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Abstract. This paper is concerned with a mechanized formal treat-

ment of the transformational software development process in a uni-

�ed framework. We utilize the PVS system to formally represent, verify

and correctly apply generic software development steps and development

methods from di�erent existing transformational approaches. We illus-

trate our approach by representing the well-known divide-and-conquer

paradigm, two optimization steps, and by formally deriving a mergesort

program.
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1 Introduction

The transformational approach to software development is widely accepted in

modern software engineering. The idea is to start from an abstract formal re-

quirement speci�cation and to apply a series of correctness-preserving software

development steps to �nally obtain an executable and e�cient program.

This paper is concerned with a fully formally mechanized treatment of the

transformational development process in a uni�ed framework. The speci�cation

system PVS is utilized as a vehicle to formalize, verify, and apply well-known

generic software development steps and development methods of di�erent kind

and complexity. Applying formal methods to the transformational process is

important since it greatly increases the con�dence in transformations and their

application. Experience has shown the bene�ts of formal approaches, since we

have found errors in published (paper-and-pencil) proofs of transformations and

their application.
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Development steps from di�erent transformational approaches (PROSPEC-

TRA [4],KIDS [14],CIP [10],BM calculus [2]) are integrated into our frame-

work. They can be grouped into four categories: the �rst group of development

steps consists of problem solving strategies transforming a (non-constructive)

requirement speci�cation into a functional speci�cation. Among them, one can

�nd \algorithm theories" [15] used in the KIDS system such as generate-and-

test, global search, divide-and-conquer, a general scheme for backtracking algo-

rithms [1] or simpler transformations such as split-of-postcondition [4]. In the

second group there are transformations which modify and optimize functional

speci�cations [2, 10]. The third group consists of a library of implementations

of standard data structures and operations (for example, di�erent implementa-

tions for �nite sets) while the fourth group is concerned with the translation of

functional speci�cations into imperative programs.

In this paper we illustrate our approach by a formal representation of the

general programming paradigm divide-and-conquer using a hierarchy of generic

PVS theories, and by two selected optimization steps. These steps are then

applied to derive a mergesort program from a formal requirement speci�cation.

All generic development steps are represented within parameterized PVS

theories which specify the semantic requirements on the parameters by means of

assumptions and de�ne the result of the transformation. Based on the semantic

requirements on the parameters, correctness of the generic transformation step

can be proved. Application of such a generic step to a given problem is then

carried out by providing a concrete instantiation for the parameters and verifying

that it satis�es the requirements. This paper extends [3] in several respects: �rst,

the divide-and-conquer scheme is generalized to include n-ary decomposition

and composition operators for an arbitrary n. Second, a hierarchy of divide-and-

conquer theories is presented which enables a much more convenient application

to speci�c problems. Third, the development of a sorting algorithm by applying

several development steps is outlined, and fourth, the formal representation of

two selected optimization steps is described.

We proceed as follows: the next section gives a brief introduction to PVS and

presents the general form of requirement speci�cations. Sect. 3 is concerned with

the representation of the divide-and-conquer paradigm while in Sect. 4 a formal

treatment of two optimization steps is discussed. These transformation patterns

are then applied in Sect. 5 to derive a mergesort program. Sect. 6 concludes. All

PVS theories and proof scripts are available from the author.

2 Preliminaries

First, a brief introduction to PVS, the formal framework we are working in, is

provided, then the general form of requirement speci�cation is presented.

2.1 A Brief Introduction to PVS

The PVS system [8,9] combines an expressive speci�cation language with an in-

teractive proof checker that has a reasonable amount of theorem proving capabil-



ities. The PVS speci�cation language builds on classical typed higher-order logic

with the usual base types, bool, nat, among others, the product type construc-

tor [A,B] and the function type constructor [A!B]. The type system of PVS

is augmented with dependent types and abstract data types. A distinctive feature

of the PVS speci�cation language are predicate subtypes: the subtype fx:A |

P(x)g consists of exactly those elements of type A satisfying predicate P. Predi-

cate subtypes are used, for instance, for explicitly constraining the domains and

ranges of operations in a speci�cation and to de�ne partial functions. Predicates

in PVS are elements of type bool, and pred[A] is a notational convenience

for the function type [A!bool]. Sets are identi�ed with their characteristic

predicates, and thus the expressions pred[A] and set[A] are interchangeable.

