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Abstract This paper describes the formal verification of a fault+t@te group membership
algorithm that constitutes one of the central services ®ffime-Triggered Pro-
tocol (TTP). The group membership algorithm is formallysfied and verified
using a diagrammatic representation of the algorithm. Veerilee the stepwise
development of the diagram and outline the main part of thieectness proof.
The verification has been mechanically checked with the Pié¢Srem prover.
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1. INTRODUCTION

The Time-Triggered Architecture (TTA) developed by the \émsity of Vi-
enna and TTTech provides an integrated set of services foerdable dis-
tributed real-time systems [5, 6]. TTA is intended for degccontrolling
safety-critical electronic systems without mechanicatkog, so-called “by-
wire” systems such as those for automotive steering, bgakind suspension
control [15]. It has been argued that the kind of reliabitéguired in such situ-
ations cannot be achieved without a careful formal analyfsise mechanisms
and algorithms involved [3,12].

The Time-Triggered Protocol (TTP) [7] is the core of the conmigation
level of TTA. Group membership is central service of TTP asrdvides to
all non-faulty processors a consistent view of which nodesperational and
which are not at any given moment. Distributed fault-tatéralgorithms are
inherently difficult to reason about. In order to make forweiification feasi-
ble itis essential that the various aspects of an algorittespecified and veri-
fied at appropriate levels of abstraction that capture theres of the property
under study and abstract from irrelevant details. The graembership algo-
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rithm [1] is modeled as a synchronous system and it abstfiamtsthe clock
synchronization service that justifies the synchrony agsgiam. Its verification
is significantly more difficult than other fault-tolerangalithms because in-
formation about the failure of processors is not availatnimediately but only
with a certain delay. Therefore one has to be very carefuhwbasoning about
possibly failed components. Verification of safety projesitlike the require-
ment that all (non-faulty) processors of a system shoule lia same opinion
about the current membership status of other processargically accom-
plished by an induction proof. In order to establish the oigun step, however,
one generally has to strengthen the invariant becauseaftaugh the property
of interest is not inductive. Usually repeated strengthgfis necessary before
an inductive invariant is found and although some of thengfiteenings can be
generated automatically this becomes the main task whdéorpgng a mech-
anized verification. Experience with a membership algorifimilar to that of
TTP [4] showed that this verification strategy is infeasifolieour purpose.
Therefore, we take a different approach recently propogelbhn Rushby:
instead of expressing the correctness property as onedargenction, we use
a set of disjunctively connected formulas that can be sedheadescription
of an abstract state machine [14]. Each disjunct contaimslésired property
and represents a particular configuration the membershiitdm can reach.
To establish the correctness of the algorithm one has to shatvat every
point in time the system is in one of these configurations. tRerTTP group
membership algorithm, we have formally proved both an agesd property,
i.e., that every non-faulty node considers the same setogfegsors to be part
of the membership, and a liveness property that states tfaafltt processor
will eventually remove itself from the membership. All defions and proofs
have been developed and mechanically checked with the PatHisation and
verification system [10]. We present fragments of the PV Sifipation in this
paper. To increase readability, however, the syntax hasdily been modified
by replacing some ASCII codings with a more familiar mathgoa&notation.
The full specification together with all proofs can be ob¢givia WWW [16].
The next section explains the group membership algorithiiTéf and pro-
vides a formal specification. Section 3 illustrates the apph we take to for-
mally verify the algorithm, and Section 4 describes the npairts of the proof.
The last section contains concluding remarks and direstionfuture work.

