
A Me
hani
ally Veri�ed Compiling Spe
i�
ation

for a Lisp Compiler

?

Axel Dold and Vin
ent Vialard

Fakult�at f�ur Informatik

Universit�at Ulm

D-89069 Ulm, Germany

Fax: +49/(0)731/50-24119

fdold|vialardg�informatik.uni-ulm.de

Abstra
t. We report on an ongoing e�ort in me
hani
ally proving
or-

re
t a
ompiling spe
i�
ation for a bootstrap
ompiler from ComLisp (a

subset of ANSI Common Lisp suÆ
iently expressive to serve as a
om-

piler implementation language) to binary Transputer
ode using the PVS

system. The
ompilation is
arried out in four steps through a series of in-

termediate languages. This paper fo
uses on the �rst phase, namely, the

ompilation of ComLisp to the sta
k-intermediate language SIL, where

parameter passing is implemented by a sta
k te
hnique. The
ontext of

this work is the joint resear
h e�ort Veri�x aiming at developing meth-

ods for the
onstru
tion of
orre
t
ompilers for realisti
 programming

languages.

1 Introdu
tion

The use of
omputer based systems for safety-
riti
al appli
ations requires high

dependability of the software
omponents. In parti
ular, it justi�es and demands

the veri�
ation of programs typi
ally written in high-level programming lan-

guages. Corre
t program exe
ution, however,
ru
ially depends on the
orre
t-

ness of the binary ma
hine
ode exe
utable, and therefore, on the
orre
tness

of system software, espe
ially
ompilers. As already noted in 1986 by Chiri
a

and Martin [3℄, full
ompiler
orre
tness
omprises both the
orre
tness of the

ompiling spe
i�
ation (with respe
t to the semanti
s of the languages involved)

as well as the
orre
t implementation of the spe
i�
ation.

Veri�x [6, 9℄ is a joint German resear
h e�ort of groups at the universities

Karlsruhe, Kiel, and Ulm. The proje
t aims at developing innovative methods for

onstru
ting provably
orre
t
ompilers whi
h generate eÆ
ient
ode for realisti
,

pra
ti
ally relevant programming languages. These realisti

ompilers are to be

onstru
ted using approved development te
hniques. In parti
ular, even standard

unveri�ed
ompiler generation tools (su
h as Lex or Ya

) may be used, the

orre
tness of the generated
ode being veri�ed at
ompile time using veri�ed

?

This resear
h has been funded by the Deuts
he Fors
hungsgemeins
haft (DFG) un-

der proje
t \Veri�x".

program
he
kers [7℄. Veri�x assumes hardware to behave
orre
tly as des
ribed

in the instru
tion manuals.

In order not to have to write the veri�ed parts of the
ompiler and
he
kers

dire
tly in ma
hine
ode, a fully veri�ed and
orre
tly implemented initial
om-

piler is required, for whi
h eÆ
ien
y of the produ
ed
ode is not a priority. The

initial
orre
t
ompiler to be
onstru
ted in this proje
t transforms ComLisp

programs into binary Transputer
ode. ComLisp is an imperative proper subset

of ANSI-Common Lisp and serves both as a sour
e and implementation language

for the
ompiler. The
onstru
tion pro
ess of the initial
ompiler
onsists of the

following steps:

{ de�ne syntax and semanti
s of appropriate intermediate languages.

{ de�ne the
ompiling spe
i�
ation, a relation between sour
e and target lan-

guage programs and prove (with respe
t to the language semanti
s) its
or-

re
tness a

ording to a suitable
orre
tness
riterion.

{
onstru
t a
orre
t
ompiler implementation in the sour
e language itself

(a transformational
onstru
tive approa
h is applied whi
h builds a
or-

re
t implementation from the spe
i�
ation by stepwise applying
orre
tness-

preserving development steps [5℄).

{ use an existing (unveri�ed) implementation of the sour
e language (here:

some arbitrary Common Lisp
ompiler) to exe
ute the program. Apply the

program to itself and bootstrap a
ompiler exe
utable. Che
k synta
ti
ally,

that the exe
utable
ode has been generated a

ording to the
ompiling spe
-

i�
ation. For this last step, a realisti
 te
hnique for low level
ompiler veri�-

ation has been developed whi
h is based on rigorous a posteriori synta
ti

ode inspe
tion [8,11℄. This
loses the gap between high-level implementation

and exe
utable
ode.

