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Abstrat. We report on an ongoing e�ort in mehanially proving or-

ret a ompiling spei�ation for a bootstrap ompiler from ComLisp (a

subset of ANSI Common Lisp suÆiently expressive to serve as a om-

piler implementation language) to binary Transputer ode using the PVS

system. The ompilation is arried out in four steps through a series of in-

termediate languages. This paper fouses on the �rst phase, namely, the

ompilation of ComLisp to the stak-intermediate language SIL, where

parameter passing is implemented by a stak tehnique. The ontext of

this work is the joint researh e�ort Veri�x aiming at developing meth-

ods for the onstrution of orret ompilers for realisti programming

languages.

1 Introdution

The use of omputer based systems for safety-ritial appliations requires high

dependability of the software omponents. In partiular, it justi�es and demands

the veri�ation of programs typially written in high-level programming lan-

guages. Corret program exeution, however, ruially depends on the orret-

ness of the binary mahine ode exeutable, and therefore, on the orretness

of system software, espeially ompilers. As already noted in 1986 by Chiria

and Martin [3℄, full ompiler orretness omprises both the orretness of the

ompiling spei�ation (with respet to the semantis of the languages involved)

as well as the orret implementation of the spei�ation.

Veri�x [6, 9℄ is a joint German researh e�ort of groups at the universities

Karlsruhe, Kiel, and Ulm. The projet aims at developing innovative methods for

onstruting provably orret ompilers whih generate eÆient ode for realisti,

pratially relevant programming languages. These realisti ompilers are to be

onstruted using approved development tehniques. In partiular, even standard

unveri�ed ompiler generation tools (suh as Lex or Ya) may be used, the

orretness of the generated ode being veri�ed at ompile time using veri�ed
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program hekers [7℄. Veri�x assumes hardware to behave orretly as desribed

in the instrution manuals.

In order not to have to write the veri�ed parts of the ompiler and hekers

diretly in mahine ode, a fully veri�ed and orretly implemented initial om-

piler is required, for whih eÆieny of the produed ode is not a priority. The

initial orret ompiler to be onstruted in this projet transforms ComLisp

programs into binary Transputer ode. ComLisp is an imperative proper subset

of ANSI-Common Lisp and serves both as a soure and implementation language

for the ompiler. The onstrution proess of the initial ompiler onsists of the

following steps:

{ de�ne syntax and semantis of appropriate intermediate languages.

{ de�ne the ompiling spei�ation, a relation between soure and target lan-

guage programs and prove (with respet to the language semantis) its or-

retness aording to a suitable orretness riterion.

{ onstrut a orret ompiler implementation in the soure language itself

(a transformational onstrutive approah is applied whih builds a or-

ret implementation from the spei�ation by stepwise applying orretness-

preserving development steps [5℄).

{ use an existing (unveri�ed) implementation of the soure language (here:

some arbitrary Common Lisp ompiler) to exeute the program. Apply the

program to itself and bootstrap a ompiler exeutable. Chek syntatially,

that the exeutable ode has been generated aording to the ompiling spe-

i�ation. For this last step, a realisti tehnique for low level ompiler veri�-

ation has been developed whih is based on rigorous a posteriori syntati

ode inspetion [8,11℄. This loses the gap between high-level implementation

and exeutable ode.

The size and omplexity of the veri�ation task in onstruting a orret om-

piler is immense. In order to manage it, suitable mehanized support for both

spei�ation and veri�ation is neessary. We have hosen the PVS spei�ation

and veri�ation system [16℄ to support the veri�ation of the ompiling spei�-

ation and the onstrution proess of a ompiler implementation in the soure

language.

In this paper, we fous on the mehanial veri�ation of the ompiling spe-

i�ation for the ComLisp ompiler. In partiular, we desribe the formalization

and veri�ation proess of the �rst ompilation phase from ComLisp to the stak-

based intermediate language SIL, the �rst of a series of intermediate languages

used to ompile ComLisp programs into binary Transputer mahine ode:

ComLisp ! SIL ! C

int

! TASM ! TC

First, ComLisp is translated into a stak intermediate language (SIL), where

parameter passing is implemented by a stak tehnique. Expressions are trans-

formed from a pre�x notation into a post�x notation aording to the stak

priniple. SIL is then ompiled into C

int

where the ComLisp data strutures

(s-expressions) and operators are implemented in linear integer memory using a
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run-time stak and a heap. These two steps are mahine independent. In the next

step, ontrol strutures of C

int

are implemented by linear assembler ode with

jumps, and �nally, abstrat assembler ode is transformed into binary Trans-

puter ode.

This paper is organized as follows. The next setion presents the formalization

of the languages ComLisp and SIL, that is, their abstrat syntax and semantis.

Operational semantis in a strutural operational style are provided for both

languages by means of a set of indutive rules. Setion 3 then fouses on the

ompilation proess from ComLisp to SIL. Finally, Setion 4 is onerned with

the orretness of this ompilation proess.

