
Slightly expanded version of a paper presented at the 12th International Conferenceon Theorem Proving in Higher Order Logics (TPHOLs'99).Springer LNCS, Vol. 1690, pp. 55 { 72, Sept. 1999. c Springer-Verlag.Polytypic Proof ConstructionHolger Pfeifer1 and Harald Rue�21 Universit�at UlmFakult�at f�ur InformatikD-89069 Ulm, Germanypfeifer@informatik.uni-ulm.de2 SRI InternationalComputer Science Laboratory333 Ravenswood Ave.Menlo Park, CA, 94025, USAruess@csl.sri.comAbstract. This paper deals with formalizations and veri�cations in typetheory that are abstracted with respect to a class of datatypes; i.e poly-typic constructions. The main advantage of these developments are thatthey can not only be used to de�ne functions in a generic way but alsoto formally state polytypic theorems and to synthesize polytypic proofobjects in a formal way. This opens the door to mechanically provingmany useful facts about large classes of datatypes once and for all.1 IntroductionIt is a major challenge to design libraries for theorem proving systems that areboth su�ciently complete and relatively easy to use in a wide range of appli-cations (see e.g. [6, 26]). A library for abstract datatypes, in particular, is anessential component of every proof development system. The libraries of theCoq [1] and the Lego [13] system, for example, include a number of functions,theorems, and proofs for common datatypes like natural numbers or polymor-phic lists. In these systems, myriads of mostly trivial developments are carriedout separately for each datatype under consideration. This increases the bulkof proving e�ort, reduces clarity, and complicates lemma selection. In contrast,systems like Pvs [20] or Isabelle [22] support an in�nite number of datatypesby using meta-level functions to generate many standard developments fromdatatype de�nitions. Pvs simply uses an extension of its implementation to gen-erate axiomatized theories for datatypes including recursors and induction rules,while Isabelle's datatype extension includes tactics to prove these theorems.Both the Pvs and the Isabelle approach usually work well in practice. On theother hand, meta-level functions must be executed separately for each datatypeunder consideration, and construction principles for proofs and programs are1



operationalized and hidden in meta-level functions which are encoded in theimplementation language of the proof system.In this paper we propose techniques for building up library developmentsfrom a core system without resorting to an external meta level. Moreover, proofobjects are constructed explicitly and developments from the library can be usedby simply instantiating higher-order quanti�ers. Hereby, we rely on the conceptof polytypic abstraction.The map functional on the list datatype L illustrates the concept of polytypicabstraction exceptionally well. Applying this functional to a function f and asource list l yields a target list obtained by replacing each element a of l withthe value of f (a), thereby preserving the structure of l . The type of map in aHindley-Milner type system, as employed by current functional programminglanguages, is abstracted with respect to two type variables A and B :map : 8A;B : (A! B)! L(A)! L(B)Thus, map is a polymorphic function. The general idea of the map function oftransforming elements while leaving the overall structure untouched, however,is not restricted to lists and applies equally well to other datatypes. This obser-vation gives rise to a new notion of polymorphism, viz. polytypy,1 for de�ningfunctions uniformly on a class of (parameterized) datatypes T :map : 8T : 8A;B : (A! B)! T (A)! T (B)Notice that the notion of polytypy is completely orthogonal to the concept ofpolymorphism, since every \instance" of the family of polytypic map-functionsis polymorphic. Many interesting polytypic functions have been identi�ed anddescribed in the literature [10, 11, 15{17, 25, 27], and concepts from categorytheory have proven especially suitable for expressing polytypic functions andreasoning about them. In this approach, datatypes are modeled as initial objectsin categories of functor-algebras [14], and polytypic constructions are formulatedusing initiality without reference to the underlying structure of datatypes.The concept of polytypy, however, is not restricted to the de�nition of poly-typic functions solely, but applies equally well to other entities of the programand proof development process like speci�cations, theorems, or proofs. Consider,for example, the no confusion theorem. This theorem states that terms built upfrom di�erent constructors are di�erent. It is clearly polytypic, since it appliesto all initial datatypes.In the following, we examine techniques for expressing polytypic abstrac-tion in type theory. These developments can not only be used to polytypicallyde�ne functions but also to formally state polytypic theorems and to interac-tively develop polytypic proofs using existing proof editors. Thus, formalizationof polytypic abstraction in type theory opens the door to proving many usefulfacts about large classes of datatypes once and for all without resorting to anexternal meta-language.1 Sheard [25] calls these algorithms type parametric, Meertens [15] calls them generic,and Jay and Cockett [9] refer to this concept as shape polymorphism.2