The size and
omplexity of the veri�
ation task in
onstru
ting a
orre
t
om-

piler is immense. In order to manage it, suitable me
hanized support for both

spe
i�
ation and veri�
ation is ne
essary. We have
hosen the PVS spe
i�
ation

and veri�
ation system [16℄ to support the veri�
ation of the
ompiling spe
i�-

ation and the
onstru
tion pro
ess of a
ompiler implementation in the sour
e

language.

In this paper, we fo
us on the me
hani
al veri�
ation of the
ompiling spe
-

i�
ation for the ComLisp
ompiler. In parti
ular, we des
ribe the formalization

and veri�
ation pro
ess of the �rst
ompilation phase from ComLisp to the sta
k-

based intermediate language SIL, the �rst of a series of intermediate languages

used to
ompile ComLisp programs into binary Transputer ma
hine
ode:

ComLisp ! SIL ! C

int

! TASM ! TC

First, ComLisp is translated into a sta
k intermediate language (SIL), where

parameter passing is implemented by a sta
k te
hnique. Expressions are trans-

formed from a pre�x notation into a post�x notation a

ording to the sta
k

prin
iple. SIL is then
ompiled into C

int

where the ComLisp data stru
tures

(s-expressions) and operators are implemented in linear integer memory using a

2

run-time sta
k and a heap. These two steps are ma
hine independent. In the next

step,
ontrol stru
tures of C

int

are implemented by linear assembler
ode with

jumps, and �nally, abstra
t assembler
ode is transformed into binary Trans-

puter
ode.

This paper is organized as follows. The next se
tion presents the formalization

of the languages ComLisp and SIL, that is, their abstra
t syntax and semanti
s.

Operational semanti
s in a stru
tural operational style are provided for both

languages by means of a set of indu
tive rules. Se
tion 3 then fo
uses on the

ompilation pro
ess from ComLisp to SIL. Finally, Se
tion 4 is
on
erned with

the
orre
tness of this
ompilation pro
ess.

2 Syntax and Semanti
s of the Languages

2.1 ComLisp

A ComLisp program
onsists of a list of global variables, a list of possibly mutual

re
ursive fun
tion de�nitions, and a main form. ComLisp forms (expressions)

in
lude the abort form, s-expression
onstants, variables, assignments, sequential

omposition (progn),
onditional, while loop,
all of user de�ned fun
tions,
all of

built-in unary (uop) and binary (bop) ComLisp operators, lo
al let-blo
ks, list�

operator (
onstru
ting a s-expression list from its evaluated arguments),
ase-

instru
tion, and instru
tions for reading from the input sequen
e and writing to

the output. The ComLisp operators in
lude the standard operators for lists (e.g.

length), type predi
ates for the di�erent kinds of s-expressions, and the standard

arithmeti
 operations (e.g. +; �;
oor). The only available datatype is the type

of s-expressions whi
h are binary trees built with
onstru
tor \
ons", where the

leaves are either integers,
hara
ters, strings, or symbols. The set of symbols

in
ludes T and NIL. The abstra
t syntax of ComLisp is given as follows:

p ::= x

1

; : : : ; x

k

; f

1

; : : : ; f

n

; e

f ::= h(x

1

; : : : ; x

m

) e

e ::= abort j
 j x j x := e j progn(e

1

; : : : ; e

n

) j if (e

1

; e

2

; e

3

) j while(e

1

; e

2

) j

all (h; e

1

; : : : ; e

n

) j uop(e) j bop(e

1

; e

2

) j let(x

1

= e

1

; : : : ; x

n

= e

n

; e) j

list�(e

1

; : : : ; e

n

) j
ond(p

1

! e

1

; : : : ; p

n

! e

n

) j

read
har j peek
har j print
har (e)