2 Syntax and Semantis of the Languages

2.1 ComLisp

A ComLisp program onsists of a list of global variables, a list of possibly mutual

reursive funtion de�nitions, and a main form. ComLisp forms (expressions)

inlude the abort form, s-expression onstants, variables, assignments, sequential

omposition (progn), onditional, while loop, all of user de�ned funtions, all of

built-in unary (uop) and binary (bop) ComLisp operators, loal let-bloks, list�

operator (onstruting a s-expression list from its evaluated arguments), ase-

instrution, and instrutions for reading from the input sequene and writing to

the output. The ComLisp operators inlude the standard operators for lists (e.g.

length), type prediates for the di�erent kinds of s-expressions, and the standard

arithmeti operations (e.g. +; �;oor). The only available datatype is the type

of s-expressions whih are binary trees built with onstrutor \ons", where the

leaves are either integers, haraters, strings, or symbols. The set of symbols

inludes T and NIL. The abstrat syntax of ComLisp is given as follows:

p ::= x

1

; : : : ; x

k

; f

1

; : : : ; f

n

; e

f ::= h(x

1

; : : : ; x

m

) e

e ::= abort j  j x j x := e j progn(e

1

; : : : ; e

n

) j if (e

1

; e

2

; e

3

) j while(e

1

; e

2

) j

all (h; e

1

; : : : ; e

n

) j uop(e) j bop(e

1

; e

2

) j let(x

1

= e

1

; : : : ; x

n

= e

n

; e) j

list�(e

1

; : : : ; e

n

) j ond(p

1

! e

1

; : : : ; p

n

! e

n

) j

read har j peek har j print har (e)

The stati semantis of ComLisp programs, funtion de�nitions, and forms is

spei�ed by means of several well-formedness prediates. A ComLisp form is well-

formed|with respet to a loal variable environment � (a list of formal parame-

ters), a list of global variables , and a funtion environment � (a list of funtion

de�nitions)|if the list of loal and global variables are disjoint, all variables are

delared (that is, our either in � or ) and eah user-de�ned funtion is delared

in � and alled with the orret number of arguments (orret parameter pass-

ing). Formally, a relation wf (e; �; ; � ) is de�ned indutively on the struture of

forms (omitted here). A funtion environment � is well-formed with respet to a
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list of global variables , if the funtion names in � are disjoint (no double de-

larations of funtions), and eah funtion body in � is well-formed with respet

to its loal parameter list, , and � . This is spei�ed by prediate wf

pro

(�; ).

Finally, the well-formedness relation for ComLisp programs is straightforward.

Let p = ;� ; e. Then wf

program

(p) ::= wf

pro

(�; ) ^ wf (e; [℄; ; � ):

For the intermediate languages ourring in the di�erent ompilation phases

of the ComLisp to Transputer ompiler, a uniform relational semantis desrip-

tion has been hosen. The (dynami) semantis of ComLisp is de�ned in a stru-

tural operational way by a set of indutive rules for the di�erent ComLisp forms.

This kind of semantis is also referred to as big-step semantis or evaluation se-

mantis in ontrast to a transition semantis (small-step semantis) suh as

abstrat state mahines (ASM's). A ComLisp state is a triple onsisting of an

(in�nite) input sequene (stream) of haraters, an output list of haraters, and

the variable state whih is a mapping from identi�ers to values (s-expressions):

state

CL

::= sequene[har ℄� har

�

� (Ident ! SExpr)

ComLisp forms are expressions with side-e�ets, that is, they denote state trans-

formers transforming states to pairs of result value and result state. The de�ni-

tion of the semantis of forms uses the following notation: � ` s : e ! (v; q).

It states that evaluating form e in state s and funtion environment � termi-

nates and results in a value v and �nal state q. Given rules for eah kind of

form, the semantis is de�ned as the smallest relation ! satisfying the set of

rules. For example, the semantis of a funtion all is given by two rules. One

for parameterless funtions, and one for funtions with parameters, where the

parameters are sequentially evaluated, the resulting values being then bound to

the parameters before evaluation of the body and unbound after returning the

value:

[f(x

1

� � �x

n

) body ℄ 2 � (n � 1)

� ` q

i

: e

i

! (v

i

; q

i+1

) (1 � i � n)

� ` q

n+1

[x

1

 v

1

; : : : ; x

n

 v

n

℄ : body ! (v; r)

� ` q

1

: all(f; e

1

; : : : ; e

n

)! (v; r[x

1

 q

n+1

(x

1

); : : : ; x

n

 q

n+1

(x

n

)℄)

The omplete set of rules for ComLisp forms an be found in the appendix A.