2. GROUPMEMBERSHIPINTTP

In TTP, access to the broadcast bus is implementedtinyeadivision multi-
ple access (TDMA3chema: each processor is assigned a certain time interval,
a so-calledslot, in which it is allowed to send a message on the bus while the
other processors listen. Slots are numbered and can be seenadstraction
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of a global time base that is provided by a separate clockhggnization al-
gorithm [8, 11]. In our model we assume a petoc of n processors, labeled
0,1,...,n—1, that are arranged in a logical ring. The periochafuccessive
slots is called & DMA round

Every processop maintains a semanj)—the membership set of processor

p—that contains all processors thatonsiders operational at tinte In slot
t the processor with labélmod n is the broadcaster, denotetbadcasteft).
In addition to the message data, the broadcaster sendspghdseof its inter-
nal state that are critical for the protocol to work propemjore precisely, a
CRC checksum that is calculated over the message data acdtibal state
information—which includes the membership set—is appdridethe mes-
sage. For the analysis of the group membership algorithm sufficient to
assume that a message contains the broadcaster’s locatwigyon the mem-
bership.

As the order of messages is statically defined there is no foeespecial
membership messages. Instead, a successfully receivedgees interpreted
as a life-sign of the sender and a receiver will maintain ttzaticaster in its
local membership set if it agrees with the broadcasterticatistate informa-
tion and hence with its membership $eConversely, if a processor does not
receive an expected message or does not agree with the bsterdc view
on the membership, the broadcaster will be consideredyfaunlt the receiver
removes it from its membership set.

The group membership algorithm is designed to operate iprisence of
faults. A processor can ls=nd-faultyin which case it will fail to broadcast in
its next slot, while aeceive-faultyprocessor will not succeed in receiving the
message of the next non-faulty processor. This restrigtelt fodel is appro-
priate since other protocol services of TTP ensure that déiudt modes man-
ifest themselves as either send or receive faults by emigieifaulty processor
to fail silently. For example, the bus guardian, a speciativare element of
the TTP controller, prevents a processor that has lost sgnglof its clock
from accessing the broadcast bus outside its designatesd $ie useNF! to
denote the set of non-faulty processors at timandp ¢ NF! indicates thap
is either send-faulty or receive-faulty at tiheFurthermoresend} describes
that the current broadcastesends a message on the bus, Wlsuiki&/es{3 means
that the message sent by the broadcaster arrives at theageei

A non-faulty broadcastdp will only send a message fifis contained in its
own membership set; i has removed itself from the membership set (due
to diagnosing a fault) it will stop sending message in itsadiaast slot. The

1Technically, the receiver calculates a CRC checksum oeerdgbeived message data and its own critical
state information and compares the result with the checksemhby the broadcaster.
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following specification 1] shows the axiomatization afend§ as defined in
PVS2

NFY  : set[proc] [ 1]
send§ : bool
arriveéj : bool

sending : AXIOM
LET b = broadcaster(t) IN
be NF' A bemenj = send§

fail_silence : AXIOM
LET b = broadcaster(t) IN
b¢ menj = -—send§

A message sent by the current broadcalsieill arrive at a non-faulty pro-
cessop . Of course, there is no generation of spontaneous messagsace
messages arrive only if they have been sent. These axiomsnady that
broadcasts are consistent: a message arrives either anafhulty processors
or, if the broadcaster is send-faulty, at none of them. Th& Bpfcification is

given in[2].
arrival : AXIOM [ 2 ]

LET b = broadcaster(t) IN
send§ A peNF' = arrives,

nonarrival : AXIOM
LET b = broadcaster(t) IN
-send§ = -arrives,

In our model we consider faults to occur only if they affeat gystem in
the next slot; e. g. a send fault of a procegs@ not considered to occur un-
til immediately beforep’'s broadcasting slot. If the broadcaster at titme 1
becomes faulty in its sending slot it will fail to succesgfudend a message.
Similarly, a newly faulty processor will fail to receive a ssage. Note that
the behaviour of faulty processors is unspecified for this sifier the fault oc-
curred: processors may or may hot succeed in sending oviegasubsequent
messages.

faulty_broadcaster : AXIOM L_Ei_
LET b = broadcaster(t+l) IN
be NF' A bg NFFL = —send§!