For a predicate P of type pred[A], the notation (P) is just an abbreviation for

the predicate subtype fx:A | P(x)g. In general, type-checking with predicate

subtypes is undecidable; the type-checker generates proof obligations, so-called

type correctness conditions (TCCs) in cases where type con
icts cannot imme-

diately be resolved. A PVS expression is not considered to be fully type-checked

unless all generated TCCs have been proved. PVS only allows total functions,

hence it must be ensured that all (recursive) functions terminate. For this pur-

pose, a well-founded ordering or a measure function is used. The de�nition of

a recursive function f generates a TCC which states that the measure function

applied to the recursive arguments decreases with respect to a well-founded or-

dering. A built-in prelude and loadable libraries provide standard speci�cations

and proved facts for a large number of theories. Speci�cations are realized as

possibly parameterized PVS theories and theory parameters can be constrained

by means of assumptions. When instantiating a parameterized theory, TCC's

are automatically generated according to the assumptions.

Proofs in PVS are presented in a sequent calculus. There exists a large

number of atomic commands (for quanti�er instantiation, automatic conditional

rewriting, induction etc.), and in addition PVS has an LCF-like strategy lan-

guage for combining inference steps into more powerful proof strategies. The

built-in strategy GRIND, for example, combines rewriting with propositional sim-

pli�cation using BDDs and decision procedures.

2.2 Requirement Speci�cation

Initial requirement speci�cations are given as quadruples

P = (D : TYPE ;R : TYPE ; I : pred [D ];O : [D ;R ! bool ])

where D and R denote the problem domain and range, respectively, I is a pred-

icate on D describing admissible inputs, and O is the input/output relation of

the problem. A solution to such a problem is either

1. a function f : D ! R such that 8 x : (I ):O(x ; f (x ))

2. or a function F : D ! set [R] such that 8 x : (I ):F (x ) = fz : R j O(x ; z )g:

In the �rst case, function f calculates one solution to the problem, while in the

latter case, function F produces the set of all solutions to the problem.



3 The Divide and Conquer Paradigm

The well-known algorithmic paradigm divide-and-conquer [13, 15] is based on

the principle of solving primitive problem instances directly, and large problem

instances by decomposing them into \smaller" instances, solving them indepen-

dently and composing the resulting solutions. Typically, the smaller problem

instances are solved in the same way as the input problem which results in a

recursive algorithm. However, some of the subproblem instances could be solved

in a di�erent way. Fig. 1 illustrates the paradigm.
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Fig. 1. Divide-and-Conquer Paradigm

3.1 The General Scheme

Our formalization follows [13]. However, our scheme is more general allowing the

decomposition operator to produce an arbitrary but �xed number of subprob-

lems.
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Our most general theory uses a decomposition operator which decomposes a

problem instance x into an arbitrary but �xed number N (N � 1) of subprob-

lem instances x

1

; : : : ; x

n

and a component problem instance x

c

. The component

problem instance x

c

is solved directly by G

c

producing an output z

c

, and the

problem instances x

1

; : : : ; x

n

are solved recursively producing a vector of solu-

tions z

1

; : : : ; z

n

which are then composed by the composition operator to form a

solution to the input problem x . To ensure termination of this process a measure



function on problem domain D is required. This completes the parameter list of

the general scheme.

1

1
% parameter list of general divide-and-conquer theory

D:TYPE, R:TYPE, I:pred[D], O:[D,R -> bool], % problem spec

Dc:TYPE, Rc:TYPE, Ic:pred[Dc], Oc:[Dc,Rc -> bool],% component problem

Gc : [(Ic) -> Rc], % solution of (Dc,Rc,Ic,Oc)

N : posnat, % number of subproblems

decompose : [D -> [Dc, [below(N) -> D]]], % decomposition operator

dir_solve : [D -> R], % primitive solution

compose : [Rc, [below(N) -> R] -> R], % composition operator

primitive? : pred[D], % set of primitive problems

mes : [D -> nat] % termination measure on D

Five assumptions specify the semantic requirements:

2a1: ASSUMPTION I(x) ^ : primitive?(x)

) 8n. mes(decompose(x).2(n)) < mes(x)

a2: ASSUMPTION Ic(xc) ) Oc(xc, Gc(xc))

a3: ASSUMPTION I(x) ^ primitive?(x) ) O(x, dir_solve(x))

a4: ASSUMPTION I(x) ^ : primitive?(x) ^ Oc(decompose(x).1, zc)

) 8v.(8n. O(decompose(x).2(n), v(n))) ) O(x, compose(zc,v))

a5: ASSUMPTION I(x) ^ : primitive?(x)

) Ic(decompose(x).1) ^ 8n. I(decompose(x).2(n))

They state that

1. all subproblems created by the decomposition operator are smaller than the

original problem with respect to the measure mes.