The semantis of a ComLisp program is given by the input/output behavior

of the program de�ned by a relation P

sem

CL

between input streams is and output

lists ol. P

sem

CL

(p)(is; ol) holds if the evaluation of the main form e in an initial

state, where the input stream is given by is, the output list is empty and all

variables are initialized with NIL, terminates with a value v in some state q with

output list ol. Formally:

P

sem

CL

(p)(is; ol) ::= 9v; q: (� ` (is; [℄; �x:NIL) : e! (v; q)) ^ (q

output

= ol)

2.2 SIL

SIL, the stak intermediate language, is a language with parameterless proe-

dures and s-expressions as available datatype. Programs operate on a runtime
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stak with frame-pointer relative addresses. A SIL program onsists of a list of

parameterless proedure delarations and a main statement. There are no vari-

ables, only memory loations and the mahine has statements for opying values

from the global to the loal memory and vie versa. For example, opy(i; j) opies

the ontent at stak relative position i to relative position j, gopy(g; i) opies

from the global memory at position g to the relative position i, and itef (i; s

1

; s

2

)

exeutes instrution s

2

if the ontent of stak relative position i is NIL, otherwise

s

1

is exeuted.

p ::= f

1

; : : : ; f

n

; s

f ::= h s

s ::= abort j opy(; i) j opy(i; j) j gopy(g; i) j opyg(g; i) j

itef (i; s

1

; s

2

) j sq(s

1

; : : : ; s

n

) j fall (h; i) j uop(i) j bop(i) j

while(i; s

1

; s

2

) j read har (i) j peek har (i) j print har (i) j list�(n; i)

The stati semantis is again spei�ed by means of well-formedness prediates for

SIL statements, SIL proedure delarations, and SIL programs (de�nitions omit-

ted here). SIL statements denote state transformers, where a SIL state onsists

of the input stream, the output list, the global memory (a list of s-expressions),

and the loal memory (onsisting of the frame pointer base : Nat and the stak,

a funtion from natural numbers to s-expressions).

state

SIL

::= sequene[har ℄� har

�

� SExpr

�

�Nat � (Nat ! SExpr)

As for ComLisp, an evaluation semantis for SIL statements is de�ned as the

smallest relation � ` s : md ! q satisfying the set of rules given for the

language onstruts. The relation states that exeuting the statement md in

state s and SIL proedure environment � (a list of proedure delarations) is

de�ned, terminates, and results in a new state q. The rules for SIL statements

are listed in the appendix B.

As for ComLisp, the semantis of a SIL program is its I/O behavior:

P

sem

SIL

(p)(is; ol) ::= 9q: (� ` init : s! q) ^ (q

output

= ol)

where the initial state is de�ned by init ::= (is; [℄; [NIL; : : : ;NIL℄; 0; �n:NIL):

2.3 PVS Formalization of the Languages

Abstrat syntax, stati and dynami semantis of the languages have to be for-

malized in the PVS spei�ation language. The language is based on lassial

higher-order logi with a rih type system inluding dependent types. In addi-

tion, the PVS system provides an interative proof heker that has a reasonable

amount of theorem proving apabilities. A strategy language enables to ombine

atomi inferene steps into more powerful proof strategies allowing to de�ne

reusable proof methods.
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1. Abstrat Syntax: the PVS abstrat data type (ADT) onstrut is used. Com-

Lisp forms, for example, are de�ned by an ADT, where for eah kind of form

there exists a orresponding onstrutor. For ADT de�nitions in PVS, a large

theory is automatially generated inluding indution and redution shemes

for the ADT, termination measures, and a set of axioms stating that the data

type denotes the initial algebra de�ned by the onstrutors. Note that the

formalizations make heavily use of library spei�ations. However, a lot of

new types, funtions, and prediates must be added for the spei�ations,

as well as lemmas for their useful properties (whih have to be proved).

2. Stati Semantis: the well-formedness prediates must be formalized. Sine

eah funtion must be total in PVS, a termination measure must be pro-

vided for the reursive de�nitions. We have spei�ed the strutural size of a

ComLisp form using the redution sheme from the ADT theory.

3. Dynami Semantis: the rules must be represented in PVS. A set of strutural

rules is represented as an indutive PVS relation whih ombines all the rules

in one single de�nition E(� )(s; e; v; q;N) whih denotes � ` s : e ! (v; q).

Free logial variables in the rules are existentially quanti�ed in the orre-

sponding PVS relation. In general, properties about indutive relations an

be proved by rule indution. Here, the de�nition of relation E has an ad-

ditional ounter parameter N to formulate an indution priniple needed

for the proof for the seleted notion of orretness (see Set. 4). N is de-

reased when entering the body of a funtion or while loop, sine in this ase

the forms in the anteedents of the orresponding rules are not struturally

smaller, and left unhanged otherwise.

3 Compiling ComLisp to SIL

The ompilation from ComLisp to SIL generates ode aording to the stak

priniple and translates parameter passing to statements whih aess the data

stak. For a given expression e, a sequene of SIL instrutions is generated that

omputes its value and stores it at the top of the stak (relative position k in

the urrent frame). The parameters x

1

; : : : ; x

n

of a funtion are stored at the

bottom of the urrent frame (at relative positions 0; : : : ; n � 1) (see Fig. 1). A

SIL funtion all fall (h; i) inreases the frame pointer base by i whih is reset to

its old value after the all and loal variables introdued by let are represented

within the urrent frame. For eah syntatial ComLisp ategory, a ompiling

funtion is spei�ed.

