
kb-Vision:

A Tool for Graphical Manipulation and Visualization

of Domain Models∗

Thorsten Liebig and Dieter Finkenzeller and Marko Luther
University of Ulm, Department of Artificial Intelligence,

Faculty of Computer Science, 89075 Ulm, Germany

{liebig, finken, luther}@informatik.uni-ulm.de

Abstract. Even if a problem solving method and a domain ontology has
been identified, there still remains the problem of adding sufficient and
consistent domain knowledge to a knowledge processing system. Our kb-

Vision system supports this knowledge acquisition process by making
use of a 3D graphical user interface in which domain objects can be
easily created and composed to a domain model. Using object sensitive
manipulation options and by evaluating each graphical action in the
underlying knowledge representation formalism, the system ensures a
consistent domain model. It can also be used as a knowledge-based
graphical simulation environment for various reasoning components (e.g.
planners, path generators).

1 Introduction

Representation of knowledge is a premise for intelligent behavior in every domain.
Even the Turing Test implicitly presumed the ability to represent knowledge about the
content of an interrogation. Smith [13] and Newell [10] conclude some years later, that
any intelligent system has to incorporate knowledge in some way. This is in accordance
with Goldstein and Paperts [6] interpretation of intelligence in AI research. They argue
that understanding intelligence is not a question of “identification of a few powerful
techniques, but rather the question of how to represent large amounts of knowledge in
a fashion that permits their effective use and interaction”.

In general, a knowledge-based reasoning system consists of two parts. One part is
the represented knowledge —typically called the knowledge base—, and the other part
are the reasoning mechanisms. Usually, the knowledge can be split into more general,
conceptual knowledge and specific, individual knowledge. The first contains concepts
and relations about the application context and is called concept model in the following.
The latter is called domain model and consists of instantiated concepts and relations
and represents a concrete and individual situation. Whereas general knowledge is static,
the second type is highly dynamical because it has to be frequently adapted to changes
in the focussed situation. Even in an environment where the knowledge-based system
is able to explore and assert this kind of dynamic knowledge by it self we identified
a strong demand for an appropriate system for building and interacting with those
kinds of domain models. Therefore, the graphical kb-Vision system was developed
[5]. This system can be used without having knowledge about the concrete syntax

∗This work was supported in part by the Deutsche Forschungsgemeinschaft (DFG).



2

of the underlying knowledge representation system or its representation peculiarities.
While composing the objects graphically the system tracks the analogous symbolic
relationships between the manipulated objects in the corresponding domain model. In
order to keep the domain model consistent, the users graphical manipulation options are
restricted to those actions the knowledge base has permitted for the currently focused
objects. The system can also be used to visualize changes in the domain model initiated
by other knowledge manipulating components. In summary, the kb-Vision system can
play the role of an intelligent real world simulation environment.

The structure of this paper is as follows. In the next section we illustrate our
motivation to build such a tool by shortly introduce our research background. This is
followed by a more detailed description of the system components. We will end with
related work, a short conclusion and with an outlook about potential application areas
of our approach.

2 Application Background

Our work is concerned with the modeling and representation of symbolic knowledge
for an autonomous mobile robot acting in an inhomogeneous office environment [12].
Within this framework we distinguish between different kinds of models, namely the
concept model and the domain model. The formalism we use to represent those models
is a description logic.

The concept model is basically static and represents those objects, relations and ax-
ioms on different levels of abstraction which are potentially relevant within the focused
robot environment. The domain model consists of instantiated objects and relations
of the concept model and represents a concrete environment scenery. This model is
dynamic with respect to the task the robot has to perform within our office environ-
ment. The domain model changes because of external human or other system activities
or because of actions performed by his own. In order to get an overview over the
current domain model of the robot without triggering all representation terms and suc-
ceeding changes in the model by hand, we use the kb-Vision system to visualize the
robots “imagination” of his environment. In this sense kb-Vision is a debugging and
verification tool for our symbolic and subsymbolic knowledge processing mechanisms.
Whenever a sensing component reports a new or changed object or relation to the
knowledge base, this update will appear instantly in the graphical scene. Beyond that,
we often have to build up different domain models for varying tasks which work as
initial models for the robot. This process is much less time consuming with kb-Vision

than before. Now, existing models can be reused by rearranging, deleting or creating
additional objects. A new obstacle can be created simply by closing a door or placing
a table in the middle of a hall with a few mouse movements, for example.

3 System Architecture

Our mobile robot is designed as a client–server system with the knowledge base serving
multiple clients. Clients are knowledge manipulation, input or output components or
the formerly mentioned visualization. The architecture of the kb-Vision system, as a
fraction of this design, is shown in Figure 1.

The architecture shows three main components: the graphical component, the
knowledge base and the network connection. These components are discussed in more
detail in the following subsections.



