From Abstract Crisis to Conrete Relief

A Preliminary Report on Combining State Abstraction and HTN Planning

Susanne Biundo and Bernd Schattenberg

Overview

- Motivation
- Basic Concepts
- Combining HTN and State-based Planning
- Implementation
- Conclusions

Motivation

Motivation (2)

- Properties of the applications:
 - Complex domain models
 - Incomplete information
- Requirements:
 - Adequate modelling language
 - Flexible integration of new tasks
 - "Efficient" plan generation process

Pocl \rightarrow Hybrid

HTN

Basic Concepts

- Hierarchical Task Network Planning
 - Abstract tasks as makro operators
 - Primitive tasks represent singular actions
 - Methods decompose abstract tasks stepwise into networks of primitive tasks
- Integrated State-based Planning
 - All tasks carry preconditions and effects
 - Identifying condition establishers, inserting new tasks if necessary
 - Detecting and resolving causal conflicts

Combining HTN and Statebased Planning

- Relation between abstract and primitive tasks:
 - Methods

```
method m_{t1}
expands transport (?passengers,?from,?to,?by)
vars ?road Road
nodes (1:board (?passengers,?from,?by))
(2:driving (?by,?from,?to,?road))
(3:un-board (?passengers,?from,?by))
...
order 1<2, 2<3,...
causal 1—in(?passengers,?by)—2
binding ...
```

Combining HTN and Statebased Planning (2)

- Relation between abstract and primitive preconditions and effects of the tasks:
 - Sort hierarchy
 - Decomposition axioms

At(Unit *u*,Location *l*) \Leftrightarrow Standing-at(Vehicle *u*, Location *l*, Road *r*) \lor Aircraft-at(Aircraft *u*,Location *l*, Height *h*) \lor [At(Container *c*,Location *l*) \land Contains(Container *c*,Unit *u*)] \lor ...

Closing Open Preconditions

Detecting and Resolving Conflicts

Detecting and Resolving Conflicts

Combining HTN and Statebased Planning (3)

- Closing open preconditions, inserting new tasks if neccessary
- Threat handling between any levels of abstraction
 - Promotion, demotion, variable bindings
 - Expansion ("threat splitting" overlapping)
- Hybrid approach allows for flexible planning strategies
 - From pure HTN to pure POCL

Implementation

- First prototype in Java
- Simple hybrid planning algorithm

 Recursive task definitions useful (termination!)
- Core module of integrated architecture

Conclusions

- Hybrid planning approach
 - Flexibly integrating HTN and POCL concepts
 - Powerful modelling language
 - ...that is "easy" to use and to read
 - Semantics based on many-sorted FOL
 - Decomposition axioms defining legal expansions
- Future work:
 - Experiments with strategies and their validation
 - Resources