{ C

form

(e; ; �; k) is de�ned indutively on e. It takes a form e, a global environ-

ment  (a list of identi�ers), a ompile time environment � (an assoiation

list whih assoiates relative positions in the urrent stak frame with loal

variables), and a natural number k (denoting the urrent top of stak) and

produes a SIL statement. Its de�nition an be found in the appendix C.

{ A funtion de�nition is ompiled by ompiling the body in a new environment

(where the formal parameters are assoiated with relative positions 0; : : : ; n�

1) with the top of stak set at position n. Finally, the urrent stak frame has
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base+ k top of stak

.

.

.

base+ n v

n�1

.

.

.

base+ 1 v

2

base v

1

.

.

.

Fig. 1. Parameter passing on the stak

to be removed, leaving only the result on top (ahieved by a opy instrution

from position n to 0).

C

def

(h(x

1

; : : : ; x

n

) e)() ::= h sq(C

form

(e; ; [x

i

 (i�1)℄; n); opy(n; 0))

{ A funtion environment � is ompiled by ompiling eah funtion de�nition

in � :

C

defs

([f

1

; : : : ; f

n

℄)() ::= [C

def

(f

1

)(); : : : ; C

def

(f

n

)()℄

{ A program p = ;� ; e is ompiled by ompiling its funtion environment

and main form:

C

prog

(p) ::= C

defs

(� )(); C

form

(e; ; [℄; 0)

4 Corretness of the Compilation Proess

An appropriate notion of orret ompilation for sequential imperative languages

on a onrete target proessor must take the �nite resoure limitations of the

target arhiteture into aount. The notion of orretness used in Veri�x is the

preservation of the observable behavior up to resoure limitations. In our ase

orretness of the ompilation proess is stated as follows: for any well-formed

ComLisp program p, whenever the semantis of the ompiled program is de�ned

for some input stream is and output list ol, this is also the ase for p for the

same is and ol:

Theorem 1 (Corretness of Program Compilation).

8p; is; ol: wf

program

(p)) (P

sem

SIL

(C

prog

(p))(is)(ol)) P

sem

CL

(p)(is)(ol))

Unfolding P

sem

SIL

and P

sem

CL

, the semantis of forms and orresponding SIL

statements have to be ompared. In partiular, this requires relating soure and

target language states. ComLisp forms denote state transformers transforming

a state into a result value and a result state (if de�ned) � !

e

(v; �

0

): On the

other hand, SIL statements denote ordinary state transformers s !

s

s

0

. Two

relations are required: one relation �

in

relates ComLisp input states � with SIL
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states s, while the other relation �

out

relates ComLisp output states (v; �

0

) with

SIL states s

0

. Figure 2 illustrates the orretness property for forms by means

of a ommuting diagram. The relations are parameterized with a list of global

!

e

!

s

�

in

state

CL

3 �

state

SIL

3 s

(v; �

0

) 2 SExpr � state

CL

s

0

2 state

SIL

�

out

Fig. 2. Corretness property for the ompilation of ComLisp forms

variables , the loal ompile time environment �, and the urrent top of stak

position k. Relation �

in

distinguishes between loal and global variables. The

relative address for variables for whih � is de�ned is given by �(x), while the

address of the global variables in  is given by (x). Relation �

out

additionally

assumes that the �nal value v is available at the stak top (relative address k).

In addition, it is required that the input streams and the output lists of � and

s orrespond. The data representation relations are de�ned as follows:

�

in

(; �; k)(�; s) ::=

[8x 2 dom(�): (�(x) < k) ^ (�(x) = s

loal

(s

base

+ �(x)))℄ ^

[8x 2 : ((x) < js

global

j) ^ (�(x) = s

global

((x)))℄ ^

(s

input

= �

input

) ^ (s

output

= �

output

)

�

out

(; �; k)(v; �

0

; s

0

) ::= (s

0

loal

(s

0

base

+ k) = v) ^ (�

in

(; �; k)(�

0

; s

0

))

In order to state the orretness property for the ompilation of forms two

additional invariants are required:

1. The �rst invariant relates ComLisp input and output states. It assures that

identi�ers not belonging to � or  (the loal and global identi�er lists) do

not alter their values.

soure invar?(�; )(�; �

0

) ::= 8x: (x 62 � ^ x 62 ) ) �

0

(x) = �(x)

2. The seond one relates input SIL states s with output SIL states s

0

. It states

that

(a) the frame pointers of s and s

0

are idential.