3

(chair Chair-01)

(table Table-01)

(on Chair-01 Table-01)

LOOM 4.0

CLOS

CommonLisp

chair

..

CommonLisp-Network Interface

KNOWLEDGE BASE

.. .. ..

co
n
ce

p
t

m
o
d
el

m
o
d
el

d
o
m

a
in

∀x, z (⇒ (∃y on(x, y) ∧ on(y, z))

TCP/IP

on(x, z))

C/C++-Network Interface

GLUI

GLUT

X11

VCollide

RAPID
OpenGL

GRAPHICAL COMPONENT

..

..

..

table

Figure 1: Architecture of the kb-Vision system. The network component connects the knowl-
edge base with the graphical component via TCP/IP.

3.1 Knowledge Base

The knowledge base acts as the central data pool for the robot system as well as the
kb-Vision system. As mentioned before, the knowledge base contains more general, ba-
sically static knowledge in a model called concept model as well as dynamical, situation
dependent knowledge in the domain model.

The concept model contains all concepts relevant in the broader context of the
focussed environment together with common-sense knowledge in the sense of universal
rules, heuristics and general physical laws. This includes taxonomical knowledge about
different types of objects, their properties and potential relationships among them.

Tables, chairs or doors as well as books, pencils, rooms or halls are objects in
a typical office environment. On more abstract levels in the concept hierarchy we
distinguish between movable and not movable objects or stackable and not stackable
objects, for example. A further specialization differentiates between active stackable and
passive stackable objects. Passive stackable objects are those who cannot be stacked
on any other object but on which others can be stacked (e.g. floor). An object which
can be put on other objects is an active stackable object (e.g. chair, book). A fraction
of this object taxonomy is shown in Figure 2.

In the context of an office environment, relevant properties of objects are their
position, color etc. as well as their 3D shape model and texture, which are needed by
the graphical component for visualization.



4

rotatable-obj.

physical-object

movable-obj. not-stackable-obj. stackable-obj.not-movable-obj.

passive-stackable-obj.

door table

active-stackable-obj.

chair

Figure 2: Fraction of the concept model concerning physical objects. (The dashed line indi-
cates missing concept levels.)

Potential relationships between objects cover qualitative spatial aspects as well as
facets of mereology (being the theory of the part-whole relationship) and connectivity.
Important spatial aspects include topology, orientation and distance. Topology and
orientation are qualitative properties with respect to an underlying frame of reference
[2]. Adopting gravitation as the naturally given frame of reference in 3D space imposes
an external, immutable topology and orientation at least with respect to the y-axis.
In other words, the proposition that an object a is resting upright on top of another
object b is invariant to the viewers position. Instead, left, right or clockwise are relative
relationships with respect to the viewers position in x-z-space.

The domain model is a time–triggered, and therefore dynamical, representation of
the current environment. It consists of instances of objects and relationships from the
concept model. Such an individual incorporates information about its specific properties
and relationships to other individuals.

The underlying knowledge representation formalism is a description logic. Con-
cretely, we are using the Loom system [9] which is based on CommonLisp using the
CommonLisp Object System (CLOS) extension. Loom combines a description lan-
guage with a rule language and uses an expressive inference engine extended for reason-
ing with time, units and dimensions. According to the terminology of description logic
formalisms the concept model is represented in the TBox whereas the domain model is
represented in the ABox.

3.2 Graphical Component

The interface of the graphical component is shown in Figure 3. This interface is split
into a visualization area and a menu bar.

With the menu bar the user is able to rotate, move, shift and zoom the whole scenery
as well as a selected object.

The visualization area shows a 3D view of the domain model as it is currently



5

snap to zero declination move/travers
zoom

rotate

change declination

Figure 3: The kb-Vision interface: domain model visualization on top; menu bar on bottom.

represented in the underlying knowledge representation system. The view is shaded
and textured in real-time. The user can select and deselect objects in this view. When
selecting an object the graphical component retrieves information (type, relationship to
other objects, etc.) about that object from the domain model. Depending on the type of
the object the user is allowed to perform different actions. Chairs are modeled as move-
and stackable objects in the concept model (see Figure 2). Therefore, an individual
chair can be moved around and put on a table. Now, moving the table causes the chair
(which is on the table) to move simultaneously. The fact, that the chair has to be moved
whenever the table moves is deduced automatically by the knowledge base because of
a referring rule about moving stacks in the concept model. This example illustrates
how every graphical action directly interacts with the corresponding knowledge base.
Tables cannot be stacked on other objects, because they are modeled as passive stackable
objects in the concept model. Analogous, doors can only be moved around their centre
of rotation, because they are rotatable objects. When deselecting an object the changed
situation is checked to be consistent with respect to both concept and domain model.
Consistent changes are asserted into the domain model, all others are rejected in the
knowledge base as well as in the corresponding visualization. A new individual can be
created simply by using a palette window containing all available object types defined
in the concept model.