The paper is structured as follows. The formal setting of type theory issketched in Section 2, while Section 3 includes type-theoretic formalizations ofsome basic notions from category theory that are needed to specify, in a uniformway, datatypes as initial objects in categories of functor algebras. Furthermore,Section 3 contains generalizations of the usual reection and fusion theoremsfor recursors on initial datatypes|as stated, for example, in [2]|to recursors ofdependent type, which correspond to structural induction schemes. These devel-opments are polytypically abstracted for the semantically characterized class ofinitial datatypes. This notion of semantic polytypy, however, is not appropriatein many cases where inspection of the form of the de�nition of a datatype isrequired. Consequently, in Section 4, we develop the machinery for abstractingconstructions over a certain syntactically speci�ed class of datatypes. Since thefocus is on the generation of polytypic proofs rather than on a general formal-ization of inductive datatypes in type-theory we restrict ourselves to the classof parameterized, polynomial (sum-of-products) datatypes in order to keep thetechnical overhead low. The main idea is to use representations that make theinternal structure of datatypes explicit, and to compute type-theoretic speci�-cations for all these datatypes in a uniform way. This approach can be thoughtof as a simple form of computational reection (e.g. [23,29]). Developments thatare abstracted with respect to a syntactically characterized class of datatypesare called syntactically polytypic in the following. We demonstrate the expres-siveness of syntactic polytypy with a mechanized proof of the bifunctorialityproperty for the class of polynomial datatypes and a polytypic proof of the noconfusion theorem. Finally, Section 5 concludes with some remarks.The constructions presented in this paper have been developed with the helpof the Lego [13] system. For the sake of readability we present typeset and editedversions of the original Lego terms and we take the freedom to use numeroussyntactic conventions such as in�x notation and pattern matching.2 PreliminariesOur starting point is the Extended Calculus of Constructions (ECC ) [12] en-riched with the usual inductive datatypes. We sketch basic concepts of this typetheory, �x the notation, and discuss the treatment of datatypes in type theory.More interestingly, we introduce n-ary (co-)products and de�ne functions ongeneralized (co-)products by recursing along the structure of the descriptionsof these types. This technique has proven to be essential for the encoding ofsyntactic polytypy in Section 4.The type constructor �x : A: B(x ) is interpreted as the collection of depen-dent functions with domain A and codomain B(a) with a the argument of thefunction at hand. Whenever variable x does not occur free in B(x ), A ! B isused as shorthand for �x : A: B(x ); as usual, the type constructor! associatesto the right. �-abstraction is of the form (� x : A: M ) and abstractions like(� x : A; y : B : M ) are shorthand for iterated abstractions (� x : A: � y : B : M ).Function application associates to the left and is written as M (N ), as juxtapo-3



sition M N , or even in subscript notation MN . Types of the form �x : A: B(x )comprise dependent pairs (:; :), and �1, �2 denote the projections on the �rst andsecond position, respectively. Sometimes, we decorate projections with subscriptsas in �1A;B to indicate the source type �x : A: B(x ). Finally, types are collectedin yet other types Prop and Typei (i 2 N). These universes are closed under thetype-forming operations and form a fully cumulative hierarchy [12]. Although es-sential to the formalization of many programming concepts, universes are tediousto use in practice, for one is required to make speci�c choices of universe levels.For this reason, we apply|carefully, without introducing inconsistencies|thetypical ambiguity convention [7] and omit subscripts i of type universes Typei .De�nitions like c(x1 : A1; : : : xn : An) : B ::= M are used to introduce aname c for the termM that is (iteratively) abstracted with respect to x1 throughxn . The typing : B is optional and speci�es the type of the term M . Consider,for example, the de�nition of the polymorphic identity function I and (in�x)function composition �.I (A j Type; x : A) : A ::= x: � :(A;B j Type; f : B ! C ; g : A! B) : A! C ::= � x : A: f (g(x ))Bindings of the form x j A are used to indicate parameters that can be omitted infunction application. Systems like Lego are able to infer the hidden argumentsin applications like f � g automatically (see [13]).Using the principle of propositions-as-types, the dependent product type �x :A: B(x ) is interpreted as logical universal-quanti�cation and if M (a) is of typeB(a) for all a : A then � x : A: M (x ) is interpreted as a proof term for theformula �x : A: B(x ). It is possible to encode in ECC all the usual logicalconnectives (>, ?, ^, _, : , ), : : :) and quanti�ers (8, 9, 91, . . . ) together witha natural-deduction style calculus for a higher-order constructive logic. A logicalformula is said to be valid if and only if it is inhabited, i.e. a proof term canbe constructed for this formula. Leibniz equality (=) identi�es terms having thesame properties.: = :(A j Type)(x ; y : A) : Prop ::= �P : A! Prop: P(x )! P(y)This equality is intensional in the sense that a = b is inhabited in the emptycontext if and only if a and b are convertible; i.e. they are contained in the leastcongruence ' generated by �-reduction. Constructions in this paper employ,besides Leibniz equality, a (restricted) form of extensional equality (denoted:= ) on functions.: := : (A;B j Type)(f ; g : A! B) : Prop ::= 8 x : A: f (x ) = g(x )Inductive datatypes can be encoded in type theories like ECC by meansof impredicative quanti�cation [3]. For the well-known imperfections of theseencodings|such as noninhabitedness of structural induction rules|however, weprefer the introduction of datatypes by means of formation, introduction, elimi-nation, and equality rules [4,18,21]. Consider, for example, the extension of type4