(b) the ontents of all stak ells with addresses not within the range of

the loal environment � do not hange from s to s

0

. In partiular, this

inludes all stak ells below the urrent stak frame.

invar?(�; k)(s; s

0

) ::=

s

base

= s

0

base

^

8adr : adr < k ^ adr 62 ran(�)) s

loal

(s

base

+ adr ) = s

0

loal

(s

0

base

+ adr ) ^

8adr : adr < s

base

) s

loal

(adr ) = s

0

loal

(adr )

This property is required to ensure that for funtion and operator alls the

omputed values of the arguments are still available (and not overwritten)

when the operator is applied or the funtion body is exeuted.
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All ingredients have now been olleted to state the orretness property for

the translation of forms. The diagram in Fig. 2 has to ommute in the sense

of preservation of partial program orretness. The property states that if the

funtion environment and the ComLisp form is well-formed, the ompile time

environment � is injetive and its domain orresponds to the loal variable list

�, the initial ComLisp and SIL states are related by �

in

and the ode resulting

from ompiling form e transforms SIL state s into s

0

, then there exists a value

v and ComLisp state �

0

suh that e evaluates in state � to (v; �

0

) and the �nal

ComLisp and SIL states are related by �

out

and the target states and soure

states invariants hold:

De�nition 1 (Corretness Property for Form Compilation).

orret prop(� ; ; �; �; k)(e) ::=

8�; s; s

0

: wf

pro

(� ; ) ^ wf (e; �; ; � ) ^ injetive?(�) ^ (dom(�) = �) ^

�

in

(; �; k)(�; s) ^ (C

defs

(� )() ` s : C

form

(e; ; �; k)! s

0

)

) 9v; �

0

: (� ` � : e! (v; �

0

)) ^ �

out

(; �; k)(v; �

0

; s

0

) ^

invar?(�; k)(s; s

0

) ^ soure invar?(�; )(�; �

0

)

The main obligation is to prove that this property holds for eah kind of form:

Theorem 2 (Corretness of Form Compilation).

8e; �; ; �; �; k: orret prop(� ; ; �; �; k)(e)

In the PVS formalization, the orretness property has an additional ounter

argument N aording to the indutive relations de�ning the semantis. This

additional argument is required here sine we prove that the target semantis

implies the soure semantis but the ompilation is de�ned struturally on the

soure language. If we would prove the other way round, rule indution (without

a ounter argument) would suÆe. The PVS proof of this theorem is done by

measure indution (a variant of well-founded indution) using the lexiographi

ombination of the ounter N and the strutural size of form e as termination

measure:

(N

0

; e

0

) < (N; e) ::= (N

0

< N _ (N

0

= N ^ size(e

0

) < size(e)))

This measure ensures that for eah kind of form the indution hypothesis is

appliable. To suitably manage the omplexity of this proof, for eah kind of

form a separate ompilation theorem is introdued. The proof of Theorem 2 is

then arried out by ase analysis and appliation of the ompilation theorems.

Most of the proofs of the ompilation theorems follow a similar sheme a-

ording to the struture of the orretness property (see De�nition 1):

1. First, de�nitions must be unfolded and the SIL statement whih results from

ompiling the ComLisp form must be \exeuted" symbolially aording to

the operational SIL semantis.

2. The indution hypothesis (stated as a preondition in the ompilation lem-

mas) must be instantiated.

3. Instantiations for the result value v and result state �

0

(existentially quanti-

�ed variables) of the ComLisp form must be found.

9



4. The onsequent part of the formula must be proved. This redues to showing

four properties:

(a) show that form e evaluates to the instantiated value and result state.

(b) show with the help of preondition �

in

that the output soure and target

states are related by �

out

(Note that �

out

is de�ned by means of �

in

).

() show that the target state invariant holds.

(d) show that the soure state invariant holds.

PVS strategies have been de�ned for some of the ases of the general sheme.

These strategies enable the (nearly) automati disharge of the respetive ases.

The proofs of most of the ompilation lemmas are relatively straightforward

and follow diretly the sheme. However, some of the ompilation theorems are

tedious, in partiular the theorems for funtion all, let-form, and list�. They

make use of an additional lemma whih relates sequenes of ComLisp forms with

SIL statement sequenes. Due to lak of spae we annot go into the details of

the proofs. All the proofs have been ompletely aomplished using PVS.

Statistis

We present some statistis onerning the formalization and veri�ation e�ort

for this ompilation step. Table 1 summarizes the results. First of all, we have

extended the built-in PVS library with additional funtions and properties for

lists, and with a new theory for assoiation lists (�nite maps). This library has

already been reused for other veri�ation tasks. There are 7 additional PVS the-

ories with 621 lines of PVS spei�ation ode (LOC), 139 obligations to prove

inluding all type orretness onditions generated by the system. These obliga-

tions are proved interatively by invoking 1048 proof steps. The spei�ations

of the languages ComLisp and SIL inluding the de�nition of s-expressions and

orresponding unary and binary operators involve 7 theories. Not surprisingly,

the most e�ort lies in the veri�ation of the ompiling spei�ation: 30 proof

obligations (mainly the ompiling theorems) have been proved in more than

1600 proof steps. Most work has been put into the veri�ation of the ompila-

tion theorems for funtion all, let , and list�. Although strategies for parts of

the proofs have been developed, the number of manual steps is quite high and

shows that this veri�ation task is by no means trivial.