The stati
 semanti
s of ComLisp programs, fun
tion de�nitions, and forms is

spe
i�ed by means of several well-formedness predi
ates. A ComLisp form is well-

formed|with respe
t to a lo
al variable environment � (a list of formal parame-

ters), a list of global variables
, and a fun
tion environment � (a list of fun
tion

de�nitions)|if the list of lo
al and global variables are disjoint, all variables are

de
lared (that is, o

ur either in � or
) and ea
h user-de�ned fun
tion is de
lared

in � and
alled with the
orre
t number of arguments (
orre
t parameter pass-

ing). Formally, a relation wf (e; �;
; �) is de�ned indu
tively on the stru
ture of

forms (omitted here). A fun
tion environment � is well-formed with respe
t to a

3

list of global variables
, if the fun
tion names in � are disjoint (no double de
-

larations of fun
tions), and ea
h fun
tion body in � is well-formed with respe
t

to its lo
al parameter list,
, and � . This is spe
i�ed by predi
ate wf

pro

(�;
).

Finally, the well-formedness relation for ComLisp programs is straightforward.

Let p =
;� ; e. Then wf

program

(p) ::= wf

pro

(�;
) ^ wf (e; [℄;
; �):

For the intermediate languages o

urring in the di�erent
ompilation phases

of the ComLisp to Transputer
ompiler, a uniform relational semanti
s des
rip-

tion has been
hosen. The (dynami
) semanti
s of ComLisp is de�ned in a stru
-

tural operational way by a set of indu
tive rules for the di�erent ComLisp forms.

This kind of semanti
s is also referred to as big-step semanti
s or evaluation se-

manti
s in
ontrast to a transition semanti
s (small-step semanti
s) su
h as

abstra
t state ma
hines (ASM's). A ComLisp state is a triple
onsisting of an

(in�nite) input sequen
e (stream) of
hara
ters, an output list of
hara
ters, and

the variable state whi
h is a mapping from identi�ers to values (s-expressions):

state

CL

::= sequen
e[
har ℄�
har

�

� (Ident ! SExpr)

ComLisp forms are expressions with side-e�e
ts, that is, they denote state trans-

formers transforming states to pairs of result value and result state. The de�ni-

tion of the semanti
s of forms uses the following notation: � ` s : e ! (v; q).

It states that evaluating form e in state s and fun
tion environment � termi-

nates and results in a value v and �nal state q. Given rules for ea
h kind of

form, the semanti
s is de�ned as the smallest relation ! satisfying the set of

rules. For example, the semanti
s of a fun
tion
all is given by two rules. One

for parameterless fun
tions, and one for fun
tions with parameters, where the

parameters are sequentially evaluated, the resulting values being then bound to

the parameters before evaluation of the body and unbound after returning the

value:

[f(x

1

� � �x

n

) body ℄ 2 � (n � 1)

� ` q

i

: e

i

! (v

i

; q

i+1

) (1 � i � n)

� ` q

n+1

[x

1

 v

1

; : : : ; x

n

 v

n

℄ : body ! (v; r)

� ` q

1

:
all(f; e

1

; : : : ; e

n

)! (v; r[x

1

 q

n+1

(x

1

); : : : ; x

n

 q

n+1

(x

n

)℄)

The
omplete set of rules for ComLisp forms
an be found in the appendix A.

The semanti
s of a ComLisp program is given by the input/output behavior

of the program de�ned by a relation P

sem

CL

between input streams is and output

lists ol. P

sem

CL

(p)(is; ol) holds if the evaluation of the main form e in an initial

state, where the input stream is given by is, the output list is empty and all

variables are initialized with NIL, terminates with a value v in some state q with

output list ol. Formally:

P

sem

CL

(p)(is; ol) ::= 9v; q: (� ` (is; [℄; �x:NIL) : e! (v; q)) ^ (q

output

= ol)

2.2 SIL

SIL, the sta
k intermediate language, is a language with parameterless pro
e-

dures and s-expressions as available datatype. Programs operate on a runtime

4

sta
k with frame-pointer relative addresses. A SIL program
onsists of a list of

parameterless pro
edure de
larations and a main statement. There are no vari-

ables, only memory lo
ations and the ma
hine has statements for
opying values

from the global to the lo
al memory and vi
e versa. For example,
opy(i; j)
opies

the
ontent at sta
k relative position i to relative position j, g
opy(g; i)
opies

from the global memory at position g to the relative position i, and itef (i; s

1

; s

2

)

exe
utes instru
tion s

2

if the
ontent of sta
k relative position i is NIL, otherwise

s

1

is exe
uted.

