2 is strongly normalizing. The developments in this section are assumed
to be implicitly parameterized over the entities of Figure 2.

A natural representation for polynomial datatypes is given by a list of lists,
whereby the 7% element in the i** element list determines the type of the j* se-
lector of the i** constructor. The type Rep below is used to represent datatypes
with n constructors, where n is the length of the representation list, and the type
Sel restricts the arguments of datatype constructors to the datatype itself (at
recursive positions) and to the polymorphic type (at non-recursive positions), re-
spectively. Finally, rec and nonrec are used as suggestive names for the injection
functions of the Kind coproduct.

Definition 11 (Representation Types).

Kind : Type = rec: 1 4 nonrec: 1
Sel : Type == L(Kind)
Rep : Type == L(Sel)

Consider the representations dt” for lists and dt? binary trees below. The lists
nil and (nonrec :: rec :: mil) in the representation dt” of the list datatype, for

example, describe the signatures of the list constructors nil and (. ::.), respec-
tively.
Ezample 5.

dt” : Rep = il = (nonrec :: rec :: nil) :: nil

dtB: Rep = il :: (nonrec :: rec :: rec :: nil) :: nil

The definitions below introduce, for example, suggestive names for the formation
type and constructors corresponding to the representation dt? in Example 5.

Ezample 6.
B: Type — Type == T(dt?)
leaf (A : Type) : 1 — B(A) == (agp a0l ALB(A)+B(A)+0)

node(A | Type) : (A x B(A) x B(A) x 1) - B(A) ==
(Qags A © INTL A4 B(A)+B(A)+0 © 1AL B(A)+B(A),0)
Argument types Arga x(s) of constructors corresponding to the selector rep-
resentation s are computed by placing the (parametric) type A at non-recursive

positions, type X at recursive positions, and by forming the n-ary product of
the resulting list of types.
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Definition 12.
Arg(A, X : Type)(s : Sel): Type == @(mapl (rect™ X A) s)

Next, a polytypic bifunctor FF is computed uniformly for the class of repre-
sentable datatypes. The object part of these functors is easily computed by
forming the n-ary sum of the list of argument types (products) of constructors.
Likewise the arrow part of FF is computed by recursing over the structure of
the representation type Rep. This time, however, the recursion is a bit more
involved, since all the types of resulting intermediate functions depend on the
form of the part of the representation which has already been processed.

Proposition 1. For all dt : Rep there exists a proof object p such that

FF(dt) : Bifunctor = (FF&, FFM  p)
where FFU. = (XA, X : Type. &() o map”(Arga x)) dt
FF¥ = XA B X,Y | Type,f :A—=B,g: X > Y.

+ X
(mapArgA,X, Args,y © MO (rect+ A X), (rect B Y))

o+
(elzm(/\ k:Kind. (rect A X k)—(rectB Y k)) /9
The inductive construction of the bifunctoriality proof p parallels the structure
of the recursive definition of FF(dt). We present one part of this proof—the

preservation of identities—in more detail. Let dt : Rep, and A, X : Type. The
goal is to show that

FFl, In Ix = Ippu 4 x

arr

The proof is by induction on the representation type dt. The base case where
dt = nil represents an empty datatype and hence the proposition is trivially
true. In the induction step one has to prove that

Vi : FFs:l FFRs: Ir Ix x = IFFS;)EZ Ax T

obj - arr

given that the proposition holds for /. The left-hand side of this equation evalu-
ates to

(map* (elim; In Ix) + FFy,, In Ix) @
where C = Xk :Kind. (rect A X k) — (rect 4 X k)

We proceed by a coproduct induction on z. The inr case can be proved easily
using the induction hypothesis. For the inl case we have to show that

Yy Arga x(s). map* (elim¢, In Ix) y = Inrg, x(s) Y

The next step is to induct on the representation s of the argument type of a
constructor. The base case corresponds to a zero-place constructor and holds
trivially. The induction step requires us to prove that

Vy: Arga x(k = U'). map)., (elimé Ta Ix) y = Larg, (k1) Y
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under the induction hypothesis that the proposition holds for I’. The left-hand
side of this equation evaluates to

(elimf In Ix k x map; (elimf; Ia Ix)) y

The induction hypothesis reduces the right-hand side function to Iy, () and
by simple case analysis on k& one can prove that

elimg Ig Ix k = Loot A x &
Thus, the goal now reads

(Irec+ A X kX IArgA,x(l’)) Y= IArgA,x(k::l’) Y

This reduces to the trivial goal

(fst(y),snd(y)) =y

This polytypic proof has been constructed in LEGO using 14 refinement steps.

The second part of the bifunctoriality proof—preservation of composition—
runs along the same line. More precisely, the induction proceeds by inducting
on the number of coproduct inductions elim* as determined by the length of
the representation type dt followed by an induction on the number of product
inductions elim* in the induction step; the outer (inner) induction employs one
coproduct (product) induction elim™ (elim>) in its induction step.

n-th Constructor. Example 6 suggests encoding a function for extracting the n-
th constructor from agy;. Informally, this function chains n right-injections with
a final left-injection:

c(n) = agaoinro...oinroinl
~—————

n times

It is clear how to internalize the . .. by recursing on n, but the complete definition
of this function is somewhat involved for the dependency of the right injections
from the position 7 and the types of intermediate functions (see also Example 6).
Thus, we restrict ourselves to only state the type of this function.

c: IIdt| Rep, A| Type, n:N, p: (n <len(dt)).
Arga 7,4y (nth dt n p) — T4 (A)

Polytypic Recognizer. The explicit representation of datatypes permits defining
a function for computing recognizer functions for all (representable) datatypes.
First, the auxiliary function r traverses a given representation list and returns
a pair (f,4) consisting of a recognizer f and the current position 7 in the repre-
sentation list.
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Definition 13. Let dt : Rep, A: Type, n: N, and p: (n < len(dt)).
reg(dt, A, n,p) : Alg(Fg(A), Prop) == ='(rgff, )

where
r(dt, A,n,p): Alg(Fa(A), Prop) x N
nil
A,n,p
rict, = LET (f,i) = rh,, N
([A=: Arga,prop(s). n =1, f], succ(i))

= (Az: 0. arbitraryprop %, zero)

Now, it is a simple matter to define the polytypic recognizer by applying the
polytypic catamorphism on rcg.