2. function Gc solves the component problem (D

c

;R

c

; I

c

;O

c

).

3. a primitive problem can be solved by dir solve.

4. solutions to the subproblems z

1

; : : : ; z

n

and a solution z

c

to the component

problem can be composed to build a solution to the input problem.

5. all subproblems generated by the decomposition operator satisfy the input

conditions I of (D ;R; I ;O) and I

c

of (D

c

;R

c

; I

c

;O

c

).

Based on these parameters, the generic divide-and-conquer algorithm can be

de�ned by function f dc in 3 :

3
f_dc(x:(I)) : RECURSIVE R =

IF primitive?(x) THEN dir_solve(x)

ELSE LET (xc,dcomp) = decompose(x),

subsolutions = �n. f_dc(dcomp(n))

IN compose(Gc(xc), subsolutions)

ENDIF

MEASURE mes(x)

One has to prove that f dc is a correct solution of the problem (D ;R; I ;O):

1

To increase the readability of PVS speci�cations the syntax has liberally been mod-

i�ed by replacing some ASCII codings with a more familiar mathematical notation.



Theorem 1 (Correctness of Divide-and-Conquer).

dc_correctness: THEOREM 8x:(I). O(x, f_dc(x))

We prove the theorem by measure-induction using measure function mes with

the usual < ordering on nat:

% measure induction principle

% T: TYPE, M: TYPE, m: [T! M], <: (well_founded?[M])

measure_induction: LEMMA 8p:pred[T]:

(8x. (8y. m(y) < m(x) ) p(y)) ) p(x)) ) (8x. p(x))

After the built-in measure-induction strategy has been applied the PVS proof

state looks as follows:

2

dc_correctness:

f-1g 8y:(I). mes(y) < mes(x!1) ) O(y, f_dc(y))

|-------

f1g O(x!1, f_dc(x!1))

The proof can be �nished by expanding the de�nition of f dc, case-analysis

on primitive?, and application of the theory assumptions 2 .

3.2 A Hierarchy of Divide-and-Conquer Theories

In order to have more adequate support for application of the divide-and-conquer

(DC) paradigm to speci�c problems we have developed a hierarchy of generic

DC theories where the top most theory models the most general DC scheme

presented above and lower theories in this hierarchy are specializations of the

general scheme, see Fig. 2. Each child in this hierarchy is a partial instantiation

or specialization of its parent theory. This hierarchy permits choice of the most

speci�c theory in order to solve a given problem.

In theory DC ID the component problem is given by (D

c

;D

c

;TRUE ;= [D

c

])

where TRUE denotes the constant true predicate, and = [D

c

] denotes the equal-

ity relation on D

c

, i.e. G

c

is the identity on D

c

. Theory DC BIN, a re�nement

of DC ID, uses a binary decomposition and composition operator where the type

D

c

of the (trivial) component problem is identi�ed with domain D of prob-

lem (D ;R; I ;O). Theory DC 1 speci�es a binary decomposition and composition

operator where the type D

c

of the (trivial) component problem is in general

di�erent from D .

2

The prover maintains a proof tree. The goal is to construct a proof tree which is

complete, in the sense that all of the leaves are recognized as true. Each proof goal

is a sequent consisting of a sequence of antecedent formulas (indicated by negative

numbers) and consequent formulas (indicated by positive numbers). The intuitive

meaning of such a goal is that the conjunction of the antecedents implies the dis-

junction of the consequents. Expressions of the form x!i denote constants introduced

for universal-strength quanti�ers.



The theories on the lowest level in the hierarchy de�ne speci�c composition

and decomposition operators for lists. Theory DEC LST1 decomposes a (non-

empty) list into its head and tail, theory DEC LST2 splits a list into roughly two

equal parts, while CMP LST1 uses \cons" as its composition operator, and �nally,

theory CMP LST2 composes lists by concatenation. In a similar way, the hierarchy

can be extended for data types such as �nite sets, balanced binary trees etc.

