From Abstract Crisis to Concrete Relief

A Preliminary Report on Combining State Abstraction and HTN Planning

Susanne Biundo and Bernd Schattenberg
Overview

• Motivation
• Basic Concepts
• Combining HTN and State-based Planning
• Implementation
• Conclusions
Motivation

- Applications: e.g. assisting crisis management
 - THW relief mission in flooding disaster
- Domains with rich and widespread tasks
 - Logistics
 - Construction
 - Workflow
 - ...
Motivation (2)

• Properties of the applications:
 – Complex domain models
 – Incomplete information

• Requirements:
 – Adequate modelling language
 – Flexible integration of new tasks
 – “Efficient” plan generation process

→ Hybrid
Basic Concepts

- **Hierarchical Task Network Planning**
 - Abstract tasks as makro operators
 - Primitive tasks represent singular actions
 - Methods decompose abstract tasks stepwise into networks of primitive tasks

- **Integrated State-based Planning**
 - All tasks carry preconditions and effects
 - Identifying condition establishers, inserting new tasks if necessary
 - Detecting and resolving causal conflicts
Combining HTN and State-based Planning

- Relation between abstract and primitive tasks:
 - Methods

method m_{t1}
expands transport (?passengers, ?from, ?to, ?by)
vars ?road Road
nodes (1:board (?passengers, ?from, ?by))
 (2:driving (?by, ?from, ?to, ?road))
 (3:un-board (?passengers, ?from, ?by))
...
order 1<2, 2<3,...
causal 1—in(?passengers, ?by)—2
binding ...
Combining HTN and State-based Planning (2)

- Relation between abstract and primitive preconditions and effects of the tasks:
 - Sort hierarchy
 - Decomposition axioms

\[
\text{At(Unit } u, \text{Location } l) \iff \\
\text{Standing-at(Vehicle } u, \text{Location } l, \text{Road } r) \lor \\
\text{Aircraft-at(Aircraft } u, \text{Location } l, \text{Height } h) \lor \\
[\text{At(Container } c, \text{Location } l) \land \\
\text{Contains(Container } c, \text{Unit } u)] \lor \ldots
\]
Closing Open Preconditions

driving

(Vehicle ?u, Location ?from, Location area4, Road ?r)

P: Standing-at(?u,?from,?r),
Reachable-by-land(?from,?r),
Status(?r,ok).
E: +Standing-at(?u,area4,?r),
–Standing-at(?u,?from,?r).

logistics-and-supplies

... evacuating

informing-population

securing-population ...

medical-treatment

build-support-camp

establish-camp

(Passengers group1, Location area4, Location camp2, Unit ?u)

P: At(?u,area4),
At(group1,area4).
E: +At(?u,camp2),
+At(group1,camp2),
–At(?u, area4),
–At(group1, area4).

move

(Unit ?u, Location ?from, Location area4)

P: At(?u,?from).
E: +At(?u,area4),
–At(?u,?from).

fly

(Aircraft ?u, Location ?from, Location area4, Tower ?t)

P: Aircraft-at(?u,?from), Handled-by(?u,?t),
Clearance(?t,ok), Maintenance-status(?u,ok).
E: +Aircraft-at(?u,area4),–Aircraft-at(?u,?from),
+Maintenance-status(?u,ko),–Maintenance-status(?u,ok).

sort-hierarchy

development axioms

classical
Detecting and Resolving Conflicts

move ...

logistics-and-supplies ... evacuating

informing-population securing-population ...

medical-treatment build-support-camp

board(group1,area4,u)

un-board(group1,area4,u)

move

(Unit Jeep1, Location ?l, Location depot)
P: At(Jeep1,?l).
E: +At(Jeep1,depot), –At(Jeep1,?l).

move

(UNIT u, Location ?from, Location area4)
P: At(?u,?from).
E: +At(?u,area4), –At(?u,?from).

At(?u,area4)

(Vehicle ?u, Location ?from, Location area4, Road ?r)
P: Standing-at(?u,?from,?r), Reachable-by-land(?from,area4,?r), Status(?r,ok).
E: +Standing-at(?u,area4,?r), –Standing-at(?u,?from,?r).
Detecting and Resolving Conflicts

move

(Unit Jeep1, Location ?l, Location depot)
P: \(\text{At}(\text{Jeep1}, ?l) \).
E: +\(\text{At}(\text{Jeep1}, \text{depot}) \),
 −\(\text{At}(\text{Jeep1}, ?l) \).

move

(Unit ?u, Location ?from, Location area4)
P: \(\text{At}(?u, ?from) \).
E: +\(\text{At}(?u, \text{area4}) \),
 −\(\text{At}(?u, ?from) \).

logistics-and-supplies

... evacuating

medical-treatment

build-support-camp

informing-population

securing-population ...

board

(group1, area4, ?u)

un-board

(group1, area4, ?u)

driving

(Vehicle ?u, Location ?from, Location area4, Road ?r)
P: Standing-at(?u, ?from, ?r),
 Reachable-by-land(?from, area4, ?r),
 Status(?r, ok).
E: +Standing-at(?u, area4, ?r),
 −Standing-at(?u, ?from, ?r).

Standing-at(?u, area4, ?r)
Combining HTN and State-based Planning (3)

- Expansion of abstract tasks
- Closing open preconditions, inserting new tasks if necessary
- Threat handling between any levels of abstraction
 - Promotion, demotion, variable bindings
 - Expansion (“threat splitting” - overlapping)
- Hybrid approach allows for flexible planning strategies
 - From pure HTN to pure POCL
Implementation

- First prototype in Java
- Simple hybrid planning algorithm
 - Recursive task definitions useful (termination!)
- Core module of integrated architecture
Conclusions

• Hybrid planning approach
 – Flexibly integrating HTN and POCL concepts
 – Powerful modelling language
 • ...that is “easy” to use and to read
 – Semantics based on many-sorted FOL
 • Decomposition axioms defining legal expansions

• Future work:
 – Experiments with strategies and their validation
 – Resources