It is hard to give an estimation of the amount of work invested in the �nal

veri�ation, sine we started the veri�ation on a smaller subset of ComLisp

in order to experiment with di�erent styles of semantis and �nd the neessary

invariants, and then inrementally extended this subset and tried to rerun and

adapt the already aomplished proofs. A oarse estimation of the total formal-

ization and veri�ation e�ort required for the ompiling spei�ation for all 4

ompilation phases is about 3 person-years.

Related Work

Veri�ation of ompiler orretness is a muh-studied area starting with the

work by MCarthy and Painter in 1967 [13℄, where a simple ompiler for arith-

10



Table 1. Formalization and veri�ation statistis

PVS theories LOC proof obligations proof steps

spe. of languages 7 759 139 575

ompiling spei�ation 1 122 36 95

ompiling veri�ation 1 219 30 1617

list, alist library 7 621 139 1048

16 1721 344 3335

meti expressions has been proved orret. Many di�erent approahes have been

taken sine then, usually with mehanized support to manage the omplexity

of the spei�ations and the proofs, for example [1, 2, 4, 12, 14, 17℄. Most of the

approahes only deal with the orretness of the ompiling spei�ation, while

the approah taken in the Veri�x projet also takes are of the implementation

veri�ation, even on the level of binary mahine ode. Another di�erene of our

approah is that we are onerned with the ompilation of \realisti" soure

languages and target arhitetures. A ComLisp implementation of the ComLisp

ompiler as well as a binary Transputer exeutable is available.

Notable work in this area with mehanized support is CLIn's veri�ed stak

of system omponents ranging from a hardware-proessor up to an imperative

language [14℄. Both the ompiling veri�ation and the high-level implementation

(in ACL2 logi whih is a LISP subset) have been arried out with mehanized

support using the ACL2 prover. Using our ompiler, orret binary Transputer

ode ould be generated.

The impressive VLISP projet [10℄ has foused on a orret translation for

Sheme. However, although the neessity of also verifying the ompiler imple-

mentation has been expressed this has expliitly been left out. Proofs were a-

omplished without mehanized support.

P. Curzon [4℄ onsiders the veri�ation of the ompilation of a strutured

assembly language, Vista, into ode for the VIPER miroproessor using the

HOL system. Vista is a low-level language inluding arithmeti operators whih

orrespond diretly to those available on the target arhiteture.

The ompilation of PROLOG into WAM has been realized through a series of

re�nement steps and has been mehanially veri�ed using the KIV system [18℄.

A (small-step) ASM semantis is used for the languages.

5 Conluding Remarks

In this paper we have reported on an ongoing e�ort in onstruting a orret

bootstrap ompiler for a subset of Common Lisp into binary Transputer ode.

We have foused on the formal, mehanially supported veri�ation of the om-

piling spei�ation of the �rst ompilation phase. The veri�ation of the seond

phase, the translation from SIL to C

int

, where s-expressions and their operators

are implemented in linear memory (lassial data and operation re�nement), is

11



also ompleted. Current work is onerned with the veri�ation of the ompiler

bak-end, namely, the ompilation from C

int

into abstrat Transputer assembler

ode TASM. The standard ontrol strutures of C

int

must be implemented by

onditional and unonditional jumps, and the state spae must be realized on

the onrete Transputer memory. Hene, this step is again a data re�nement pro-

ess to be veri�ed. The veri�ation of the last ompilation phase, where abstrat

Transputer assembler is ompiled into binary Transputer ode (TC) has already

been aomplished following approved veri�ation tehniques [15℄: starting from

a (low-level) base model of the Transputer, where programs are a part of the

memory, a series of abstration levels is onstruted allowing di�erent views on

the Transputer's behavior and the separate treatment of partiular aspets.

We have demonstrated that the formal, mehanized veri�ation of a non-

trivial ompiler for a (nearly) realisti programming language into a real target

arhiteture is feasible with state-of-the-art prover tehnology.
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A Semantis of ComLisp Forms

For a state s, we denote the input stream of s by s

input

, the output list of s by

s

output

, and the variable state of s by s

var

: Ident ! SExpr . In the following to

inrease readability, we often write simply s instead of s

var

; s[x  v℄ denotes

the modi�ation of s

var

at x by v.

ComLisp operators denote partial funtions on s-expressions whih is ex-

pressed by two relations: relation v

1

: uop ! v

2

for unary operators uop, and

v

1

; v

2

: bop ! v for binary operators. For example, the �rst relation states that

the appliation of unary operator uop to s-expression v

1

is de�ned, terminates,

and yields s-expression v

2

as result.