In order to approximate the real world as close as possible, objects should not geo-
metrically overlap or float in space (at least in our domain). Those rules are represented
as physical axioms in the concept model. However, the concept model does not reason
geometrically on the base of volume models. Those kind of reasoning is done by the
graphical component using collision detection mechanisms. This ensures that no object
stored in the knowledge base overlaps geometrically with another one.

The graphical component is implemented in C and C++ and based on the well-
known OpenGL standard, which is available for a large variety of operating systems
and graphical window interfaces. Additional subcomponents are used in order to handle



6

user interactions (GLUT, GLUI) or to enable features which require collision detection
(RAPID, VCollide [7]).

3.3 Network Connection

The network connection was build with the goal to ensure a network transparent con-
nection between distributed components. Usually, server and clients do not physically
run on the same cpu because of a resource or conceptual driven distribution of the
clients. Currently we are using a simple TCP/IP connection to broadcast messages
between the two components. Messages consists of strings containing Loom assertions
or Loom query answers. In order to be able to relate each graphical object with its
corresponding individual in the domain model the system uses a unique naming con-
vention for communication. When selecting an object the graphical component queries
all information (type and assertions) about the selected individual form the knowledge
base. Concerning the stack shown in the visualization area of Figure 1 the knowledge
base will answer among others with the assertion (on Chair-01 Table-01) for exam-
ple. Even in a scenery with many hundred instances a single instance is typically related
to only a few other instances. After each user action the graphical component sends
the new positions/orientations of the changed instances via the network connection
to the knowledge base. After evaluation the knowledge base accepts or rejects those
changes and sends its answer back. Using this architecture, network communication is
rare and message contents are short. This allows to run the knowledge base on a real
mobile robot and the graphical component on an external graphical workstation using
a wireless low-bandwidth network connection.

The interface is implemented in C and linked via foreign function calls into the
CommonLisp framework. In order to gain more flexibility we plan to switch to the
universal OKBC protocol [1] (Open Knowledge Base Connectivity) in the near future.
The OKBC protocol allows to replace or to extend the knowledge based component of
the kb-Vision system very easily with other knowledge processing systems providing
different or additional reasoning services.

4 Performance and Related Work

The current implementation status of the kb-Vision system is that of a research pro-
totype. Until now the main objective was to show the applicability of the approach
with the premise of integrating as much functionality as possible, rather than optimize
ergonomics or graphical performance. Nevertheless the implementation is currently in
use in our research group with satisfying performance on Sparc and Intel processors
running under SunOS respectively Linux. Currently, we are using one of recently de-
veloped (and still moderately optimized) OpenGL device driver for the 3D hardware
acceleration of a nVidia TNT2 graphics card under Linux (XFree 3.3.5) with a Pentium
III 450 MHz. Within this configuration kb-Visions graphical component achieves more
than 10 frames per second with 140 objects out of 4500 triangles. Delays because of
network communication with the knowledge base are not noticeable in this setting.

Our work covers at least two different research areas, namely knowledge represen-
tation and virtual reality (VR). Concretely, the kb-Vision system connects symbolic
representations with pictorial expressions and vice versa. Other related work is mostly
focused on either knowledge representation or VR.



7

Graphical modeling front ends for knowledge representation systems (e.g. GKB-
Editor [11], Ontology Server [4], WebOnto [3]) differ from our approach in many ways.
They are designed to give a structural view on the concept definitions while displaying
the knowledge base as a semantical net. Instances are displayed as sets of assertions
which mostly contain hyperlinks pointing to referenced instances or concept definitions.

The main objective in VR systems is first of all to produce realistic environments
using 3D display techniques, head tracing, etc. Our approach is different from ordinary
VR systems by using a highly and easy reusable, maintainable and understandable
representation of the underlying knowledge and feedback mechanisms. Realistic user
interaction and simulation within virtual worlds is a topic which is just now emerging
in a research field called “Intelligent Virtual Environments” (see the special issue No.
1, Vol. 14 of the Applied Artificial Intelligence Journal, January 2000 for example).

A related knowledge-based system within this context is CODY a Virtual Construc-
tor [8]. CODY enables an interactive assembly of 3D visualized mechanical parts to
complex aggregates. However, this system is strongly tailored to the context of assem-
bly simulation and offers therefore only a very limited number of different manipulation
options.

Other, at least partial related systems are the various level construction kits for
interactive computer games. Usually, those construction kits contain a graphical level
editor for composing the 3D scenery. Functionality for different kinds of objects has
to be coded in proprietary script languages. However, those approaches are not very
flexible for further enhancements. Every new feature has to be taken into account in
any existing script, for example.