theory with (inductive) products. The declared constant :� : forms the producttype from any pair of types, and pairing (:; :) is the only constructor for thisnewly formed product type.:� : : Type ! Type ! Type(:; :) : �A;B j Type: A! B ! (A� B)The type declarations for the product type constructor and pairing representthe formation and introduction rules of the inductive product type, respectively.These rules determine the form of the elimination and equality rules on products.elim� : �A;B j Type; C : (A� B)! Type:(�a : A; b : B : C (a; b)) ! �x : (A� B): C (x )Elimination provides a means to construct proof terms (functions) of proposi-tions (types) of the form �x : (A� B): C (x ). The corresponding equality ruleis speci�ed in terms of a left-to-right rewrite rule.elim�C f (a; b) ; f (a)(b)It is convenient to specify a recursor as the non-dependent variant of eliminationin order to de�ne functions such as the �rst and second projections.rec�(A;B ;C j Type) ::= elim�� :A�B: Cfst : (A� B)! A ::= rec�(� x : A; y : B : x )snd : (A� B)! B ::= rec�(� x : A; y : B : y)Moreover, the (overloaded) : � : functional is a bifunctor (see also Def. 2) andplays a central role in categorical speci�cations of datatypes; it is de�ned bymeans of the split functional hf ; gi.h:; :i(C j Type)(f : C ! A; g : C ! B) : C ! (A� B)::= � x : C : (f (x ); g(x )):� :(A;B ;C ;D j Type)(f : A! C ; g : B ! D) : (A� B)! (C �D)::= hf � fstA;B ; g � sndA;BiThe specifying rules for coproducts A+B with injections inlA;B (a) and inrA;B (b)are dual to the ones for products. Elimination on coproducts is named elim+and its non-dependent variant [f ; g ] is pronounced \case f or g".[:; :](A;B ;C j Type) : (A! C )! (B ! C )! (A+ B)! C::= elim+� :A+B: CSimilar to the case of products, the symbol + is overloaded to also denote thebifunctor on coproducts.:+ :(A;B ;C ;D j Type; f : A! B ; g : C ! D) : (A+ C )! (B +D)::= [inlB ;D � f ; inrB ;D � g ] 5



Unlike products or coproducts, the datatype of parametric lists with con-structors nil and ( : :: : ) is an example of a genuinely recursive datatype.L : Type ! Typenil : �A : Type: L(A)( : :: : ) : �A j Type: A� L(A)! L(A)These declarations correspond to formation and introduction rules and com-pletely determine the form of list elimination,2elimL : �A j Type; C : L(A)! Type:(C (nilA)� (�(a; l) : (A� L(A)): C (l)! C ( a :: l ))! � l : L(A): C (l)and of the rewrites corresponding to equality rules:elimLC f nilA ; fst(f )elimLC f ( a :: l ) ; snd(f ) (a; l) (elimLC f l)The non-dependent variants recL and homL of list elimination are used to encodestructural recursive functions on lists.recL(A;C j Type)(f : C � ((A� L(A))! C ! C )) : L(A)! C::= elimL� :L(A): C (f )homL(A;C j Type)(f : C � ((A� C )! C )) : L(A)! C::= recL(fst(f ); �(a; ) : A� L(A); y : C : snd(f )(a; y))The name homL stems from the fact that homL(f ) can be characterized as a(unique) homomorphism from the algebra associated with the L datatype intoan appropriate target algebra speci�ed by f [28]. Consider, for example, theprototypical de�nition of the mapL functional by means of the homomorphicfunctional homL.mapL(A;B j Type)(f : A! B) : L(A)! L(B)::= homL(nilB ; �(a; y) : (A� L(B)): f (a) :: y )In the rest of this paper we assume the inductive datatypes 0 , 1 , �, +, B , N,and L together with the usual standard operators and relations on these typesto be prede�ned.N -ary Products and Coproducts. Using higher-order abstraction, type universes,and parametric lists it is possible to internalize n-ary versions of binary typeconstructors. Consider, for example, the n-ary product A1 � : : : � An . It is2 Bindings may also employ pattern matching on pairs; for example, a is of type Aand l of type L(A) in the binding (a; l) : (A� L(A)).6



constructed from the iterator 
(:) applied to a list containing the types A1through An . 
(:) : L(Type)! Type ::= homL( 1 ; �)�(:) : L(Type)! Type ::= homL( 0 ; +)�(l) represents an n-ary coproduct constructor. Furthermore, pairing may begeneralized to tupling, and there is a generalized projection function on tuplesproj : P , whereP ::= � l j L(Type): 
(l) ! �n : N; p : (n < len(l)) : (nth l n p)The type (n < m) is a proposition which holds if and only if the natural numbern is less than m, and the function that selects the nth element of a list is of type�A j Type; l : L(A); n : N: (n < len(l)) ! A. In the de�nition of proj belowabort stands for a term that uses the contradiction (n < 0) to construct a termof the required type.proj (l j L(Type)) : P(l) ::=elimLP (� : 1 ; n : N; p : (n < 0) : abort n p (nth nilType n p))(�A : Type; l 0 : L(Type); y : P(l 0):let l ::= A :: l 0 ;C ::= �m : N: �q : (m < len(l)) : (nth l m q)in � a : 
(l) ; n : N; p : (n < len(l)) :elimNC (� : (0 < len(l)) : fst(a))(� n : N; : C (n):� q : (succ(n) < len(l)) : (y snd(a) n q))n p)The main recursion in this de�nition is along the (hidden) list of types l thatare used to describe the generalized product 
(l) , and the elimination on elimNruns in parallel to the main recursion. The de�nition of proj clearly demonstratesthat fully synthesized terms are, mainly for the mixture of functional parts andproofs, close to incomprehensible. In these cases, we only state characteristicequations and we omit the proof parts. Using these conventions the de�nition ofthe generalized projection function proj simpli�es to two equations:proj a 0 = fst(a)proj a succ(n) = proj snd(a) nThe mapL function on lists can be used to generalize : + : and : � : to alsowork for the n-ary coproduct �(:) and the n-ary product 
(:) , respectively.Let A j Type, D ;R : A! Type, f : �x : A: D(a) ! R(a), then recursion alongthe structure of the n-ary type constructors is used to de�ne these generalized7