{ onstants, variables

� ` s : ! (; s) � ` s : x! (s(x); s)

{ assignment:

� ` s : e! (v; q)

� ` s : x := e! (v; q[x v℄)
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{ sequential omposition:

� ` s : progn([℄)! (NIL; s)

� ` s : e! (v; q)

� ` s : progn(e)! (v; q)

� ` s : e

1

! (v

1

; q

1

)

� ` q

1

: progn(e

2

; : : : ; e

n

)! (v; q)

� ` s : progn(e

1

; : : : ; e

n

)! (v; q)

if n � 2

{ onditional:

� ` s : e

1

! (NIL; q

1

) ; � ` q

1

: e

3

! (v; q)

� ` s : if (e

1

; e

2

; e

3

)! (v; q)

� ` s : e

1

! (v

1

; q

1

); � ` q

1

: e

2

! (v; q)

� ` s : if (e

1

; e

2

; e

3

)! (v; q)

if v

1

6= NIL

{ while loop:

� ` s : ! (v

1

; q

1

) (v

1

6= NIL)

� ` q

1

: body ! (v

2

; q

2

)

� ` q

2

: while(; body)! (v; q)

� ` s : while(; body)! (v; q)

� ` s : ! (NIL; q)

� ` s : while(; body)! (NIL; q)

{ all of user-de�ned funtions:

[f(x

1

� � �x

n

) body ℄ 2 � (n � 1)

� ` q

i

: e

i

! (v

i

; q

i+1

) (1 � i � n)

� ` q

n+1

[x

1

 v

1

; : : : ; x

n

 v

n

℄ : body ! (v; r)

� ` q

1

: all (f; e

1

; : : : ; e

n

)! (v; r[x

1

 q

n+1

(x

1

); : : : ; x

n

 q

n+1

(x

n

)℄)

[f() body ℄ 2 �

� ` s : body ! (v; q)

� ` s : all (f; ())! (v; q)

{ built-in unary and binary operators:

� ` s : e! (v

1

; q)

v

1

: uop ! v

� ` s : uop(e)! (v; q)

� ` s : e

1

! (v

1

; q

1

)

� ` q

1

: e

2

! (v

2

; q)

v

1

; v

2

: bop ! v

� ` s : bop(e

1

; e

2

)! (v; q)

{ let blok:

� ` q

i

: e

i

! (v

i

; q

i+1

) (1 � i � n)

� ` q

n+1

[x

1

 v

1

; : : : ; x

n

 v

n

℄ : e! (v; r)

� ` q

1

: let(x

1

= e

1

; : : : ; x

n

= e

n

; e)! (v; r[x

1

 q

n+1

(x

1

); : : : ; x

n

 q

n+1

(x

n

)℄)

� ` s : e! (v; q)

� ` s : let([℄; e)! (v; q)

14



{ list� operator:

� ` s : e! (v; q)

� ` s : list�(e)! (v; q)

� ` s : e

1

! (v

1

; q

1

)

� ` q

1

: list�(e

2

; : : : ; e

n

)! (v

2

; q)

� ` s : list�(e

1

; : : : ; e

n

)! (ons(v

1

; v

2

); q)

{ ase form:

� ` s : ond()! (NIL; s)

� ` s : p! (v

1

; q

1

) (v

1

6= NIL)

� ` q

1

: e! (v; q)

� ` s : ond(p e)! (v; q)

� ` s : p

1

! (NIL; q

1

)

� ` q

1

: ond(p

2

 e

2

; : : : ; p

n

 e

n

)! (v; q)

� ` s : ond(p

1

 e

1

; : : : ; p

n

 e

n

)! (v; q)

{ input/output:

� ` s : read har ! (�rst(s

input

); s[s

input

:= rest(s

input

)℄)

� ` s : peek har ! (�rst(s

input

); s)

� ` s : e! (v; q) (v 2 har )

� ` s : print har (e)! (v; q[q

output

:= q

output

++v℄)

B Semantis of SIL Statements

In the following, jlj denotes the length of list l, and l(i) denotes the ith element of

l for (0 � i < jsj). s

loal

, s

global

, s

base

denote the respetive state omponents in

state s. To inrease readability, we simply write s(i) for the relative loal aess

s

loal

(s

base

+ i), and write s[i v℄ for s[s

loal

(s

base

+ i) v℄.

{ opy onstant:

� ` s : opy(; i)! s[i ℄

{ opy loal:

� ` s : opy(i; j)! s[j  s(i)℄

{ opy from global to loal memory:

� ` s : gopy(g; i)! s[i s

global

(g)℄ if g < js

global

j

{ opy from loal to global memory:

� ` s : opyg(i; g)! s[s

global

(g) s(i)℄ if g < js

global

j

{ onditional:

s(i) = NIL

� ` s : f ! q

� ` s : itef (i; t; f)! q

s(i) 6= NIL

� ` s : t! q

� ` s : itef (i; t; f)! q

15



{ sequential omposition:

� ` s : ! q

� ` s : sq()! q

� ` s : 

1

! q

1

� ` q

1

: sq(

2

; : : : ; 

n

)! q

� ` s : sq(

1

; : : : ; 

n

)! q

if n � 2

{ funtion all:

� ` s[s

base

 s

base

+ i℄ : body ! q

� ` s : fall (h; i)! q[q

base

 s

base

℄

if [h body ℄ 2 �

{ unary/binary operators:

s(i) : uop ! v

� ` s : uop(i)! s[i v℄

s(i); s(i+ 1) : bop ! v

� ` s : bop(i)! s[i v℄

{ while loop:

� ` s : ! q (q(i) = NIL)

� ` s : while(i; ; b)! q

� ` s : ! r (r(i) 6= NIL)

� ` r : b! t

� ` t : while(i; ; b)! q

� ` s : while(i; ; b)! q

{ input/output:

� ` s : read har (i)! s[i �rst(s

input

); s

input

 rest(s

input

)℄

� ` s : peek har (i)! s[i �rst(s

input

)℄

� ` s : print har (i)! s[s

output

 s

output

++s(i)℄ if s(i) 2 har

{ list�

n � 2

� ` s : list�(n; i)! s[i ons(s(i); : : : ons(s(i+ n� 2); s(i+ n� 1)) : : :)℄

� ` s : list�(1; i)! s

C Compilation of ComLisp Forms

C

form

(e; ; �; k) is de�ned indutively on e:

{ C

form

(abort ; ; �; k) = abort

{ C

form

(; ; �; k) = opy(; k)

{ C

form

(x; ; �; k) =

�

opy(�(x); k) if �(x) is de�ned

gopy((x); k) otherwise

{ C

form

(x := e; ; �; k) =

�

sq(C

form

(e; ; �; k); opy(k; �(x))) if �(x) is de�ned

sq(C

form

(e; ; �; k); opyg(k; (x))) otherwise

{ C

form

(progn([℄); ; �; k) = opy(NIL; k)
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{ C

form

(progn(e

1

; : : : ; e

n

); ; �; k) = sq

0

B

�

C

form

(e

1

; ; �; k)

.

.

.

C

form

(e

n

; ; �; k)

1

C

A

{ C

form

(if (e

1

; e

2

; e

3

); ; �; k) = sq

�

C

form

(e

1

; ; �; k)

itef (k; C

form

(e

2

; ; �; k); C

form

(e

3

; ; �; k))

�

{ C

form

(while(e

1

; e

2

); ; �; k) = while(k; C

form

(e

1

; ; �; k); C

form

(e

2

; ; �; k))

{ C

form

(all (f; ()); ; �; k) = fall (f; k)

{ C

form

(all (f; e

1

; : : : ; e

n

); ; �; k) = sq

0

B

B

B

�

C

form

(e

1

; ; �; k)

.

.

.

C

form

(e

n

; ; �; k + n� 1)

fall (f; k)

1

C

C

C

A

{ C

form

(uop(e); ; �; k) = sq(C

form

(e; ; �; k); uop(k))

{ C

form

(bop(e

1

; e

2

); ; �; k) = sq

0

�

C

form

(e

1

; ; �; k)

C

form

(e

2

; ; �; k + 1)

bop(k)

1

A

{ C

form

(let((); e); ; �; k) = C

form

(e; ; �; k)

{ C

form

(let(x

1

= e

1

; : : : ; x

n

= e

n

; e); ; �; k) =

sq

0

B

B

B

B

B

�

C

form

(e

1

; ; �; k)

.

.

.

C

form

(e

n

; ; �; (k + n� 1))

C

form

(e; ; �[x

1

 k; : : : x

n

 (k + n� 1)℄; k + n)

opy(k + n; k)

1

C

C

C

C

C

A

{ C

form

(list�(e

1

; : : : ; e

n

); ; �; k) = sq

0

B

B

B

�

C

form

(e

1

; ; �; k)

.

.

.

C

form

(e

n

; ; �; k + n� 1)

list�(n; k)

1

C

C

C

A

{ C

form

(ond (); ; �; k) = opy(NIL; k)

{ C

form

(ond (p

1

! e

1

; : : : ; p

n

! e

n

); ; �; k) =

sq(C

form

(p

1

; ; �; k);

itef (k; C

form

(e

1

; ; �; k); C

form

(ond(p

2

! e

2

; : : : ; p

n

! e

n

); ; �; k)))

{ C

form

(read har ; ; �; k) = read har (k)

{ C

form

(peek har ; ; �; k) = peek har (k)

{ C

form

(print har (e); ; �; k) = sq(C

form

(e; ; �; k); print har (k))

Some remarks to this de�nition:

{ for sequenes progn(e

1

; : : : ; e

n

) all values are stored at the same relative

position in the urrent stak frame sine the value of a sequene is the value

of its rightmost subexpression e

n

. The intermediate values do not have to

be preserved.

{ for the ompilation of a let-form, new variable bindings are alloated in the

urrent stak frame beginning at relative position k. The body is evaluated

to return its value at k + n where n is the number of new loal bindings. A

�nal opy instrution moves the result value to the desired loation k.

{ a ond -form is ompiled into a nested onditional.
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