p ::= f

1

; : : : ; f

n

; s

f ::= h s

s ::= abort j
opy
(
; i) j
opy(i; j) j g
opy(g; i) j
opyg(g; i) j

itef (i; s

1

; s

2

) j sq(s

1

; : : : ; s

n

) j f
all (h; i) j uop(i) j bop(i) j

while(i; s

1

; s

2

) j read
har (i) j peek
har (i) j print
har (i) j list�(n; i)

The stati
 semanti
s is again spe
i�ed by means of well-formedness predi
ates for

SIL statements, SIL pro
edure de
larations, and SIL programs (de�nitions omit-

ted here). SIL statements denote state transformers, where a SIL state
onsists

of the input stream, the output list, the global memory (a list of s-expressions),

and the lo
al memory (
onsisting of the frame pointer base : Nat and the sta
k,

a fun
tion from natural numbers to s-expressions).

state

SIL

::= sequen
e[
har ℄�
har

�

� SExpr

�

�Nat � (Nat ! SExpr)

As for ComLisp, an evaluation semanti
s for SIL statements is de�ned as the

smallest relation � ` s :
md ! q satisfying the set of rules given for the

language
onstru
ts. The relation states that exe
uting the statement
md in

state s and SIL pro
edure environment � (a list of pro
edure de
larations) is

de�ned, terminates, and results in a new state q. The rules for SIL statements

are listed in the appendix B.

As for ComLisp, the semanti
s of a SIL program is its I/O behavior:

P

sem

SIL

(p)(is; ol) ::= 9q: (� ` init : s! q) ^ (q

output

= ol)

where the initial state is de�ned by init ::= (is; [℄; [NIL; : : : ;NIL℄; 0; �n:NIL):

2.3 PVS Formalization of the Languages

Abstra
t syntax, stati
 and dynami
 semanti
s of the languages have to be for-

malized in the PVS spe
i�
ation language. The language is based on
lassi
al

higher-order logi
 with a ri
h type system in
luding dependent types. In addi-

tion, the PVS system provides an intera
tive proof
he
ker that has a reasonable

amount of theorem proving
apabilities. A strategy language enables to
ombine

atomi
 inferen
e steps into more powerful proof strategies allowing to de�ne

reusable proof methods.

5

1. Abstra
t Syntax: the PVS abstra
t data type (ADT)
onstru
t is used. Com-

Lisp forms, for example, are de�ned by an ADT, where for ea
h kind of form

there exists a
orresponding
onstru
tor. For ADT de�nitions in PVS, a large

theory is automati
ally generated in
luding indu
tion and redu
tion s
hemes

for the ADT, termination measures, and a set of axioms stating that the data

type denotes the initial algebra de�ned by the
onstru
tors. Note that the

formalizations make heavily use of library spe
i�
ations. However, a lot of

new types, fun
tions, and predi
ates must be added for the spe
i�
ations,

as well as lemmas for their useful properties (whi
h have to be proved).

2. Stati
 Semanti
s: the well-formedness predi
ates must be formalized. Sin
e

ea
h fun
tion must be total in PVS, a termination measure must be pro-

vided for the re
ursive de�nitions. We have spe
i�ed the stru
tural size of a

ComLisp form using the redu
tion s
heme from the ADT theory.

3. Dynami
 Semanti
s: the rules must be represented in PVS. A set of stru
tural

rules is represented as an indu
tive PVS relation whi
h
ombines all the rules

in one single de�nition E(�)(s; e; v; q;N) whi
h denotes � ` s : e ! (v; q).

Free logi
al variables in the rules are existentially quanti�ed in the
orre-

sponding PVS relation. In general, properties about indu
tive relations
an

be proved by rule indu
tion. Here, the de�nition of relation E has an ad-

ditional
ounter parameter N to formulate an indu
tion prin
iple needed

for the proof for the sele
ted notion of
orre
tness (see Se
t. 4). N is de-

reased when entering the body of a fun
tion or while loop, sin
e in this
ase

the forms in the ante
edents of the
orresponding rules are not stru
turally

smaller, and left un
hanged otherwise.

