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Abstract This paper describes the formal verification of a fault-tolerant group membership
algorithm that constitutes one of the central services of the Time-Triggered Pro-
tocol (TTP). The group membership algorithm is formally specified and verified
using a diagrammatic representation of the algorithm. We describe the stepwise
development of the diagram and outline the main part of the correctness proof.
The verification has been mechanically checked with the PVS theorem prover.
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1. INTRODUCTION

The Time-Triggered Architecture (TTA) developed by the University of Vi-
enna and TTTech provides an integrated set of services for dependable dis-
tributed real-time systems [5, 6]. TTA is intended for devices controlling
safety-critical electronic systems without mechanical backup, so-called “by-
wire” systems such as those for automotive steering, braking, and suspension
control [15]. It has been argued that the kind of reliabilityrequired in such situ-
ations cannot be achieved without a careful formal analysisof the mechanisms
and algorithms involved [3,12].

The Time-Triggered Protocol (TTP) [7] is the core of the communication
level of TTA. Group membership is central service of TTP as itprovides to
all non-faulty processors a consistent view of which nodes are operational and
which are not at any given moment. Distributed fault-tolerant algorithms are
inherently difficult to reason about. In order to make formalverification feasi-
ble it is essential that the various aspects of an algorithm are specified and veri-
fied at appropriate levels of abstraction that capture the essence of the property
under study and abstract from irrelevant details. The groupmembership algo-
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rithm [1] is modeled as a synchronous system and it abstractsfrom the clock
synchronization service that justifies the synchrony assumption. Its verification
is significantly more difficult than other fault-tolerant algorithms because in-
formation about the failure of processors is not available immediately but only
with a certain delay. Therefore one has to be very careful when reasoning about
possibly failed components. Verification of safety properties, like the require-
ment that all (non-faulty) processors of a system should have the same opinion
about the current membership status of other processors, istypically accom-
plished by an induction proof. In order to establish the induction step, however,
one generally has to strengthen the invariant because oftenenough the property
of interest is not inductive. Usually repeated strengthening is necessary before
an inductive invariant is found and although some of the strengthenings can be
generated automatically this becomes the main task when performing a mech-
anized verification. Experience with a membership algorithm similar to that of
TTP [4] showed that this verification strategy is infeasiblefor our purpose.

Therefore, we take a different approach recently proposed by John Rushby:
instead of expressing the correctness property as one largeconjunction, we use
a set of disjunctively connected formulas that can be seen asthe description
of an abstract state machine [14]. Each disjunct contains the desired property
and represents a particular configuration the membership algorithm can reach.
To establish the correctness of the algorithm one has to showthat at every
point in time the system is in one of these configurations. Forthe TTP group
membership algorithm, we have formally proved both an agreement property,
i.e., that every non-faulty node considers the same set of processors to be part
of the membership, and a liveness property that states that afaulty processor
will eventually remove itself from the membership. All definitions and proofs
have been developed and mechanically checked with the PVS specification and
verification system [10]. We present fragments of the PVS specification in this
paper. To increase readability, however, the syntax has liberally been modified
by replacing some ASCII codings with a more familiar mathematical notation.
The full specification together with all proofs can be obtained via WWW [16].

The next section explains the group membership algorithm ofTTP and pro-
vides a formal specification. Section 3 illustrates the approach we take to for-
mally verify the algorithm, and Section 4 describes the mainparts of the proof.
The last section contains concluding remarks and directions for future work.

2. GROUP MEMBERSHIP IN TTP

In TTP, access to the broadcast bus is implemented by atime division multi-
ple access (TDMA)schema: each processor is assigned a certain time interval,
a so-calledslot, in which it is allowed to send a message on the bus while the
other processors listen. Slots are numbered and can be seen as an abstraction
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of a global time base that is provided by a separate clock synchronization al-
gorithm [8, 11]. In our model we assume a setproc of n processors, labeled
0, 1, . . . , n− 1, that are arranged in a logical ring. The period ofn successive
slots is called aTDMA round.