faulty_receiver : AXIOM
LET b = broadcaster(t+l) IN
PENF' A pgNFFL A p#b = be NFHL A —arriveg™

2PVS allows variables such a$o occur free in formulas; these are implicitly universajlyantified. More-
over, the type of variables can be dropped if it has beendoted to PVS by a corresponding variable

declaration. Throughout this paper, we s, g, X, y, andzto denote processors (of type oc), andt
andsare of typet i ne.
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Finally, once a processor becomes faulty it will be congddaulty forever.

faults_latch : AXIOM [ 4 ]
pgNFl = pgNFHL

The task of a group membership algorithm is to diagnose th&daof a
faulty processor and to inform all non-faulty processorsulit. In order to
cause a broadcaster to realize that it is send-faulty thedgrdép membership
algorithm uses an (implicit) acknowledgment mechanismradcgssop that is
the broadcaster in sloithecks whether the next non-faulty broadcaster,gsay
that sends in the nekslot has the same membership setjasd in particular
containsp in its membership set. If s@ can conclude that its broadcast was
successful. Otherwise, eithprfailed to broadcast og is receive-faulty. To
resolve this ambiguityp waits for the next non-faulty broadcaster following
g, sayr. If r containsp in its membership set but naf while having the
same view considering other processors, the original rgessbp was sent
correctly andj failed. If pis not inr's membership set, batis (and the rest of
the membership sets pfandr are the same), thespandr agree thap failed
to send. In this casg,will remove itself from its own membership set and fail
silently.

A similar mechanism could be used for diaghosing receiviidaif a pro-
cessolp does not receive an expected message it could check whietheext
non-faulty broadcaster maintained the original sendeisimiembership set in
which casep must realize that it has suffered from a receive fault. Havev
TTP employs a slightly different mechanism that is also usealoid the for-
mation of disjoint cliques at the same time. A clique is a grofiprocessors
where agreement on the current state is reached only whkigtoup. Each
processop maintains two counters,c c}) andr ej g which keep track of how
many messages hasaccepted(successfully received) amgjected respec-
tively. A processop will increment the counter ej g if p does not agree with
the broadcaster’s view on the membershipp'thnext broadcast slot it checks
whether it has accepted more messages in the last round thesriejected. If
s0,p resets the counters and broadcasts; the other case irsdicate suffered
from a receive fault and therefoperemoves itself from the membership and
by not broadcasting its messagecan inform the other processors about its
failure.

Formally, the group membership algorithm is described bgtasguarded
commands. In every sldt every processor executes exactly one of these
commands. The guards are evaluated in a top-down order. drnealf

description involves two additional boolean state valsiablprevtp and

SMore generally, if there are already faulty processors were scheduled to send betweeandg, the
latter is the broadcaster in slo#- i for somei > 1.
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doubt g If a processomp was the previous broadcaster and now waits for
being acknowledgedpr ev, is set to true, whiledoubt , is true if p did

not get acknowledged by its successor and waits for the desoccessor to
resolve the conflict. In this case, the variableacc}J holdsp’s first successor
which refused to acknowledge In the following definition state components
that are not mentioned explicitly do not change.

Broadcaster: Letb be the current broadcaster, i. B.= t mod n.

(1) acch>rejp — menj :=meni,
prevy ™ :=T, accy™ :=1,rej ' =0
(2 accp<rejp, — nenjtt = merri,\ {b}
Receiver: Every processop different from the current broadcaster executes
the first of the following commands whose guard evaluatesug t

(3) p¢nenj —  no change
(4)  prevyAarriveg, A
men}, = menj U {p} — nenptt :=ne
prevy™ :=F, acc =accp+1

(5)  prevyAarriveg, A
mem, = menp ~ {p} — ment! .= nmenj, \ {b},
prevg™ :=F, doubt ;™ =T,
rej st = rej +1, succ“rl =b

(6) prev,Asendg — merri+1 = ~ {b}
t pre\ill—T rejpti=rejp,+1
(7)  prevy — menjtt = mardj {b},
prevy™ =