To illustrate a speci�c parent-child pair of the hierarchy theories DEC LST2

and DC BIN are explained in some more details. The parameters of DC BIN are

as follows:

4% formal parameters of theory DC BIN

D:TYPE, R:TYPE, I:pred[D], O:[D,R -> bool], % problem spec

decompose : [D -> [D,D]], % decomposition operator

dir_solve : [D -> R], % primitive solutions

compose : [R,R -> R], % composition operator

primitive? : pred[D], % set of primitive problems

mes : [D -> nat] % termination measure on D

There are four assumptions on the parameters. They are similar to assump-

tions a1,a3,a4,a5 of the general scheme 2 specialized to binary decomposition

and composition operators:

5
% assumptions for DC BIN

a1: ASSUMPTION I(x) ^ : primitive?(x) ) LET (x1,x2) = decompose(x) IN

) mes(x1) < mes(x) ^ mes(x2) < mes(x)

a3: ASSUMPTION I(x) ^ primitive?(x) ) O(x, dir_solve(x))

a4: ASSUMPTION I(x) ^ : primitive?(x) ) LET (x1,x2) = decompose(x) IN

O(x1,z1) ^ O(x2,z2) ) O(x, compose(z1,z2))

a5: ASSUMPTION I(x) ^ : primitive?(x)

) I(decompose(x).1) ^ I(decompose(x).2)

Note that there is no assumption for the component problem since this has

already been specialized in theory DC ID.

Consider now theory DEC LST2. Its formal parameter list is as follows:

6% formal parameters of theory DEC LST2

T : TYPE, % list element type

R : TYPE, % problem range

I : pred[list[T]], % admissible inputs

O : [list[T],R -> bool], % input/output relation

dir_solve : [list[T] -> R], % primitive solutions

compose : [R,R -> R] % binary composition operator

The problem domain is �xed by the type list[T], and the decomposition

operator is de�ned by listsplit in 7 . Here, first n returns the �rst n ele-

ments of a list, and cut n cuts n elements from a list. Note that the primitive?

predicate is determined by the choice of the decomposition operator: primitive

instances are lists containing at most one element; the measure is given by the

length of the list.



7
% decomposition operator and primitive predicate

decompose(x:list[T]): [list[T], list[T]] =

IF length(x) < 2 THEN (x,x) % dummy value

ELSE listsplit(x) ENDIF

listsplit(l:fl1:list[T] | length(l1) >= 2g): [list[T], list[T]] =

(first_n(l, div2(length(l))), cut_n(l, div2(length(l))))

primitive?(x:list[T]): bool = (length(x) < 2)

The assumptions on the parameters are given by a3,a4,a5 in 5 using the

speci�c operators above 7 . A specialization of theory DC BIN is then obtained

by importing the instantiated theory:

IMPORTING

DC_BIN[list[T],R,I,O,decompose,dir_solve,compose,primitive?,length]

TCCs are generated according to the assumptions 5 . The only non-trivial

TCC is to prove a1, stating that the length of the lists produced by listsplit

is smaller than the length of the input list. This requires additional lemmas for

list functions first n and cut n.

DC

DC_ID

DC_1 DC_BIN

DEC_LST1 CMP_LST1 DEC_LST2 CMP_LST2

Fig. 2. A Hierarchy of Divide-and-Conquer Theories

In order to solve problems using the DC hierarchy the following general

derivation strategy is utilized:

1. choose an appropriate DC theory from the hierarchy depending on the struc-

ture of the problem and/or the data types used in the speci�cation



2. provide concrete instantiations for the formal theory parameters which are

easy to �nd (i.e. determined by the problem)

3. set up new speci�cations for the parameters which are not obvious

4. solve the new problems in a similar way.

4 Optimization Steps

This section deals with the formal treatment of two examples of generic opti-

mization steps: transformation of a linear recursive function into an equivalent

tail-recursive one, and the introduction of a table to store and restore computed

values.

4.1 Accumulation Strategy

Given a linear recursive function

f (x ) = IF B(x ) THEN H (x ) ELSE p(K (x ); f (K

1

(x )))

the goal is to transform it into an equivalent tail-recursive function. In a tail-

recursive function recursive calls appear on the top level of expressions, i.e.

they have the form f (K (x )) and do not occur within an expression. Wand [16]

presents a transformation where the non-tail-recursive part of f (expression p)

is captured as an extra continuation argument. This results in a tail-recursive

function which is further transformed by replacing the continuation by an ac-

cumulator. A PVS formalization of this transformation has been carried out by

Shankar [12]. Partsch [10] presents a transformation rule which combines both

steps and directly converts the linear recursive function into a tail-recursive one.