5 Conclusion and Portability of the Approach

Many applications that implicitly have to reason about a fraction of the real world have
to cope with a significant amount of domain knowledge. In order to build a domain
model of a real environment, knowledge engineering experts often have to translate
relevant information into specific syntax of the chosen representation system. This is
a time-consuming and error-prone process. The kb-Vision system is a tool supporting
the creation and manipulation of domain models graphically. However, in comparison
with conventional modeling, additional effort has to be spend for building geometrical
models of potential domain objects. kb-Visions import filters ease this task by allowing
to import standard VRML models. All user actions are consistent with respect to the
axioms stored in the knowledge base. In this sense, the kb-Vision system can be
seen as a graphical feedback interface for the underlying reasoning mechanisms. This
interactive nature qualifies kb-Vision also as an ‘intelligent virtual environment’ for
humans as well as agents, planners, etc.

Our approach is suitable whenever an application demands to capture a huge amount
of frequently changing domain knowledge (e.g. autonomous systems). Emphasizing the
interactive aspect, the system could play an important role for intelligent, knowledge
intensive simulators with human interaction (flight or car simulators), artificial agents
(robot simulator) or tactical education (testbed for evaluation of tactical decisions, e.g.
in military environments). The presented architecture is even conceivable as a realistic
feedback component for 3D reality games.

Obvious future enhancements of the graphical component concern multimodal in-
put and output options (speech, sound, data-glove, etc.) and speed-up techniques using
detail-reduction of distant objects and areas. When using the system as an simulation



8

environment for virtual agents or planners, additional sensor modules have to be imple-
mented in order to simulate supersonic or laser scanner input data from the graphical
representation.

Currently, we are extending our concept model in order to be able to reason about
aggregated complex objects (e.g. a table as an aggregate of a table top and its table-
legs).

References

[1] Vinay K. Chaudhri, Adam Farquhar, Richard Fikes, Peter D. Karp, and James P. Rice.
OKBC: A Programmatic Foundation for Knowledge Base Interoperability. In Proceedings
of the Fifteenth National Conference on Artificial Intelligence, pages 600 – 607, July,
1998.

[2] Antony G. Cohn. Qualitative Spatial Representations. In Proceedings of the IJCAI-
99 Workshop on Adaptive Spatial Representations of Dynamic Environments (ROB-2),
1999.

[3] John Dominque and Milton Keynes. Tadzebao and WebOnto: Discussing, Browsing, and
Editing Ontologies on the Web. In Proceedings of the 11th Knowledge Acquisition for
Knowledge–Based Systems Workshop (KAW’98), April 1998.

[4] Adam Farquhar, Richard Fikes, and James Rice. The Ontolingua Server: a Tool for
Collaborative Ontology Construction. Technical Report KSL-96-26, Knowledge Systems
Laboratory, 1996.

[5] Dieter Finkenzeller. Graphische Darstellung und Manipulation von Wissensbasen. Mas-
ter’s thesis, University of Ulm, Germany, 1999.

[6] Ira Goldstein and Seymour Papert. Artificial Intelligence, Language, and the Study of
Knowledge. Cognitive Science, 1(1):84 – 123, 1977.

[7] T. Hudson, M. Lin, J. Cohen, S. Gottschalk, and D. Manocha. V-COLLIDE: Accelerated
Collision Detection for VRML. In Proceedings of VRML’97, 1997.

[8] Bernhard Jung, Martin Hoffhenke, and Ipke Wachsmuth. Virtual Assembly with Con-
struction Kits. In Proceedings of the 1998 ASME Design for Engineering arTechnical
Conferences (DECT-DFM ’98), 1998.

[9] Robert M. MacGregor. Inside the LOOM Description Classifier. SIGART Bulletin,
2(3):88 – 92, June 1991.

[10] Allan Newell. The Knowledge Level. Artificial Intelligence, 18:87 – 127, 1982.

[11] Suzanne M. Paley, John D. Lowrance, and Peter D. Karp. A Generic Knowledge-Base
Browser and Editor. In Proceedings of the Fourteenth National Conference on Innovative
Applications of Artificial Intelligence, pages 1045 – 1051, 1997.

[12] Günther Palm and Gerhard Kraetzschmar. SFB 527: Integration symbolischer und
subsymbolischer Informationsverabeitung in adaptiven sensomotorischen Systemen. In
Informatik ’97 - Informatik als Innovationsmotor. Proceedings der 27. Jahrestagung der
Gesellschaft für Informatik. Springer–Verlag, 1997.

[13] B. C. Smith. Readings in Knowledge Representation, chapter 3 Prologue to “Reflection
and semantics in a procedural language”, pages 31 – 40. R. J. Brachman and H. J.
Levesque, Morgan Kaufmann, 1985.