(8)  doubt}Aarrives, A
men}, = nenb U {p} \ {succy} — menjt!:=ne
doubt ;t' :=F, acc ':=accp+1
(9)  doubt} Aarrives, A
men}, = nenf U {succp} ~{p} — meny! = nenj\ {p},
doubt ;t' ;= F, accy™ :=accp+ 1

(10) doubt , Asendf — nent! = nmenj, < {b},

doubt ;*' :=T, rej ;"' :i=rej,+1
(11) doubty — msnj,+1 = msnj, ~ {b},

doubt ;' :=T

(12) arrives, A (menj, = nent) — menjt! = meni,

(13) -sendf
(14) otherwise

1
3 3
fusies
[
33
S
/7
==

The group membership algorithm has to fulfill three majorectness re-
guirements:

= Validity: Atall times, non-faulty processors should have all and ¢mdy
non-faulty processors in their membership sets, whiletyguiocessors
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should have removed themselves from their sets. This remeint is,
however, impossible to satisfy as it may take some time tgraiae the
faultiness of a processor. We therefore must allow a sirgéyf pro-

cessor to be included in the membership sets of non-fautiggssors,
while faulty processors may have (a subset of) the nonyfguticessors
plus themselves in their sets.

validity : THEOREM [ 5 ]
PENF! = nenf=NF" v Ix XENF' A nenf,=NFU{x}
A PENF' = pgnenf v menj C NF'U{p}

m  Agreement: All non-faulty processors should have the same member-
ship sets.

agreement : THEOREM |L
PENF' A geNF' = nenj = nenj,

m Sef-diagnosis. A faulty processor should eventually diagnose its fault
and remove itself from its own membership set.

self_diagnosis : THEOREM L7 ]
XENFU A xg NF*1 = 3s 0<s A s <2n+1 A x¢ menfs

These properties are subject to two additional assumptlmatsconstitute
thefault hypothesisFirst, as processors will be able to diagnose a fault only if
no new fault occurs during that process, the specificatidgheoTime-Triggered
Protocol requires the membership algorithm to work prgpenlly if two suc-
cessive failures occur at least two TDMA rounds apart [1]rdoequent fault
arrivals are dealt with by other protocol mechanisms of TihRour formal
verification the fault arrival assumption is expressed infferent way that is
adapted to the verification approach we take. We assume fhattanly oc-
curs if the system is in a certain configuration calitdble If a fault occurs
the system leaves this configuration and the fault arrivaliaption states that
no new fault occurs until the system reachesdfadleconfiguration again.

fault_may_occur_when_stable : AXIOM |i
stable(ty, 2 = NFH = NF
VIx xeNFU A NFHL = NFU{x}

no_faults_when_not_stable : AXIOM
—stable(ty, 2 = NFTFL = NF

It is necessary to rule out the trivial solution to thaidity andagreement
requirements where the system never returnstable Otherwise only one
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fault could occur which would not even be tolerated. We aegetfore forced
to prove alivenessproperty saying that after a fault occurred #tablecon-
figuration will eventually be reached again. More specificale demonstrate
that this is to happen no later than + 1 steps after the fault occurred.

liveness : THEQREM L_EL_
stable(t,y,2 = 3sy,z 0<s A s <2n+1 A stablgt+s,y,2)

We believe that a stronger property could also be provedyevhiss con-
strained to be less or equan. Then the system would return stableno later
than two TDMA rounds after a fault occurred which would yid¢kk origi-
nal fault arrival assumption of TTP. Moreover, thelf-diagnosigequirement
listed above is actually a simple corollarylafeness

The second part of the fault hypothesis refers to the numbprocessors
that are required for the algorithm to work correctly. A skttwee processors
would be sufficient to tolerate a single fault, however, idesrto prevent a non-
faulty processor from being fooled by a faulty broadcastézast 4 processors
are required to be present in the system with at least thiieg ben-faulty at
all times. Otherwise a non-faulty processor might mistdkeiagnose a fault
of its own and remove itself from its membership set (thereiojating both
the validity and the agreement property).

n s { mN| m>4} % -- nunber of processors [ 10
proc : TYPE+ = { mN | 0<m<n} %-- the set of processors (|l abels)

three_non_faulty_exist : AXIOM
XY, Z XEY A XZZ A y#Z A XENFL A yeNFE A ze NF!