mapping functions.map+(f ) : (� l j L(A): �(mapL D l) ! �(mapL R l) )::= elimL I0 (�(a; l); y : f (a) + y)map�(f ) : (� l j L(A): 
(mapL D l) ! 
(mapL R l) )::= elimL (� : �) (�(a; l); y : f (a) � y)Although these mappings explicitly exclude tuples with independent types, theyare su�ciently general for the purpose of this paper.3 Semantic PolytypyIn this section we describe a type-theoretic framework for formalizing polytypicprograms and proofs. Datatypes are modeled as initial objects in categories offunctor-algebras [14], and polytypic constructions|both programs and proofs|are formulated using initiality without reference to the underlying structure ofdatatypes. We exemplify polytypic program construction in this type-theoreticframework with a polytypic version of the well-knownmap function. Other poly-typic developments from the literature (e. g. [2]) can be added easily. Further-more we generalize some categorical notions to also work for eliminations andlift a reection and a fusion theorem to this generalized framework. It is, how-ever, not our intention to provide a complete formalization of category theoryin type theory; we only de�ne certain categorical notions that are necessary toexpress the subsequent polytypic developments. For a more elaborated accountof category theory within type theory see e. g. [8].Functors are twofold mappings: they map source objects to target objects andthey map morphisms of the source category to morphisms of the target cate-gory with the requirement that identity arrows and composition are preserved.Here, we restrict the notion of functors to the category of types (in a �xed, butsu�ciently large type universe Typei ) with (total) functions as arrows.De�nition 1 (Functor).Functor : Type ::=�Fobj : Type ! Type;Farr : �A;B j Type: (A! B)! Fobj (A)! Fobj (B):�A j Type: Farr (IA) := IFobj (A)^ �A;B ;C j Type; g : A! B ; f : B ! C :Farr (f � g) := Farr (f ) � Farr (g)Bifunctors. Generalized functors are functors of type n timesz }| {Type � : : :� Type ! Type;they are used to describe datatypes with n parameter types. In order to keep thetechnical overhead low, however, we restrict ourselves in this paper to modeling8



datatypes with one parameter type only by means of bifunctors. Bifunctors arefunctors of type Type � Type ! Type or, using the isomorphic curried form, oftype Type ! Type ! Type. For a bifunctor, the functor laws in De�nition 1take the following form:De�nition 2 (Bifunctor).Bifunctor : Type ::=�FFobj : Type ! Type ! Type;FFarr : �A;B ;C ;D j Type: (A! B)! (C ! D)!FFobj A C ! FFobj B D :�A;B j Type: FFarr IA IB := IFFobj A B^ �A;B ;C ;D ;E ;F j Type;h : A! B ; f : B ! C ; k : D ! E ; g : E ! F :FFarr (f � h)(g � k) := (FFarr f g) � (FFarr h k)Many interesting examples of bifunctors are constructed from the unit type andfrom the product and coproduct type constructors. Seeing parameterized listsas cons-lists with constructors nilA : L(A) and consA : A� L(A)! L(A) we getthe bifunctor FFL.Example 1 (Polymorphic Lists). There exists a proof term p such that:FFL : Bifunctor ::=(�A;X : Type: 1 + (A�X );�A;B ;X ;Y j Type; f : A! B ; g : X ! Y : I1 + (f � g);p)The construction of the proof term p of bifunctoriality closely follows the struc-ture of the de�nition of �1(FFL); i.e. the proof uses coproduct induction elim+followed by product induction in the (A�X ) case; the resulting base equalitiesfollow trivially from normalization.Fixing the �rst argument in a bifunctor yields a functor.De�nition 3. For all (FFobj ;FFarr ; q) : Bifunctor and A : Type there exists aproof term p such thatinduced(FFobj ;FFarr ; q)(A) : Functor ::=(FFobj (A); �X ;Y j Type; f : X ! Y : FFarr IA f ; p)Example 2. FL : Type ! Functor ::= induced(FFL)Functor Algebras. Using the notion of Functor one de�nes the concept of data-type (see Def. 8) without being forced to introduce a signature, that is, namesand typings for the individual sorts (types) and operations involved. The centralnotion is that of a functor algebra Alg(F ;X ) , where F is a functor. The secondtype de�nition below just introduces a name for the signature type �C(F ;T )of so-called catamorphisms (j : j). 9