In the following a formal treatment of this rule is given. The basic idea of this

transformation is to add a parameter that accumulates the function result. It

is required that operation p has a neutral element e and is associative. The

respective PVS theory takes 10 parameters:

8
% parameters of accumulation strategy

D : TYPE, % domain of f

R : TYPE+, % range of f

B : pred[D], % termination condition

H : [D -> R], % base case solution

p : [R,R -> R], % associative operator

K : [D -> R], % non-recursive argument modifier

K1 : [D -> D], % recursive argument modifier

e : R, % neutral element w.r.t. p

m : [D -> nat], % measure

f : [D -> R] % linear function to be transformed

There are four assumptions on the theory parameters. The �rst one asserts

the associativity of p, the second one states the neutrality of e with respect to

p. The third one ensures termination of f, while the fourth one constrains f to

have a linear form. A tail-recursive variant is then given by function f1:



9
f1(r:R,x:D) : RECURSIVE R =

IF B(x) THEN p(r, H(x)) ELSE f1(p(r, K(x)), K1(x)) ENDIF

MEASURE m(x)

Theorem 2 (Correctness of Accumulation Strategy).

f_trans(x:D): fr:R | r = f(x)g = f1(e,x)

Note that the correctness is expressed by type constraints in the de�nition of

f trans. The proof is by establishing an invariant invar ( 10 ) which itself is

accomplished by a straightforward measure-induction proof.

10invar: LEMMA f1(r,x) = p(r,f(x))

4.2 Memoization

In a recursive function's computation ine�ciencies often arise due to multiple

evaluations of identical calls. This is especially the case if the recursion is nested

or cascaded. The idea of the transformation described in this subsection is to

store computed values in a table and to remember that this computation has been

carried out. If the result of this computation is needed it is looked up in the table.

We present a formal representation of a generalization of the transformation

called memoization [10]. The transformation is applicable to recursive functions

which have the form

f (x ) = IF B(x ) THEN H (x ) ELSE E (x ; f (K

0

(x )); f (K

1

(x )); : : : ; f (K

n

(x )))

The respective PVS theory is parameterized as follows:

11
% parameters of memoization

D : TYPE, % domain of f

R : TYPE, % range of f

B : pred[D], % termination condition

H : [D -> R], % base case solution

N : nat, % N + 1 recursive calls

E : [D, [upto(N) -> R] -> R], % expr. containing the recursive calls

K : [upto(N) -> [D -> D]], % argument modifiers K0,K1, ..., KN

m : [D -> nat], % termination measure

f : [D -> R] % function to be transformed

There are two assumptions on the parameters: the �rst one constrains the

input function f to have the speci�c form while the second one assumes that the

arguments for the recursive calls decrease with respect to the measure m. The

result of the transformation is given by function f1 in 12 .

12f1(x:D)(a:(invar?)): RECURSIVE fa1:(invar?) | P_inv(x,a,a1)g =

IF isdef(a,x) THEN a ELSIF B(x) THEN add(a, x, H(x))

ELSE LET final_map = concat(�n. f1(K(n)(x)))(N)(a) IN

add(final_map, x, E(x, �n. final_map^(K(n)(x))))

ENDIF

MEASURE m(x)



f1 has an additional argument of type map (association list) (such that an

invariant 13 is preserved) which denotes the table in which the computed values

are stored. The type map associates elements of an index set with values: empty

denotes the empty map and add(m,i,e) adds a new association to m: value

e is associated with index i. There are two functions isdef(m,i) for testing

whether the map has a de�ned value for a given index, and ^ for retrieving a

value associated with a given index (if there is a de�ned value). Function f1 is

initially called with the empty map. If a result for some argument has already

been computed then the value is looked up in the table otherwise it is calculated

and then inserted into the table.