3. APPROACH TO VERIFYING THE ALGORITHM

For the verification of the TTP group membership algorithm apply a
method recently proposed by John Rushby [14]. The requinesnalidity
and agreemenexpress properties that should hold for all reachable staite
the system. Such invariants, or safety-properties, arallyseerified by some
form of induction proof; one demonstrates that the propledtgs in the initial
state(s) and that all state transitions preserve the gyopére problem is, how-
ever, that the property of concern is not inductive in gelreamd hence, in order
to establish the proof of the induction step, one has to gthem it by conjoin-
ing additional properties to it which themselves have torvariants. Usually,
this process has to be repeated several times before theimproof can be
accomplished. Rushby reports in [14] that the number andptaxity of ad-
ditional invariants that had to be discovered during theopdefeated several
determined attempts to mechanically verify a group mentiye@gorithm [4]
similar to that of TTP. Because of its peculiarity of managoounters for ac-
cepted and rejected messages and the way how acknowledgfrraessages
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Figure 1 Configuration diagram for the TTP group membership algorith

is done, the group membership algorithm of TTP is considepdgte tricky
and a mechanical proof using the traditional approach ig Nialy to be even
more complex.

Instead of expressing the property to be verified as a cotiumof pred-
icates Rushby’s method exploits a disjunctively connestetdof formulas—
which in turn may be conjunctions of predicates—to provepttoperty of con-
cern. Each disjunct can be seen as the description of arcedafiguration
a property of the current global state of the whole systene ddnfigurations
are defined such that every single configuration implies #wreld property,
and to verify that property one has to show that at all timesstrstem is in one
of these configurations. Thus, the main part of the proof aanepresented
as aconfiguration diagramThe diagram for the group membership algorithm
is shown in Figure 1. The nodes of the diagram representdhégurations
and arrows denote transitions from one configuration torethnd are labeled
with transition conditions. Configurations are parametatiby the time and
describe the global state the system is in. Configurationsheae additional
parameters such as processotsy( . ..) that behave differently from the rest
of system, or additional entities necessary to describesystem state. The
labels of transitions express the preconditions for theesy$o move from one
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configuration to another. For example, the labet x from the transition from
latentto excludedmeans that the system takes this transitionigfthe current
broadcaster, while a transition with the lalodad# x is taken whenever the
current broadcaster is already faulty but different franThe transition condi-
tions leading from one configuration need not necessarilgigjeint, but one
has to show that they are complete in the sense that thaindigpn is true.

The diagram can be developed step-by-step. One usualtg btadefining
some initial configuration or the one in which the system stayder normal
circumstances, i. e. as long as no fault occurs. For TTPctmsral configu-
ration is the one labelestable By symbolically evaluating the algorithm in
the current configuration and by splitting on possible casegenerate some
new configurations, and the transitions from the originalfiguration are la-
beled with the appropriate conditions. By repeatedly applyhis construction
on each transition and each new configuration one aims tdapeeeclosed
diagram. To prove safety properties likalidity or agreemenione then has
to demonstrate that every configuration implies the degiregerty and that
the disjunction of the transition conditions leading frony @ne configuration
evaluates to true; this ensures that there is no other coafign the system
can possibly get into. In order to prove liveness propettiesself-diagnosis
one has to establish that the system can not loop forever amféggaration
other tharstable

There are several benefits to this approach: first, the diagem be devel-
oped incrementally and in a totally systematic way by synchdl executing
one step of the algorithm in every configuration. Secondctimapleted dia-
gram is a suitable means of analysing the difficult specis¢saf the algorithm
and to explain how and why it works (or doesn't). Last, it sed¢hat the cre-
ative steps in developing the proof can be accomplisheeet®in by using
the traditional way of repeated invariant strengtheninge Tonfigurations as
presented here generally are not invariants and are thmerigfentified more
easily.