De�nition 4. Let F : Functor and X ;T : Type; then:Alg(F ;X ) : Type ::= Fobj (X )! X�C(F ;T ) : Type ::= �X j Type: Alg(F ;X ) ! (T ! X )The initial F -algebra, denoted �, is an initial object in the category of F -algebras. That is, for every F -algebra f there exists a unique object, say (j f j),such that the following diagram commutes:F (T )F(j f j) �� � // T(j f j)��F (X ) f // XIn the case of lists, the initial FL(A)-algebra �L is de�ned by case split (seeSection 2) and the corresponding catamorphism is a variant of the homomorphicfunctional on lists.Example 3.�L(A j Type) : Alg(FL(A);L(A)) ::= [nilA; consA](j : j)L(A j Type) : �C(FL(A);L(A)) ::= �X j Type; f : Alg(FL(A);X ) :homL(f � inl1;A�X ; f � inr1;A�X )Paramorphisms correspond to structural recursive functions, and can be ob-tained by computing not only recursive results as is the case for catamorphismsbut also the corresponding data structure. The de�nition of functor algebrasand signatures for paramorphisms are a straightforward generalization of De�-nition 4.De�nition 5. Let F : Functor and X ;T : Type; then:AlgP (F ;T ;X ) : Type ::= Fobj (T �X )! X�P(F ;T ) : Type ::= �X j Type: AlgP (F ;T ;X ) ! (T ! X )Any F -algebra f can be lifted to the corresponding notion for paramorphismsusing the function " (:) in De�nition 6.De�nition 6. Let F : Functor, T ;X : Type; then:" (f : Alg(F ;X ) ) : AlgP(F ;T ;X ) ::= f � Farr (�2T ;X )It is well-known that the notions of catamorphisms and paramorphisms are in-terchangeable, since one can de�ne a paramorphism [h : i] from a catamorphism(j : j) and vice versa.(j : j) : �C(F ;T ) ::= �X j Type: [h : i] � " (:)[h : i] : �P(F ;T ) ::= �X j Type; g : AlgP (F ;T ;X ) ; t : T :�2((j � z : F (T �X ): (t ; g(z )) j)(t))10



F (T )F(RC (f )) �� � // TRC (f )��F (�x : T : C (x ) ) �C (f ) // �x : T : C (x )Fig. 1. Universal Property.Eliminations, however, are a genuine generalization of both catamorphisms andparamorphisms in that they permit de�ning functions of dependent type. In thiscase, the notion of functor algebras generalizes to a type AlgE(F ;C ; �) thatdepends on an F -algebra �, and the signature type �E(F ;T ; �) for eliminationsis expressed in terms of this generalized notion of functor algebra.De�nition 7. Let F : Functor, T : Type, C : T ! Type, � : Alg(F ;T ) ; then:AlgE (F ;C ; �) : Type ::= �z : Fobj (�x : T : C (x ) ): C ((� � Farr (�1T ;C )) z )�E(F ;T ; �) : Type ::= �C : T ! Type: AlgE (F ;C ; �) ! �x : T : C (x )These de�nitions simplify to the corresponding notions for paramorphisms (seeDef. 5) when instantiating C with a non-dependent type of the form (� : T : X ).Moreover, the correspondence between the induction hypotheses of the intuitivestructural induction rule and the generalized functor algebras AlgE(FL;C ; �L)is demonstrated in [19].The de�nition of �C below is the key to using the usual categorical no-tions like initiality, since it transforms a generalized functor algebra f of typeAlgE(F ;C ; �) to a functor algebra Alg(F ; �x : T : C (x ) ) .3De�nition 8. Let F : Functor, T : Type, � : Alg(F ;T ) , elim : �E(F ;C ; �) .Furthermore, let C : T ! Type and f : AlgE(F ;C ; �) ; then:�C (f ) : Alg(F ; �x : T : C (x ) ) ::= h� � Farr (�1T ;C ); f iNow, we get the initial algebra diagram in Figure 1 [19], where RC (f ) denotesthe unique function which makes this diagram commute. It is evident that the�rst component must be the identity. Thus, RC (f ) is of the form hI ; elimC (f )iwhere the term elimC (f ) is used to denote the unique function which makesthe diagram commute for the given f of type AlgE(F ;C ; �) . Altogether, theseconsiderations motivate the following universal property for describing initiality.3 Here and in the following the split function h:; :i is assumed to also work for functionarguments of dependent types; i.e.hf ; gi : �x : B : C (x ) ::= (f (x ); g(x )) whereA;B : Type, C : B ! Type, f : A! B , g : �x : A: C (f (x )), and x : A.11



De�nition 9.universalE(F ;T ; �) : Prop ::=�C : T ! Type; f : AlgE(F ;C ; �) :91 E : (�x : T : C (x )):let RC (f ) ::= hI ; E i inRC (f ) � � := �C (f ) � F (RC (f ))Witnesses of this existential formula are denoted by elimC (f ) and RC (f ) is de-�ned by hI ; elimC (f )i .Reection and Fusion. Eliminations enjoy many nice properties. Here, we con-centrate on some illustrative laws like reection or fusion, but other laws forcatamorphisms as described in the literature can be lifted similarly to the caseof eliminations.Lemma 1 (Reection). Let universalE(F ;T ; �) be inhabited; then:R� :T : T ( " (�) ) � �2T ;T := copyTwhere copyT ::= � x : T : (x ; x )This equality follows directly from uniqueness and some equality reasoning.copyT � �:= h� � F (�1T ;T ) � F (copyT ); � � F (�2T ;T ) � F (copyT )i:= h� � F (�1T ;T ); � � F (�2T ;T )i � F (copyT ):= �C ( " (�) ) � F (copyT )The fusion law for catamorphism is central for many program manipula-tions [2]. Now, this fusion law is generalized to also work for eliminations.Lemma 2 (Fusion). For functor F and type T, let C ;D : T ! Type, f :AlgE(F ;C ; �) , g : AlgE(F ;D ; �) , h : �x : T : C (x ) ! �x : T : D(x ) , andassume that the following holds:H1 : universalE(F ;T ; �)H2 : �S : Type;E : S ! Type; u; v : AlgE(F ;E ; �) :u := v ) elimE (u) := elimE (v)Then: h � �C (f ) := �D (g) � F (h) ) h �RC (f ) := RD(g)The proof of this generalized fusion theorem is along the lines of the fusiontheorem for catamorphisms [2].F (T )� �� F(RC (f ))// F (�x : T : C (x ) )�C (f )�� F(h) // F (�x : T : D(x ) )�D (g)��T RC (f ) // �x : T : C (x ) h // �x : T : D(x )12