Every processorp maintains a setmemt
p—the membership set of processor

p—that contains all processors thatp considers operational at timet. In slot
t the processor with labelt mod n is the broadcaster, denotedbroadcaster(t).
In addition to the message data, the broadcaster sends thoseparts of its inter-
nal state that are critical for the protocol to work properly. More precisely, a
CRC checksum that is calculated over the message data and thecritical state
information—which includes the membership set—is appended to the mes-
sage. For the analysis of the group membership algorithm it is sufficient to
assume that a message contains the broadcaster’s local viewmemt

b on the mem-
bership.

As the order of messages is statically defined there is no needfor special
membership messages. Instead, a successfully received message is interpreted
as a life-sign of the sender and a receiver will maintain the broadcaster in its
local membership set if it agrees with the broadcaster’s critical state informa-
tion and hence with its membership set.1 Conversely, if a processor does not
receive an expected message or does not agree with the broadcaster’s view
on the membership, the broadcaster will be considered faulty and the receiver
removes it from its membership set.

The group membership algorithm is designed to operate in thepresence of
faults. A processor can besend-faulty, in which case it will fail to broadcast in
its next slot, while areceive-faultyprocessor will not succeed in receiving the
message of the next non-faulty processor. This restricted fault model is appro-
priate since other protocol services of TTP ensure that other fault modes man-
ifest themselves as either send or receive faults by enforcing a faulty processor
to fail silently. For example, the bus guardian, a special hardware element of
the TTP controller, prevents a processor that has lost synchrony of its clock
from accessing the broadcast bus outside its designated slots. We useNF t to
denote the set of non-faulty processors at timet, andp 6∈ NF t indicates thatp
is either send-faulty or receive-faulty at timet. Furthermore,sendstb describes
that the current broadcasterb sends a message on the bus, whilearrivest

p means
that the message sent by the broadcaster arrives at the receiver p.

A non-faulty broadcasterb will only send a message ifb is contained in its
own membership set; ifb has removed itself from the membership set (due
to diagnosing a fault) it will stop sending message in its broadcast slot. The

1Technically, the receiver calculates a CRC checksum over the received message data and its own critical
state information and compares the result with the checksumsent by the broadcaster.
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following specification 1 shows the axiomatization ofsendstb as defined in
PVS:2

1NF t : set[proc]
sendstb : bool
arrivest

p : boolsending : AXIOM
LET b = broadcaster(t) IN

b ∈ NF t ∧ b ∈ memt
b ⇒ sendstbfail_silene : AXIOM

LET b = broadcaster(t) IN
b 6∈ memt

b ⇒ ¬sendstb

A message sent by the current broadcasterb will arrive at a non-faulty pro-
cessorp . Of course, there is no generation of spontaneous messages and hence
messages arrive only if they have been sent. These axioms also imply that
broadcasts are consistent: a message arrives either at all non-faulty processors
or, if the broadcaster is send-faulty, at none of them. The PVS specification is
given in 2 .

2arrival : AXIOM
LET b = broadcaster(t) IN

sendstb ∧ p ∈ NF t ⇒ arrivest
pnonarrival : AXIOM

LET b = broadcaster(t) IN
¬sendstb ⇒ ¬arrivest

p

In our model we consider faults to occur only if they affect the system in
the next slot; e. g. a send fault of a processorp is not considered to occur un-
til immediately beforep’s broadcasting slot. If the broadcaster at timet + 1
becomes faulty in its sending slot it will fail to successfully send a message.
Similarly, a newly faulty processor will fail to receive a message. Note that
the behaviour of faulty processors is unspecified for the slots after the fault oc-
curred: processors may or may not succeed in sending or receiving subsequent
messages.

3faulty_broadaster : AXIOM
LET b = broadcaster(t+1) IN

b ∈ NF t ∧ b 6∈ NF t+1 ⇒ ¬sendst+1

bfaulty_reeiver : AXIOM
LET b = broadcaster(t+1) IN

p ∈ NF t ∧ p 6∈ NF t+1 ∧ p 6= b ⇒ b ∈ NF t+1 ∧ ¬arrivest+1
p

2PVS allows variables such ast to occur free in formulas; these are implicitly universallyquantified. More-
over, the type of variables can be dropped if it has been introduced to PVS by a corresponding variable
declaration. Throughout this paper, we useb, p, q, x, y, andz to denote processors (of typeproc), andt
ands are of typetime.
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Finally, once a processor becomes faulty it will be considered faulty forever.