Definition 14 (Polytypic Recognizer).

R(dt | Rep, A| Type, n:N, p: (n <len(dt))): Tu(A) = Prop ==
(I Tcg/dlt,n,p D

This function satisfies the following characteristic properties for recognizers.

Proposition 2. Let dt | Rep, A | Type, i,j : N; furthermore p : (i < len(dt)),
q: (j <len(dt)), a: Arga r,a)(nth dt i p), then:

1. Ri,p c,',p(a)
2. 1#j =~ (Rj,q cipla))

Polytypic No Confusion. Now, we have collected all the ingredients for stating
and proving a polytypic no confusion theorem once and for all.

Theorem 1 (Polytypic No Confusion).

ITdt | Rep, A| Type, i,j:N, p: (i <len(dt)), q: (j <len(dt)),
a: Arga r,ca) (nth dt i p), b: Arga r,a) (nth dt j q)
i #J = cip(a) # cjq(b)

Given the hypothesis H : ¢; ,(a) = ¢; 4(b) one has to construct a proof term of
L. According to Proposition 2 this task can be reduced to finding a proof term for
Rj. 4 ¢ip(a). Furthermore, for hypothesis H, this goal is equivalent with formula
Rj.q ¢j,q(a), which is trivially inhabited according to Proposition 2. This finishes
the proof. Again, each of these steps correspond to a refinement step in the LEGO
formalization.

Notice that the proof of the polytypic bifunctoriality property and the poly-
typic no confusion theorem are as straightforward as any instance thereof for
any datatype and for any legitimate pair of datatype constructors.
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5 Conclusions

The main conclusion of this paper is that the expressiveness of type theory per-
mits internalizing many interesting polytypic constructions that are sometimes
thought to be external and not formalizable in the base calculus [22,24]. In
this way, polytypic abstraction in type theory has the potential to add another
level of flexibility in the reusability of formal constructions and in the design
of libraries for program and proof development systems. We have demonstrated
the feasibility of our approach using some small-sized polytypic constructions,
but, obviously, much more work needs to be done to build a useful library using
this approach. Most importantly, a number of polytypic theorems and polytypic
proofs thereof need to be identified.

Although we have used a specific calculus, namely the Extended Calculus
of Constructions, for our encodings of semantically and syntactically polytypic
abstraction, similar developments are possible for other type theories such as
Martin-Lof type theories [18] with universes or the Inductive Calculus of Con-
structions.

Semantically polytypic developments are formulated using initiality without
reference to the underlying structure of datatypes. We have demonstrated how
to generalize some theorems from the literature, like reflection and fusion for
catamorphisms, to corresponding theorems for dependent paramorphisms (elim-
inations). These developments may not only make many program optimizations,
like the fusion theorem above, applicable to functions of dependent type but—for
the correspondence of dependent paramorphisms with structural induction—it
may also be interesting to investigate usage of these generalized polytypic theo-
rems in the proof development process; consider, as a simple example, a polytypic
construction of a double induction scheme from structural induction.

Syntactic polytypism is obtained by syntactically characterizing the descrip-
tions of a class of datatypes. Dybjer and Setzer [5] extend the notion of induc-
tively defined sets (datatypes) that are characterized by strictly positive func-
tors [19,21] and provide an axiomatization of sets defined through induction-
recursion. For the purpose of demonstration, however, we have chosen to deal
with a special case of datatypes—the class of polynomial datatypes—in this pa-
per, but it is straightforward, albeit somewhat more tedious, to generalize these
developments to support larger classes. From a technical point of view, it was
essential to be able to recurse along the structure of arbitrary product types
in order to encode in type theory many ... as used in informal developments.
We solved this problem by describing product types A; x ... x A, by a list
I == Ay:...: A, of types and by encoding a function ®(1) for computing
the corresponding product type. These developments may also be interesting for
other applications such as statically typing heterogeneous lists (or S-expressions)
within type theory.

The first step towards syntactic polytypism consists in fixing a representation
type for the chosen class of datatypes; this representation (or abstract syntax)
can be understood as a simple kind of meta-level representation, since it makes
the internal structure of datatype descriptions amenable for inspection. In the
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next step, one fixes the denotation of each datatype representation by assigning
a corresponding functor to it. These functor terms can be thought of as being
on the object-level and the type-theoretic function for computing denotations
of representation is sometimes called a computational reflection function. This
internalization of both the representation and the denotation function permits
abstracting theorems, proofs, and programs with respect to the class of (syntac-
tically) representable datatypes.

The added expressiveness of syntactic polytypy has been demonstrated by
means of several examples. The polytypic (bi)functoriality proof, for example,
requires inducting on syntactic representations, and the proof of the no confusion
theorem relies on the definition of a family of polytypic recognizer functions by
recursing on representations. This latter theorem is a particularly good example
of polytypic abstraction, since its polytypic proof succinctly captures a ’proof
idea’ for an infinite number of datatype instances.
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