This diagram commutes because the left part does (by de�nition of elimination)and the right part does (by assumption). (Extensional) equality of h � RC (f )and RD(g) follows from the uniqueness part of the universality property and thefunctoriality of F . The extra hypothesis H2 is needed for the fact that the binaryrelation := (see Section 2) on functions is not a congruence in general.Catamorphisms and Paramorphisms. A paramorphism is simply a non-depend-ent version of an elimination scheme and a catamorphism is de�ned in the usualway from a paramorphism.De�nition 10. Let universalE(F ;T ; �) be inhabited and X : Type; then:[h : i] : �P(F ;T ) ::= �X j Type: elim(� :T : X )(j : j) : �C(F ;T ) ::= �X j Type: [h : i] � " (:)Lemma 3. If f : Alg(F ;X ) , g : AlgP (F ;T ;X ) , and universalE(F ;T ; �) isinhabited then [h : i] and (j : j) are the unique functions satisfying the equations:(j f j) � � := f � F ((j f j))[h g i] � � := g � F ( hIT ; [h g i]i )Example 4. Let FF : Bifunctor then the polytypic map function is de�ned bymap(f ) : T (A)! T (B) ::= (j � � F (f )(IT(B)) j)Uniform Speci�cation of Datatypes in ECC. Now, the previous developmentsare used to specify, in ECC , classes of parametric datatypes in a uniform way.The exact extension of this class is unspeci�ed, and we only assume that thereis a name, say dt , and a describing bifunctor, say FFdt , for each datatype in thisclass; see Figure 2. Then it is straightforward to declare three constants T , �,elim corresponding to formation, introduction, and elimination rule, respectively(see Figure 2). Thus, we are left with specifying an equality rule. The equalityinduced by the diagram in Figure 1 iselimC (f ) � � := f � F (RC )It gives the following reduction (computation) rule by expressing the equalityon the point level and by replacing equality by reducibility (x : F (T )):elimC (f )(�(x )) ; f (F RC x )There is a slight complication, however, since the left-hand side of this reductionrule is of type C (�(x )) while the right-hand side is of type C (�((F (�1T ;C ) �F (RC (f ))) x ). These two types, although provably Leibniz-equal, are not con-vertible. Consequently, an additional reduction rule, which is justi�ed by thefunctoriality of F , is needed. This extraneous reduction rule is not mentionedfor the extension of ECC with datatypes in [19], since the implicit assumptionis that a reduction rule is being added for each functor of a syntactically closedclass of functors. In this case, the types of the left-hand and right-hand sides areconvertible for each instance. Since we are interested in specifying datatypes uni-formly, however, we are forced to abstract over the class of all functors, therebyloosing convertibility between these types.13



Let name : Type and FF : name ! Bifunctor ; then de�ne the induced functorF (dt : name) : Type ! functor ::= induced(FFdt )Formation: T : name ! Type ! TypeIntroduction: � : �dt j name; A j Type: Alg(Fdt (A);Tdt (A))Elimination: elim : �dt j name; A j Type: �E(Fdt (A);Tdt(A); �dt;A)Equality: (C : T ! Type)(Fdt(A)(�1T ;C ) � Fdt (A)(RC (f ))) ; IFdt (A)(Tdt (A))elimC (f )(�(x )) ; f (Fdt(A) RC x )Fig. 2. Specifying Datatypes in ECC4 Syntactic PolytypyThe essence of polytypic abstraction is that the syntactic structure of a datatypecompletely determines many developments on this datatype. Hence, we specify asyntactic representation for making the internal structure of datatypes explicit,and generate, in a uniform way, bifunctors from datatype representations. Proofsfor establishing the bifunctoriality condition or the unique extension propertyfollow certain patterns. The order of applying product and coproduct inductionsin the proof of the existential direction of the unique extension property, forexample, is completely determined by the structure of the underlying bifunctor.Hence, one may develop specialized tactics that generate according proofs sep-arately for each datatype under consideration. Here, we go one step further bycapturing the general patterns of these proofs and internalizing them in typetheory. In this way, polytypic proofs of the applicability conditions of the theoryformalized in this section are constructed once and for all, and the proof termsfor each speci�c datatypes are obtained by simple instantiation.These developments are used to instantiate the abstract parameters nameand FF in order to specify a syntactically characterized class of datatypes. Fixingthe shape of datatypes permits de�ning polytypic constructions by recursing(inducting) along the structure of representations. The additional expressivenessis demonstrated by means of de�ning polytypic recognizers and a polytypic noconfusion theorem.In order to keep subsequent developments manageable and to concentrate onthe underlying techniques we choose to restrict ourselves to representing the|rather small|class of parametric, polynomial datatypes; it is straightforward,14