4faults_lath : AXIOM
p 6∈ NF t ⇒ p 6∈ NF t+1

The task of a group membership algorithm is to diagnose the failure of a
faulty processor and to inform all non-faulty processors about it. In order to
cause a broadcaster to realize that it is send-faulty the TTPgroup membership
algorithm uses an (implicit) acknowledgment mechanism. A processorp that is
the broadcaster in slott checks whether the next non-faulty broadcaster, sayq,
that sends in the next3 slot has the same membership set asq and in particular
containsp in its membership set. If so,p can conclude that its broadcast was
successful. Otherwise, eitherp failed to broadcast orq is receive-faulty. To
resolve this ambiguityp waits for the next non-faulty broadcaster following
q, say r. If r containsp in its membership set but notq while having the
same view considering other processors, the original message of p was sent
correctly andq failed. If p is not inr ’s membership set, butq is (and the rest of
the membership sets ofp andr are the same), thenq andr agree thatp failed
to send. In this case,p will remove itself from its own membership set and fail
silently.

A similar mechanism could be used for diagnosing receive faults: if a pro-
cessorp does not receive an expected message it could check whether the next
non-faulty broadcaster maintained the original sender in its membership set in
which casep must realize that it has suffered from a receive fault. However,
TTP employs a slightly different mechanism that is also usedto avoid the for-
mation of disjoint cliques at the same time. A clique is a group of processors
where agreement on the current state is reached only within the group. Each
processorp maintains two counters,acct

p andrejt
p, which keep track of how

many messagesp hasaccepted(successfully received) andrejected, respec-
tively. A processorp will increment the counterrejt

p if p does not agree with
the broadcaster’s view on the membership. Inp’s next broadcast slot it checks
whether it has accepted more messages in the last round than it has rejected. If
so,p resets the counters and broadcasts; the other case indicates thatp suffered
from a receive fault and thereforep removes itself from the membership and
by not broadcasting its messagep can inform the other processors about its
failure.

Formally, the group membership algorithm is described by a set of guarded
commands. In every slott, every processor executes exactly one of these
commands. The guards are evaluated in a top-down order. The formal
description involves two additional boolean state variables, prevt

p and

3More generally, if there are already faulty processors thatwere scheduled to send betweenp andq, the
latter is the broadcaster in slott + i for somei > 1.
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doubtt
p. If a processorp was the previous broadcaster and now waits for

being acknowledged,prevp is set to true, whiledoubtp is true if p did
not get acknowledged by its successor and waits for the second successor to
resolve the conflict. In this case, the variablesucct

p holdsp’s first successor
which refused to acknowledgep. In the following definition state components
that are not mentioned explicitly do not change.

Broadcaster: Let b be the current broadcaster, i. e.b = t mod n.

(1) acct
b > rejt

b → memt+1

b := memt
b,

prevt+1
p := T, acct+1

b := 1, rejt+1

b := 0
(2) acct

b ≤ rejt
b → memt+1

b := memt
br {b}

Receiver: Every processorp different from the current broadcaster executes
the first of the following commands whose guard evaluates to true:

(3) p 6∈ memt
p → no change

(4) prevt
p ∧ arrivest

p ∧
memt

b = memt
p ∪{p} → memt+1

p := memt
p,

prevt+1
p := F, acct+1

p := acct
p + 1

(5) prevt
p ∧ arrivest

p ∧
memt

b = memt
pr {p} → memt+1

p := memt
pr {b},

prevt+1
p := F, doubtt+1

p := T,

rejt+1
p := rejt

p + 1, succt+1
p := b

(6) prevt
p ∧ sendstb → memt+1

p := memt
pr {b},

prevt+1
p := T, rejt+1

p := rejt
p + 1

(7) prevt
p → memt+1

p := memt
pr {b},

prevt+1
p := T

(8) doubtt
p ∧ arrivest

p ∧
memt

b = memt
p ∪{p}r {succt

p} → memt+1
p := memt

p,

doubtt+1
p := F, acct+1

p := acct
p + 1

(9) doubtt
p ∧ arrivest

p ∧
memt

b = memt
p ∪{succt

p}r {p} → memt+1
p := memt

pr {p},
doubtt+1

p := F, acct+1
p := acct

p + 1
(10) doubtt

p ∧ sendstb → memt+1
p := memt

pr {b},
doubtt+1

p := T, rejt+1
p := rejt

p + 1
(11) doubtt

p → memt+1
p := memt

pr {b},
doubtt+1

p := T
(12) arrivest

p ∧ (memt
p = memt

q) → memt+1
p := memt

p,

acct+1
p := acct

p + 1
(13) ¬sendstb → memt+1

p := memt
pr {b}

(14) otherwise → memt+1
p := memt

pr {b},
rejt+1

p := rejt
p + 1

The group membership algorithm has to fulfill three major correctness re-
quirements:

Validity: At all times, non-faulty processors should have all and onlythe
non-faulty processors in their membership sets, while faulty processors
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should have removed themselves from their sets. This requirement is,
however, impossible to satisfy as it may take some time to diagnose the
faultiness of a processor. We therefore must allow a single faulty pro-
cessor to be included in the membership sets of non-faulty processors,
while faulty processors may have (a subset of) the non-faulty processors
plus themselves in their sets.

5validity : THEOREM
p ∈ NF t ⇒ memt

p = NF t ∨ ∃x: x 6∈ NF t ∧ memt
p = NF t ∪{x}

∧ p 6∈ NF t ⇒ p 6∈ memt
p ∨ memt

p ⊆ NF t ∪{p}

Agreement: All non-faulty processors should have the same member-
ship sets.

6agreement : THEOREM
p ∈ NF t ∧ q ∈ NF t ⇒ memt

p = memt
q

Self-diagnosis: A faulty processor should eventually diagnose its fault
and remove itself from its own membership set.

7self_diagnosis : THEOREM
x ∈ NF t ∧ x 6∈ NF t+1 ⇒ ∃s: 0<s ∧ s ≤ 2n + 1 ∧ x 6∈ memt+s

x

These properties are subject to two additional assumptionsthat constitute
thefault hypothesis. First, as processors will be able to diagnose a fault only if
no new fault occurs during that process, the specification ofthe Time-Triggered
Protocol requires the membership algorithm to work properly only if two suc-
cessive failures occur at least two TDMA rounds apart [1]. More frequent fault
arrivals are dealt with by other protocol mechanisms of TTP.In our formal
verification the fault arrival assumption is expressed in a different way that is
adapted to the verification approach we take. We assume that afault only oc-
curs if the system is in a certain configuration calledstable. If a fault occurs
the system leaves this configuration and the fault arrival assumption states that
no new fault occurs until the system reaches thestableconfiguration again.

8fault_may_our_when_stable : AXIOM
stable(t,y,z) ⇒ NF t+1 = NF t

∨∃x: x ∈ NF t ∧ NF t+1 = NF t r {x}no_faults_when_not_stable : AXIOM
¬stable(t,y,z) ⇒ NF t+1 = NF t

It is necessary to rule out the trivial solution to thevalidity andagreement
requirements where the system never returns tostable. Otherwise only one
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fault could occur which would not even be tolerated. We are therefore forced
to prove alivenessproperty saying that after a fault occurred thestablecon-
figuration will eventually be reached again. More specifically, we demonstrate
that this is to happen no later than2n + 1 steps after the fault occurred.

9liveness : THEOREM
stable(t,y,z) ⇒ ∃s,y,z: 0<s ∧ s ≤ 2n + 1 ∧ stable(t + s, y, z)

We believe that a stronger property could also be proved, where s is con-
strained to be less or equal2n. Then the system would return tostableno later
than two TDMA rounds after a fault occurred which would yieldthe origi-
nal fault arrival assumption of TTP. Moreover, theself-diagnosisrequirement
listed above is actually a simple corollary ofliveness.