The next section describes how the configuration diagrarméT TP group
membership algorithm is gradually developed and outlihesverification of
the three correctness requirements for the TTP group mestmipeagorithm.

4. DEVELOPING THE CONFIGURATION DIAGRAM

The system is said to be insdableconfiguration if the membership set of
all non-faulty processorsis equal toVF!, the set of all non-faulty processors
at timet, and all faulty processors have already diagnosed thdirdad thus
removed themselves from their own membership setstdnethe two safety
propertiesvalidity and agreemenfollow immediately from these definitions.
Moreover,stableis the initial configuration of the system.
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stable(t,y,z) : bool = |i
recent(t,y, 2
A Vp pZNF' = p¢nmen}
A PENF = menj=NF
p=z & acchp=rejp+1
p#z = acch>rejh+1
previ=T & p=z
doubt |, = L

> > > >

initial : AXIOM
dy,z stable(0,y, 2

In the configuratiorstabldt, y, z) the counters of non-faulty processors are
set such thaacctp > rej })+ 1. This is to allow for a non-faulty processor
p to cope with a send fault of one of the other broadcaster iméxt round,
in which case the countarej tp will be increased; this should not lead po
removing itself from its own membership set in its next sagdilot, for which
acc}) > rej }) must hold. However, the most recent non-faulty broadcaster
sayz, cannot satisfy this condition as in its sending glsets the counters to
accl = 1andrej! = 0. Suppose was the broadcaster at tihe- 1 and the
broadcaster at timecommitted a send fault. Nowincreases ej ! and has
accl =rej L. If zwas scheduled to be the next broadcaster at time the
conditionaccltO > rej Ewould not hold and thug would execute command
(2), thereby wrongly removing itself from its membership satotder to avoid
this case, it is crucial thacannot be the next broadcaster. Therefore we must
ensure that there is another non-faulty processorystat will send before
does. For similar, yet more involved reasons there has toatgher non-faulty
processor broadcasting before batandy. As a result, this requires at least
4 processors to be present in the system in order for it taectiyrtolerate a
single fault. Finally, instable zis the only processor that hasjisev flag set,
while thedoubt flag is cleared for all processors.

The characterization of the two most recent non-faulty thcaaters is cov-
ered by the following predicate, which also expresses thdhery nor z can
be the broadcaster at tinhe

recent(t,y,z) : bool = |1_2
yeNFt A ze NF!

before(t,y, 2

Ip: p#Yy A pPENF' A before(t,p,2)

vp:. before(t zp = p¢gNFt

Ip: pe NFY A before(t,p,y)

vp: before(ty,p) A before(tp,2 = pgNF

>>>>>

The expressiobefordt, y, z) denotes that at timg processoy will broad-
cast again beforedoes.

before(t,y,z) : bool = |i
V(i:time): z=broadcaster(t+i) = 3J(stine): s<i A y=broadcaster (t+s)
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In order to determine the transition conditions from #iable configura-
tion, we consider whether or not a new fault occurs. If no pssor becomes
faulty, that isVF! = NF! holds, the system remains $table because nei-
ther the broadcaster nor the receivers change their mehipeset: the broad-
caster will execute command (1), while the receivers wit@xe command
(12), except forz which will execute command (4). However, depending on
whether the current broadcasteis non-faulty or an already faulty one, the
values of the parameters stablemight change. In the first caseandb now
become the two most recent non-faulty broadcaster and theoefiguration
is stabldt + 1,z b), while in the latter case nothing changes, i. e. the new con-
figuration isstablet + 1,y, z).