however, to extend these developments to much larger classes of datatypes likethe ones described by (strictly) positive functors [5, 19]. The only restriction onthe choice of datatypes is that the resulting reduction relation as speci�ed inFigure 2 is strongly normalizing. The developments in this section are assumedto be implicitly parameterized over the entities of Figure 2.A natural representation for polynomial datatypes is given by a list of lists,whereby the j th element in the i th element list determines the type of the j th se-lector of the i th constructor. The type Rep below is used to represent datatypeswith n constructors, where n is the length of the representation list, and the typeSel restricts the arguments of datatype constructors to the datatype itself (atrecursive positions) and to the polymorphic type (at non-recursive positions), re-spectively. Finally, rec and nonrec are used as suggestive names for the injectionfunctions of the Kind coproduct.De�nition 11 (Representation Types).Kind : Type ::= rec : 1 + nonrec : 1Sel : Type ::= L(Kind)Rep : Type ::= L(Sel)Consider the representations dtL for lists and dtB binary trees below. The listsnil and (nonrec :: rec :: nil) in the representation dtL of the list datatype, forexample, describe the signatures of the list constructors nil and ( : :: : ), respec-tively.Example 5. dtL : Rep ::= nil :: (nonrec :: rec :: nil) :: nildtB : Rep ::= nil :: (nonrec :: rec :: rec :: nil) :: nilThe de�nitions below introduce, for example, suggestive names for the formationtype and constructors corresponding to the representation dtB in Example 5.Example 6.B : Type ! Type ::= T (dtB )leaf (A : Type) : 1 ! B(A) ::= (�dtB ;A � inl1;A+B(A)+B(A)+0)node(A j Type) : (A� B(A)� B(A)� 1 )! B(A) ::=(�dtB ;A � inr1;A+B(A)+B(A)+0 � inlA+B(A)+B(A);0)Argument types ArgA;X (s) of constructors corresponding to the selector rep-resentation s are computed by placing the (parametric) type A at non-recursivepositions, type X at recursive positions, and by forming the n-ary product ofthe resulting list of types. 15



De�nition 12.Arg(A;X : Type)(s : Sel) : Type ::= 
(mapL (rec+ X A) s)Next, a polytypic bifunctor FF is computed uniformly for the class of repre-sentable datatypes. The object part of these functors is easily computed byforming the n-ary sum of the list of argument types (products) of constructors.Likewise the arrow part of FF is computed by recursing over the structure ofthe representation type Rep. This time, however, the recursion is a bit moreinvolved, since all the types of resulting intermediate functions depend on theform of the part of the representation which has already been processed.Proposition 1. For all dt : Rep there exists a proof object p such thatFF (dt) : Bifunctor ::= (FF dtobj ;FF dtarr ; p)where FF dtobj ::= (�A;X : Type: �() �mapL(ArgA;X )) dtFF dtarr ::= �A;B ;X ;Y j Type; f : A! B ; g : X ! Y :(map+ArgA;X ; ArgB;Y �map�(rec+ A X ); (rec+ B Y ))(elim+(� k :Kind: (rec+ A X k)!(rec+B Y k)) f g)The inductive construction of the bifunctoriality proof p parallels the structureof the recursive de�nition of FF (dt). We present one part of this proof|thepreservation of identities|in more detail. Let dt : Rep, and A;X : Type. Thegoal is to show thatFF dtarr IA IX := IFFdtobj A XThe proof is by induction on the representation type dt . The base case wheredt = nil represents an empty datatype and hence the proposition is triviallytrue. In the induction step one has to prove that8 x : FF s::lobj : FF s::larr IA IX x = IFF s::lobj A X xgiven that the proposition holds for l . The left-hand side of this equation evalu-ates to(map�(elim+C IA IX ) + FF larr IA IX ) xwhere C ::= � k : Kind : (rec+ A X k)! (rec+A X k)We proceed by a coproduct induction on x . The inr case can be proved easilyusing the induction hypothesis. For the inl case we have to show that8 y : ArgA;X (s): map�(elim+C IA IX ) y = IArgA;X (s) yThe next step is to induct on the representation s of the argument type of aconstructor. The base case corresponds to a zero-place constructor and holdstrivially. The induction step requires us to prove that8 y : ArgA;X (k :: l 0): map�k ::l0(elim+C IA IX ) y = IArgA;X (k ::l0) y16



under the induction hypothesis that the proposition holds for l 0. The left-handside of this equation evaluates to(elim+C IA IX k �map�l0 (elim+C IA IX )) yThe induction hypothesis reduces the right-hand side function to IArgA;X (l0) andby simple case analysis on k one can prove thatelim+C IA IX k = Irec+ A X kThus, the goal now reads(Irec+ A X k � IArgA;X (l0)) y = IArgA;X (k ::l0) yThis reduces to the trivial goal(fst(y); snd(y)) = yThis polytypic proof has been constructed in Lego using 14 re�nement steps.The second part of the bifunctoriality proof|preservation of composition|runs along the same line. More precisely, the induction proceeds by inductingon the number of coproduct inductions elim+ as determined by the length ofthe representation type dt followed by an induction on the number of productinductions elim� in the induction step; the outer (inner) induction employs onecoproduct (product) induction elim+ (elim�) in its induction step.n-th Constructor. Example 6 suggests encoding a function for extracting the n-th constructor from �dt . Informally, this function chains n right-injections witha �nal left-injection: c(n) � �dt;A � inr � : : : � inr| {z }n times �inlIt is clear how to internalize the : : : by recursing on n, but the complete de�nitionof this function is somewhat involved for the dependency of the right injectionsfrom the position i and the types of intermediate functions (see also Example 6).Thus, we restrict ourselves to only state the type of this function.c : �dt j Rep; A j Type; n : N; p : (n < len(dt)) :ArgA;Tdt (A) (nth dt n p)! Tdt (A)Polytypic Recognizer. The explicit representation of datatypes permits de�ninga function for computing recognizer functions for all (representable) datatypes.First, the auxiliary function r traverses a given representation list and returnsa pair (f ; i) consisting of a recognizer f and the current position i in the repre-sentation list. 17