The second part of the fault hypothesis refers to the number of processors
that are required for the algorithm to work correctly. A set of three processors
would be sufficient to tolerate a single fault, however, in order to prevent a non-
faulty processor from being fooled by a faulty broadcaster at least 4 processors
are required to be present in the system with at least three being non-faulty at
all times. Otherwise a non-faulty processor might mistakenly diagnose a fault
of its own and remove itself from its membership set (therebyviolating both
the validity and the agreement property).

10n : { m:N | m≥4 } % -- number of processors
proc : TYPE+ = { m:N | 0≤m<n } % -- the set of processors (labels)three_non_faulty_exist : AXIOM

∃x,y,z: x 6= y ∧ x 6= z ∧ y 6= z ∧ x ∈ NF t ∧ y ∈ NF t ∧ z∈ NF t

3. APPROACH TO VERIFYING THE ALGORITHM

For the verification of the TTP group membership algorithm weapply a
method recently proposed by John Rushby [14]. The requirements validity
andagreementexpress properties that should hold for all reachable states of
the system. Such invariants, or safety-properties, are usually verified by some
form of induction proof; one demonstrates that the propertyholds in the initial
state(s) and that all state transitions preserve the property. The problem is, how-
ever, that the property of concern is not inductive in general and hence, in order
to establish the proof of the induction step, one has to strengthen it by conjoin-
ing additional properties to it which themselves have to be invariants. Usually,
this process has to be repeated several times before the induction proof can be
accomplished. Rushby reports in [14] that the number and complexity of ad-
ditional invariants that had to be discovered during the proof defeated several
determined attempts to mechanically verify a group membership algorithm [4]
similar to that of TTP. Because of its peculiarity of managing counters for ac-
cepted and rejected messages and the way how acknowledgmentof messages
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Figure 1 Configuration diagram for the TTP group membership algorithm.

is done, the group membership algorithm of TTP is consideredquite tricky
and a mechanical proof using the traditional approach is very likely to be even
more complex.

Instead of expressing the property to be verified as a conjunction of pred-
icates Rushby’s method exploits a disjunctively connectedset of formulas—
which in turn may be conjunctions of predicates—to prove theproperty of con-
cern. Each disjunct can be seen as the description of a certain configuration,
a property of the current global state of the whole system. The configurations
are defined such that every single configuration implies the desired property,
and to verify that property one has to show that at all times the system is in one
of these configurations. Thus, the main part of the proof can be represented
as aconfiguration diagram. The diagram for the group membership algorithm
is shown in Figure 1. The nodes of the diagram represent theconfigurations,
and arrows denote transitions from one configuration to others and are labeled
with transition conditions. Configurations are parameterized by the timet and
describe the global state the system is in. Configurations can have additional
parameters such as processors (x, y, . . .) that behave differently from the rest
of system, or additional entities necessary to describe thesystem state. The
labels of transitions express the preconditions for the system to move from one
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configuration to another. For example, the labelb = x from the transition from
latent to excludedmeans that the system takes this transition ifx is the current
broadcaster, while a transition with the labeldead6= x is taken whenever the
current broadcaster is already faulty but different fromx. The transition condi-
tions leading from one configuration need not necessarily bedisjoint, but one
has to show that they are complete in the sense that their disjunction is true.

The diagram can be developed step-by-step. One usually starts by defining
some initial configuration or the one in which the system stays under normal
circumstances, i. e. as long as no fault occurs. For TTP, thiscentral configu-
ration is the one labeledstable. By symbolically evaluating the algorithm in
the current configuration and by splitting on possible caseswe generate some
new configurations, and the transitions from the original configuration are la-
beled with the appropriate conditions. By repeatedly applying this construction
on each transition and each new configuration one aims to develop a closed
diagram. To prove safety properties likevalidity or agreementone then has
to demonstrate that every configuration implies the desiredproperty and that
the disjunction of the transition conditions leading from any one configuration
evaluates to true; this ensures that there is no other configuration the system
can possibly get into. In order to prove liveness propertieslike self-diagnosis
one has to establish that the system can not loop forever on a configuration
other thanstable.