13
invar?(a:map): bool = 8y:D. isdef(a,y) ) a^y = f(y)

P_inv(x:D,a1,a2:map): bool =

isdef(a2,x) ^ 8y:D. isdef(a1,y) ) (isdef(a2,y) ^ a1^y = a2^y)

The invariant invar?(a) in 13 states that if there exists an entry in a for

some y then the value associated with y equals to f(y). P inv(x,a1,a2) states

that map a2 has a de�ned value for x and that a2 preserves all associations of a1.

Function concat realizes the function composition f

1

(K

N

(x )) � � � � � f

1

(K

0

(x )).

Theorem 3 (Correctness of Memoization).

correctness : THEOREM 8x:D. f(x) = f1(x)(empty)^x

Retrieving the value from the map f1(x)(empty) at index x equals to f(x). This

theorem is trivial to prove using the type constraints of the range of f1 since

the invariant directly states the correctness. However, some non-trivial TCC's

are generated when type-checking this theory, since it has to be ensured that

the invariant is preserved during computation. To prove this, additional lemmas

have to be established which state that concat preserves the invariant and that

the concatenation of maps can be split. Furthermore, it must be proved that

there exists table entries for all K

i

(x ), for i 2 f0 : : :N g in the �nal map.

5 Derivation of a Sorting Algorithm

In the following the derivation strategy from Sect. 3.2 is applied to derive the

well-knownmergesort algorithmusing di�erent divide-and-conquer schemes. The

problem speci�cation of sorting a list of elements of some type T with respect

to some total order � can be stated as follows:

14% specification of the sorting problem

% T:TYPE+; <=: (total_order?[T]); A,B: VAR list[T]

P_sort := (D:= list[T], R:= list[T], I:= TRUE, O:= �A,B. sorted?(A,B))

sorted?(A,B): bool = ordered?(B) ^ perm?(A,B)

perm?(A,B): bool = 8t: count(t,A) = count(t,B)



ordered? holds if all elements of a list are in nondecreasing order. Predicate

perm?(A,B) holds if list B is a permutation of list A: the number of occurrences

of any element in A and B agree.

In order to solve this problem an appropriate DC theory from the library

has to be chosen. Since we decide to derive a mergesort algorithm we choose

theory DEC LST2 where the decomposition operator splits a list into roughly

two equal length parts (see 6 for the parameter list). Parameters T,R,I and O

are determined by the sorting problem; dir solve simply returns the input list

since a list with at most one element is trivially sorted. The only creative work

to do is to �nd an appropriate composition operator satisfying the assumption

a4. Looking at this assumption one recognizes that the composition operator

must \merge" two already sorted parts. Rather than inventing a merge function

and proving its correctness, it is derived by �rst setting up a new speci�cation

and then selecting and instantiating another appropriate DC theory from the

hierarchy:

15
% requirement specification of merge

P_merge :=

(D1:= [list[T],list[T]],

R1:= list[T],

I1:= � (d:D1). ordered?(d.1) ^ ordered?(d.2),

O1:= � (d:D1,C:list[T]). perm?(append(d.1,d.2), C) ^ ordered?(C))

To solve this problem a theory with a speci�c composition operator is se-

lected: theory CMP LST1 uses the list operator cons as its composition operator.

The formal parameters of CMP LST1 then have to be instantiated properly.

16% formal parameters of theory CMP LST1

T : TYPE, % type of list elements

D : TYPE, % problem domain

I : pred[D], % input condition

O : [D, list[T] -> bool], % input/output condition

decompose : [D -> [T, D]], % decomposition operator

dir_solve : [D -> list[T]], % solution of primitive instances

primitive? : pred[D], % primitive instances

mes : [D -> nat] % measure on domain D

Note that the problem range R is �xed here and de�ned by list[T]. The main

e�ort to solve this problem is to �nd an appropriate decomposition function. In

the sequel, let A,B denote the input tuple of type D1. Obviously, the problem

is primitive if either A or B are empty. In this case B respectively A is returned

(dir solve). A non-primitive problem instance is split according to the result

of comparing the two head elements: either the tuple (car(A), (cdr(A), B))

is returned in case car(A) <= car(B) holds; otherwise the tuple (car(B), (A,

cdr(B))) is returned. A decreasing measure on the domain D1 is given by the

sum of A and B's length.