stable_to_stable_non_faulty : LEMMA |i
LET b = broadcaster(t) IN
stable(t,y,2 A beNF' A NFHL=NF' = stabl e(t+l, z b)

stable_to_stable_faulty : LEMMA
LET b = broadcaster(t) IN
stable(ty,2 A bgNF' NFFL = NFt = stable(t+l,y, 2)

If a processor, say, which was non-faulty at timebecomes faulty at time
t+1, the same commands as above will be executed, but the systierhamge
into a new configuration, that we caditent

15

latent(t,X,y,2) : bool =

XENFTL A NF = NFL{X) A recent’ (L, %Y, 2)

A VP (PENFY A p#EX) = p¢ren
A (PENF' v p=x) = nenl=NFU{Xx}

p=z & acch=rejh+1
p#£z = accp>rejp+1
prevp=T & p=z
doubt = L

>>> >

This configuration is very similar tstablewith the exception that both the
non-faulty processors andnow do not only contain non-faulty processors in
their membership sets, but also the newly faulty processibis the task of the
group membership algorithm to ensure that eventually attggsors, including
X, become aware ofs faultiness and remove it from their membership sets and
thus return to thetableconfiguration. The fault hypothesis states that no new
fault will occur during that time until the system will b&table again. The
predicaterecent(t, x, y, z) differs fromrecentt,y, z) in that we must allowy
or z be actually identical tax and hence the first two conjuncts are changed to
y # x=y e NFtandz # x=z € NF, respectively.

Again, itis a simple matter to establish the propentiakidity andagreement
for the configuratioratent All non-faulty processors have the same member-
ship sets which contain only one faulty processor, and thiyfgrocessors
have already removed themselves from their membership aedst fromx,
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which still has itself in its membership. An additional faxation condition,
which is proved equally easily, is thiatentis different fromstable(and there-
fore faults are assumed not to occur).

As for stablethere are two transition conditions for the system to ttansi
to latent either the broadcastdr at timet + 1—when x becomes faulty—
is an already faulty processor, or it is hon-faulty. In thatficase, the new
configuration idatent(t + 1, x, z b), while in the latter case the system will be
in latent(t + 1,x,Y, 2).

stable_to_latent_non_faulty : LEMMA L_lg_
LET b = broadcaster(t) IN
stable(t,y,2 A XENF' A be NFt A NFFL = NF X}
= latent(t+l, x z b)

stable_to_latent_faulty : LEMMA
LET b = broadcaster(t) IN
stable(t,y,2 A XENF' A bgNF' A NFFL = NFU{X}
= latent(t+l, x Yy, 2

Fromlatenttwo cases must be distinguished: one where the faulty psoces
X is the next broadcaster, and one where itis not. In the fooase x executes
command (1), however, it will not be able to successfullysrait its message
and hence the receivers will execute their command (13jeliyeremovingx
from their membership sets. This leads to the configuragiariuded In the
latter casex is a (faulty) receiver and hence will not succeed to recdiee t
message sent by the broadcaster. The other receivers widltxcommand
(12), or (4) in the case of the previous broadcaster. On therdtandx ex-
ecutes either command (6) or (14), depending on whether ok m@s the
previous broadcasteg,(that is) and the system moves into the configurations
missed-rcvor missed-rcv-x-not-agkespectively.

By systematically analyzing the possible cases for a gieerfiguration one
proceeds to develop the configuration diagram. Every tianseither leads
to a new configuration or to an already existing one. In sonses@ may
be necessary to generalize an existing configuration inrdcdestablish the
proof of a transition. The ultimate goal in this process it up with a
configuration diagram which is closed. Due to lack of spacéhaxe to omit
the detailed description of the remaining states and tiansi of the diagram
in this paper. The complete specification of the algorithrd alh proofs are
available via WWW [16].