There are several benefits to this approach: first, the diagram can be devel-
oped incrementally and in a totally systematic way by symbolically executing
one step of the algorithm in every configuration. Second, thecompleted dia-
gram is a suitable means of analysing the difficult special cases of the algorithm
and to explain how and why it works (or doesn’t). Last, it seems that the cre-
ative steps in developing the proof can be accomplished easier than by using
the traditional way of repeated invariant strengthening. The configurations as
presented here generally are not invariants and are therefore identified more
easily.

The next section describes how the configuration diagram forthe TTP group
membership algorithm is gradually developed and outlines the verification of
the three correctness requirements for the TTP group membership algorithm.

4. DEVELOPING THE CONFIGURATION DIAGRAM

The system is said to be in astableconfiguration if the membership set of
all non-faulty processorsp is equal toNF t, the set of all non-faulty processors
at timet, and all faulty processors have already diagnosed their fault and thus
removed themselves from their own membership set. Forstablethe two safety
propertiesvalidity andagreementfollow immediately from these definitions.
Moreover,stableis the initial configuration of the system.
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11stable(t,y,z) : bool =
recent(t,y,z)

∧ ∀p: p 6∈ NF t ⇒ p 6∈ memt
p

∧ p ∈ NF t ⇒ memt
p = NF t

∧ p= z ⇔ acct
p = rejt

p + 1
∧ p 6= z ⇒ acct

p > rejt
p + 1

∧ prevt
p = ⊤ ⇔ p= z

∧ doubtt
p = ⊥initial : AXIOM

∃y,z: stable(0,y,z)

In the configurationstable(t, y, z) the counters of non-faulty processors are
set such thatacct

p > rejt
p + 1. This is to allow for a non-faulty processor

p to cope with a send fault of one of the other broadcaster in thenext round,
in which case the counterrejt

p will be increased; this should not lead top
removing itself from its own membership set in its next sending slot, for which
acct

p > rejt
p must hold. However, the most recent non-faulty broadcaster,

sayz, cannot satisfy this condition as in its sending slotz sets the counters to
acct

z = 1 andrejt
z = 0. Supposez was the broadcaster at timet − 1 and the

broadcaster at timet committed a send fault. Nowz increasesrejt
z and has

acct
z = rejt

z. If z was scheduled to be the next broadcaster at timet + 1 the
conditionacct

p > rejt
p would not hold and thusz would execute command

(2), thereby wrongly removing itself from its membership set. In order to avoid
this case, it is crucial thatzcannot be the next broadcaster. Therefore we must
ensure that there is another non-faulty processor, sayy, that will send beforez
does. For similar, yet more involved reasons there has to be another non-faulty
processor broadcasting before bothz andy. As a result, this requires at least
4 processors to be present in the system in order for it to correctly tolerate a
single fault. Finally, instable, z is the only processor that has itsprev flag set,
while thedoubt flag is cleared for all processors.

The characterization of the two most recent non-faulty broadcasters is cov-
ered by the following predicate, which also expresses that neithery nor z can
be the broadcaster at timet.

12reent(t,y,z) : bool =
y ∈ NF t ∧ z∈ NF t

∧ before(t,y,z)
∧ ∃p: p 6= y ∧ p ∈ NF t ∧ before(t,p,z)
∧ ∀p: before(t,z p) ⇒ p 6∈ NF t

∧ ∃p: p ∈ NF t ∧ before(t,p,y)
∧ ∀p: before(t,y,p) ∧ before(t,p,z) ⇒ p 6∈ NF t

The expressionbefore(t, y, z) denotes that at timet, processory will broad-
cast again beforezdoes.

13before(t,y,z) : bool =
∀(i:time): z= broadcaster(t+i) ⇒ ∃(s:time): s<i ∧ y= broadcaster(t+s)
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In order to determine the transition conditions from thestableconfigura-
tion, we consider whether or not a new fault occurs. If no processor becomes
faulty, that isNF t+1 = NF t holds, the system remains instable, because nei-
ther the broadcaster nor the receivers change their membership set: the broad-
caster will execute command (1), while the receivers will execute command
(12), except forz which will execute command (4). However, depending on
whether the current broadcasterb is non-faulty or an already faulty one, the
values of the parameters ofstablemight change. In the first case,z andb now
become the two most recent non-faulty broadcaster and the new configuration
is stable(t + 1, z, b), while in the latter case nothing changes, i. e. the new con-
figuration isstable(t + 1, y, z).