De�nition 13. Let dt : Rep, A : Type, n : N, and p : (n < len(dt)) .rcg(dt ;A;n; p) : Alg(Fdt (A);Prop) ::= �1(rdtA;n;p)where r(dt ;A;n; p) : Alg(Fdt (A);Prop) � NrnilA;n;p = (� x : 0 : arbitraryProp x ; zero)r s::lA;n;p = let (f ; i) = r lA;n;p in([� : ArgA;Prop(s): n = i ; f ]; succ(i))Now, it is a simple matter to de�ne the polytypic recognizer by applying thepolytypic catamorphism on rcg .De�nition 14 (Polytypic Recognizer).R(dt j Rep; A j Type; n : N; p : (n < len(dt)) ) : Tdt (A)! Prop ::=(j rcgdtA;n;p j)This function satis�es the following characteristic properties for recognizers.Proposition 2. Let dt j Rep, A j Type, i ; j : N; furthermore p : (i < len(dt)) ,q : (j < len(dt)) , a : ArgA;Tdt (A)(nth dt i p), then:1. Ri;p ci;p(a)2. i 6= j ) : (Rj ;q ci;p(a))Polytypic No Confusion. Now, we have collected all the ingredients for statingand proving a polytypic no confusion theorem once and for all.Theorem 1 (Polytypic No Confusion).�dt j Rep; A j Type; i ; j : N; p : (i < len(dt)) ; q : (j < len(dt)) ;a : ArgA;Tdt(A) (nth dt i p); b : ArgA;Tdt (A) (nth dt j q)i 6= j ) ci;p(a) 6= cj ;q (b)Given the hypothesis H : ci;p(a) = cj ;q(b) one has to construct a proof term of?. According to Proposition 2 this task can be reduced to �nding a proof term forRj ;q ci;p(a). Furthermore, for hypothesis H , this goal is equivalent with formulaRj ;q cj ;q(a), which is trivially inhabited according to Proposition 2. This �nishesthe proof. Again, each of these steps correspond to a re�nement step in the Legoformalization.Notice that the proof of the polytypic bifunctoriality property and the poly-typic no confusion theorem are as straightforward as any instance thereof forany datatype and for any legitimate pair of datatype constructors.18



5 ConclusionsThe main conclusion of this paper is that the expressiveness of type theory per-mits internalizing many interesting polytypic constructions that are sometimesthought to be external and not formalizable in the base calculus [22, 24]. Inthis way, polytypic abstraction in type theory has the potential to add anotherlevel of exibility in the reusability of formal constructions and in the designof libraries for program and proof development systems. We have demonstratedthe feasibility of our approach using some small-sized polytypic constructions,but, obviously, much more work needs to be done to build a useful library usingthis approach. Most importantly, a number of polytypic theorems and polytypicproofs thereof need to be identi�ed.Although we have used a speci�c calculus, namely the Extended Calculusof Constructions, for our encodings of semantically and syntactically polytypicabstraction, similar developments are possible for other type theories such asMartin-L�of type theories [18] with universes or the Inductive Calculus of Con-structions.Semantically polytypic developments are formulated using initiality withoutreference to the underlying structure of datatypes. We have demonstrated howto generalize some theorems from the literature, like reection and fusion forcatamorphisms, to corresponding theorems for dependent paramorphisms (elim-inations). These developments may not only make many program optimizations,like the fusion theorem above, applicable to functions of dependent type but|forthe correspondence of dependent paramorphisms with structural induction|itmay also be interesting to investigate usage of these generalized polytypic theo-rems in the proof development process; consider, as a simple example, a polytypicconstruction of a double induction scheme from structural induction.Syntactic polytypism is obtained by syntactically characterizing the descrip-tions of a class of datatypes. Dybjer and Setzer [5] extend the notion of induc-tively de�ned sets (datatypes) that are characterized by strictly positive func-tors [19, 21] and provide an axiomatization of sets de�ned through induction-recursion. For the purpose of demonstration, however, we have chosen to dealwith a special case of datatypes|the class of polynomial datatypes|in this pa-per, but it is straightforward, albeit somewhat more tedious, to generalize thesedevelopments to support larger classes. From a technical point of view, it wasessential to be able to recurse along the structure of arbitrary product typesin order to encode in type theory many : : : as used in informal developments.We solved this problem by describing product types A1 � : : : � An by a listl ::= A1 :: : : : :: An of types and by encoding a function 
(l) for computingthe corresponding product type. These developments may also be interesting forother applications such as statically typing heterogeneous lists (or S-expressions)within type theory.The �rst step towards syntactic polytypism consists in �xing a representationtype for the chosen class of datatypes; this representation (or abstract syntax)can be understood as a simple kind of meta-level representation, since it makesthe internal structure of datatype descriptions amenable for inspection. In the19
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