Most of the TCCs can simply be proved with the built-in grind strategy. The

only non-trivial TCC (which requires additional proof e�ort) is the instantiated



composition assumption stating that solutions to the subproblems are correctly

composed by the composition operator cons. The proof requires some additional

properties about list permutations. Due to space limitations we omit the details

here. After all TCCs have been proved an operational speci�cation of mergesort

has been derived which is correct by construction. It has the form:

17mergesort(x:list[T]): RECURSIVE list[T] =

IF length(x) < 2 THEN x

ELSE merge(mergesort(listsplit(x).1), mergesort(listsplit(x).2)) ENDIF

merge(x:D1): RECURSIVE R1 =

IF primitive?(x) THEN dir_solve(x)

ELSE cons(decompose(x).1, merge(decompose(x).2)) ENDIF

This operational speci�cation may be further improved by the optimization

techniques presented in Sect. 4. For example, merge has a linear recursive form

and the transformation from Sect. 4.1 can be applied (see 8 for the formal

parameters): for the expression p the list concatenation operator append can

be instantiated which is associative and has the empty list as neutral element.

The cons operator can be realized by the concatenation operator. Functions K,

and K1 are realized by selecting the �rst and second part of the decomposition,

respectively, and the measure is given by the length of the list. The generated

TCCs can be proved automatically using lemmas from the PVS list library.

On the other hand, mergesort has a tree-like recursive form and therefore the

memoization technique presented in Sect. 4.2 can be applied. This might be

useful if in the list to be sorted elements occur more than once or if even the

same subsequences occur more than once.

Fig. 3 illustrates the derivation process: mergesort is derived using DEC LST2

where the composition operator, i.e. merging two ordered lists, is derived using

CMP LST1. Then both mergesort and merge are further optimized.

6 Conclusions

In this paper we have presented an approach to rigorous formal mechanized

treatment of the transformational software development process in a uni�ed

framework. This process comprises the formalization, veri�cation, and appli-

cation of generic software development steps. We showed that transformations

from di�erent existing approaches can be integrated into this framework. The ap-

proach has been illustrated by a formal representation of the divide-and-conquer

paradigm, two optimization transformations, and a derivation ofmergesort using

these steps.

In most cases the built-in strategies are powerful enough to prove the cor-

rectness of the instantiation of the generic software artifacts automatically. How-

ever, sometimes additional knowledge about the application domain is required.

In general, it is advisable and useful to establish specialized theories for spe-

ci�c application domains. For example, we have constructed a \sorting theory"
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Fig. 3. Derivation of the Mergesort Algorithm

which includes the elementary de�nitions for sorting problems as well as a set

of proved facts. In addition, specialized proof strategies can be de�ned which

make use of the proved facts. Such a sorting theory then provides a basis for the

derivation of sorting algorithms. In summary, I believe that the set of generic

software development steps together with domain-speci�c knowledge provide a

powerful tool for the formal transformational software development process: spe-

ci�c design/implementation decisions are made by the choice of an appropriate

generic theory, and the correctness of an instantiation may be proved with the

help of domain-speci�c knowledge.

The work presented in this paper is part of an ongoing e�ort to rigorous

formal representation of software development steps. Besides extending the ex-

isting set of formalized development steps and development methods, we are in

the process of applying the approach to the construction of a non-trivial compiler

implementation. Starting from a given compiling speci�cation which is proved to

be correct with respect to the language semantics, a series of development steps

is applied to derive an implementation in the source language itself which is then

correct by construction. The development steps involved include functional as

well as data structure re�nement. This work is carried out within the context of

the German compiler veri�cation project Veri�x.

Related Work

The mechanization of transformational approaches has been considered by sev-

eral researchers.



In [5], for example, program transformations for recursion removal are ex-

pressed as second-order patterns de�ned in the simply typed �-calculus. Krei-

tz [7] utilizes the Nuprl system which is based on a constructive type theory as

a formal framework for representing existing approaches to program synthesis

(such as KIDS [14], for example). Among other \algorithm theories" he presents a

formalmechanization of a (binary) divide-and-conquer scheme. Rue� [11] formal-

izes the divide-and-conquer paradigm in his dissertation [11] using the calculus of

constructions and has given a formal veri�cation with the LEGO proof checker.

More recently, Kolyang et.al [6] present a prototype development environment

for implementing and applying transformations consisting of the tactical theo-

rem prover Isabelle and a graphical user interface based on the toolkit TK. Their

basic idea is to separate the soundness of transformations (stated by synthesis

theorems) from the pragmatics of their application. They give a mechanization

of the global search paradigm in Isabelle/HOL.
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