14stable_to_stable_non_faulty : LEMMA
LET b = broadcaster(t) IN

stable(t,y,z) ∧ b ∈ NF t ∧ NF t+1 = NF t ⇒ stable(t+1,z,b)stable_to_stable_faulty : LEMMA
LET b = broadcaster(t) IN

stable(t,y,z) ∧ b 6∈ NF t NF t+1 = NF t ⇒ stable(t+1,y,z)

If a processor, sayx, which was non-faulty at timet becomes faulty at time
t+1, the same commands as above will be executed, but the system will change
into a new configuration, that we calllatent.

15latent(t,x,y,z) : bool =
x ∈ NF t−1 ∧ NF t = NF t−1r {x} ∧ recent’(t,x,y,z)

∧ ∀p: (p 6∈ NF t ∧ p 6= x) ⇒ p 6∈ memt
p

∧ (p ∈ NF t ∨ p= x) ⇒ memt
p = NF t ∪{x}

∧ p= z ⇔ acct
p = rejt

p + 1
∧ p 6= z ⇒ acct

p > rejt
p + 1

∧ prevt
p = ⊤ ⇔ p= z

∧ doubtt
p = ⊥

This configuration is very similar tostablewith the exception that both the
non-faulty processors andx now do not only contain non-faulty processors in
their membership sets, but also the newly faulty processorx. It is the task of the
group membership algorithm to ensure that eventually all processors, including
x, become aware ofx’s faultiness and remove it from their membership sets and
thus return to thestableconfiguration. The fault hypothesis states that no new
fault will occur during that time until the system will bestableagain. The
predicaterecent′(t, x, y, z) differs from recent(t, y, z) in that we must allowy
or z be actually identical tox and hence the first two conjuncts are changed to
y 6= x⇒ y ∈ NF t andz 6= x⇒ z∈ NF t, respectively.

Again, it is a simple matter to establish the propertiesvalidity andagreement
for the configurationlatent. All non-faulty processors have the same member-
ship sets which contain only one faulty processor, and the faulty processors
have already removed themselves from their membership sets, apart fromx,
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which still has itself in its membership. An additional verification condition,
which is proved equally easily, is thatlatent is different fromstable(and there-
fore faults are assumed not to occur).

As for stable there are two transition conditions for the system to transit
to latent: either the broadcasterb at time t + 1—when x becomes faulty—
is an already faulty processor, or it is non-faulty. In the first case, the new
configuration islatent(t + 1, x, z, b), while in the latter case the system will be
in latent(t + 1, x, y, z).

16stable_to_latent_non_faulty : LEMMA
LET b = broadcaster(t) IN

stable(t,y,z) ∧ x ∈ NF t ∧ b ∈ NF t ∧ NF t+1 = NF t r {x}
⇒ latent(t+1,x,z,b)stable_to_latent_faulty : LEMMA

LET b = broadcaster(t) IN
stable(t,y,z) ∧ x ∈ NF t ∧ b 6∈ NF t ∧ NF t+1 = NF t r {x}

⇒ latent(t+1,x,y,z)

Fromlatenttwo cases must be distinguished: one where the faulty processor
x is the next broadcaster, and one where it is not. In the formercase,x executes
command (1), however, it will not be able to successfully transmit its message
and hence the receivers will execute their command (13), thereby removingx
from their membership sets. This leads to the configurationexcluded. In the
latter case,x is a (faulty) receiver and hence will not succeed to receive the
message sent by the broadcaster. The other receivers will execute command
(12), or (4) in the case of the previous broadcaster. On the other hand,x ex-
ecutes either command (6) or (14), depending on whether or not x was the
previous broadcaster (z, that is) and the system moves into the configurations
missed-rcvor missed-rcv-x-not-ack, respectively.