Once the configuration diagram is closed the most difficut@mplex part
of the proof of the two safety propertigalidity andagreements done. To for-
mally established these properties one has to show basteadlthings: first,
every configuration implies the property under considerati This is quite
easy to see as all the non-faulty processors always havaithne membership
sets and there is always at most one faulty processor, naqrtblgt has not yet
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removed itself from its membership set. Second, there igtmer configuration
the system could possibly turn into. In other words, thedition conditions
from any configuration must cover all the possible cases.e@me part of the
proof is done, which is mainly a task of simple case analythese two facts
can be combined to finally yield the desired safety propgrtie

The third correctness propertself-diagnosisis a liveness property. Intu-
itively, one has to show that once the system hasstattleit can not be trapped
in one of the loops of the other configurations. Every of thesefigurations
with a loop can be left in either of two cases: first, if the nes@adcaster is
non-faulty or, second, if it ix's slot to broadcast. The latter case is easy to
demonstrate as everyslots a given processor will be the current broadcaster.
The former case can be established using the fault moddih\é@é)o, that
states that there exist at least three non-faulty procesgall times. Hence,
eventually one of these will become the next broadcaster.

5. CONCLUSIONS

The group membership protocol presented here is one of aendite
of algorithms for safety-critical real-time control imphented in the Time-
Triggered Protocol. Industrial needs to minimize cost exée the group mem-
bership algorithm to be heavily intertwined with other joail services of
TTP. We have isolated the core of the group membership #hgorand sub-
jected it to thorough formal analysis. The proofs of the n@irrectness prop-
erties of the algorithm have been developed and mechanicladicked with
the assistance of the PVS specification and verificatioresysThe complete
verification comprises more than 160 proved lemmas andéheoand it takes
almost one and a half hours to re-run all proofs even on a faestcUltra-II.
These numbers might give an impression of the immense caitypte fault-
tolerant group membership algorithms in general and of the hstance in
particular. One source of this complexity is the requiretredrault-tolerance
itself as one has to be very careful when reasoning abouttbp$ailed com-
ponents. Another reason why the TTP algorithm is signifigambre difficult
than other similar group membership protocols is that fainogation reasons
there are still other services present as parts of the TTBpgneembership
algorithm; for example, the way how self-diagnosis is acplished in TTP
by using the two special state variabbesc, andr ej , is in fact used for do-
ing cligue avoidance at the same time. This results in assalfilizing group
membership algorithm, a property not considered in thigpap

The verification of the TTP group membership protocol afgpiemethod
recently proposed by John Rushby [14] who has used it to nmézddly verify
a similar algorithm [13]. Several attempts to formally ¥erihat algorithm,
which was flawed in its original publication [4], failed bexs® of the number
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and complexity of additional invariants needed to esthbiie proof. This
proof method, which is quite closely related to the verifmatdiagrams of
Manna and Pnueli [2,9], made it both possible and easy tbmbe (corrected)
algorithm. This promising experience with an apparentiffialilt problem

made us decide to apply Rushby’s method rather than to atternaditional

invariance proof of the correctness of the TTP algorithmiclis considered
even more complicated. It turned out that one of its main athges over
the usual method of repeated invariant strengthening tsthieaproof can be
developed incrementally and in a very systematic way. Thoe, can break
down the overall proof into small manageable steps.

Further research is concerned with formally specifyingeotprotocol
services of the Time-Triggered Architecture, such as dli#tition or re-
integration of nodes, and analyzing their interrelatigpsh For example, the
group membership algorithm presented here is specifiecedétel of a syn-
chronous system; for this model to be adequate, we have tonasfault-
tolerant clock synchronization [11]. Conversely, the kl@ynchronization
mechanism of TTP also relies on the group membership sebgawy able
to avoid the formation of cliques of processors. Finding sviy/clearly iden-
tify the relationships and interfaces of the various prot@ervices in order to
avoid these circular dependencies remain a challengingraeksting prob-
lem.
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