By systematically analyzing the possible cases for a given configuration one
proceeds to develop the configuration diagram. Every transition either leads
to a new configuration or to an already existing one. In some cases it may
be necessary to generalize an existing configuration in order to establish the
proof of a transition. The ultimate goal in this process is toend up with a
configuration diagram which is closed. Due to lack of space wehave to omit
the detailed description of the remaining states and transitions of the diagram
in this paper. The complete specification of the algorithm and all proofs are
available via WWW [16].

Once the configuration diagram is closed the most difficult and complex part
of the proof of the two safety propertiesvalidity andagreementis done. To for-
mally established these properties one has to show basically two things: first,
every configuration implies the property under consideration. This is quite
easy to see as all the non-faulty processors always have the same membership
sets and there is always at most one faulty processor, namelyx, that has not yet
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removed itself from its membership set. Second, there is no other configuration
the system could possibly turn into. In other words, the transition conditions
from any configuration must cover all the possible cases. Once this part of the
proof is done, which is mainly a task of simple case analyses,these two facts
can be combined to finally yield the desired safety properties.

The third correctness property,self-diagnosis, is a liveness property. Intu-
itively, one has to show that once the system has leftstableit can not be trapped
in one of the loops of the other configurations. Every of theseconfigurations
with a loop can be left in either of two cases: first, if the nextbroadcaster is
non-faulty or, second, if it isx’s slot to broadcast. The latter case is easy to
demonstrate as everyn slots a given processor will be the current broadcaster.
The former case can be established using the fault model, seePVS box 10 , that
states that there exist at least three non-faulty processors at all times. Hence,
eventually one of these will become the next broadcaster.

5. CONCLUSIONS

The group membership protocol presented here is one of a whole suite
of algorithms for safety-critical real-time control implemented in the Time-
Triggered Protocol. Industrial needs to minimize cost enforces the group mem-
bership algorithm to be heavily intertwined with other protocol services of
TTP. We have isolated the core of the group membership algorithm and sub-
jected it to thorough formal analysis. The proofs of the maincorrectness prop-
erties of the algorithm have been developed and mechanically checked with
the assistance of the PVS specification and verification system. The complete
verification comprises more than 160 proved lemmas and theorems and it takes
almost one and a half hours to re-run all proofs even on a fast Sparc Ultra-II.
These numbers might give an impression of the immense complexity of fault-
tolerant group membership algorithms in general and of the TTP instance in
particular. One source of this complexity is the requirement of fault-tolerance
itself as one has to be very careful when reasoning about possibly failed com-
ponents. Another reason why the TTP algorithm is significantly more difficult
than other similar group membership protocols is that for optimization reasons
there are still other services present as parts of the TTP group membership
algorithm; for example, the way how self-diagnosis is accomplished in TTP
by using the two special state variablesaccp andrejp is in fact used for do-
ing clique avoidance at the same time. This results in a self-stabilizing group
membership algorithm, a property not considered in this paper.

The verification of the TTP group membership protocol applies a method
recently proposed by John Rushby [14] who has used it to mechanically verify
a similar algorithm [13]. Several attempts to formally verify that algorithm,
which was flawed in its original publication [4], failed because of the number
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and complexity of additional invariants needed to establish the proof. This
proof method, which is quite closely related to the verification diagrams of
Manna and Pnueli [2,9], made it both possible and easy to verify the (corrected)
algorithm. This promising experience with an apparently difficult problem
made us decide to apply Rushby’s method rather than to attempt a traditional
invariance proof of the correctness of the TTP algorithm, which is considered
even more complicated. It turned out that one of its main advantages over
the usual method of repeated invariant strengthening is that the proof can be
developed incrementally and in a very systematic way. Thus,one can break
down the overall proof into small manageable steps.

Further research is concerned with formally specifying other protocol
services of the Time-Triggered Architecture, such as initialization or re-
integration of nodes, and analyzing their interrelationships. For example, the
group membership algorithm presented here is specified at the level of a syn-
chronous system; for this model to be adequate, we have to assume fault-
tolerant clock synchronization [11]. Conversely, the clock synchronization
mechanism of TTP also relies on the group membership servicebeing able
to avoid the formation of cliques of processors. Finding ways to clearly iden-
tify the relationships and interfaces of the various protocol services in order to
avoid these circular dependencies remain a challenging andinteresting prob-
lem.
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