3 Compiling ComLisp to SIL

The
ompilation from ComLisp to SIL generates
ode a

ording to the sta
k

prin
iple and translates parameter passing to statements whi
h a

ess the data

sta
k. For a given expression e, a sequen
e of SIL instru
tions is generated that

omputes its value and stores it at the top of the sta
k (relative position k in

the
urrent frame). The parameters x

1

; : : : ; x

n

of a fun
tion are stored at the

bottom of the
urrent frame (at relative positions 0; : : : ; n � 1) (see Fig. 1). A

SIL fun
tion
all f
all (h; i) in
reases the frame pointer base by i whi
h is reset to

its old value after the
all and lo
al variables introdu
ed by let are represented

within the
urrent frame. For ea
h synta
ti
al ComLisp
ategory, a
ompiling

fun
tion is spe
i�ed.

{ C

form

(e;
; �; k) is de�ned indu
tively on e. It takes a form e, a global environ-

ment
 (a list of identi�ers), a
ompile time environment � (an asso
iation

list whi
h asso
iates relative positions in the
urrent sta
k frame with lo
al

variables), and a natural number k (denoting the
urrent top of sta
k) and

produ
es a SIL statement. Its de�nition
an be found in the appendix C.

{ A fun
tion de�nition is
ompiled by
ompiling the body in a new environment

(where the formal parameters are asso
iated with relative positions 0; : : : ; n�

1) with the top of sta
k set at position n. Finally, the
urrent sta
k frame has

6

base+ k top of sta
k

.

.

.

base+ n v

n�1

.

.

.

base+ 1 v

2

base v

1

.

.

.

Fig. 1. Parameter passing on the sta
k

to be removed, leaving only the result on top (a
hieved by a
opy instru
tion

from position n to 0).

C

def

(h(x

1

; : : : ; x

n

) e)(
) ::= h sq(C

form

(e;
; [x

i

 (i�1)℄; n);
opy(n; 0))

{ A fun
tion environment � is
ompiled by
ompiling ea
h fun
tion de�nition

in � :

C

defs

([f

1

; : : : ; f

n

℄)(
) ::= [C

def

(f

1

)(
); : : : ; C

def

(f

n

)(
)℄

{ A program p =
;� ; e is
ompiled by
ompiling its fun
tion environment

and main form:

C

prog

(p) ::= C

defs

(�)(
); C

form

(e;
; [℄; 0)

4 Corre
tness of the Compilation Pro
ess

An appropriate notion of
orre
t
ompilation for sequential imperative languages

on a
on
rete target pro
essor must take the �nite resour
e limitations of the

target ar
hite
ture into a

ount. The notion of
orre
tness used in Veri�x is the

preservation of the observable behavior up to resour
e limitations. In our
ase

orre
tness of the
ompilation pro
ess is stated as follows: for any well-formed

ComLisp program p, whenever the semanti
s of the
ompiled program is de�ned

for some input stream is and output list ol, this is also the
ase for p for the

same is and ol:

Theorem 1 (Corre
tness of Program Compilation).

8p; is; ol: wf

program

(p)) (P

sem

SIL

(C

prog

(p))(is)(ol)) P

sem

CL

(p)(is)(ol))

Unfolding P

sem

SIL

and P

sem

CL

, the semanti
s of forms and
orresponding SIL

statements have to be
ompared. In parti
ular, this requires relating sour
e and

target language states. ComLisp forms denote state transformers transforming

a state into a result value and a result state (if de�ned) � !

e

(v; �

0

): On the

other hand, SIL statements denote ordinary state transformers s !

s

s

0

. Two

relations are required: one relation �

in

relates ComLisp input states � with SIL

7

states s, while the other relation �

out

relates ComLisp output states (v; �

0

) with

SIL states s

0

. Figure 2 illustrates the
orre
tness property for forms by means

of a
ommuting diagram. The relations are parameterized with a list of global

!

e

!

s

�

in

state

CL

3 �

state

SIL

3 s

(v; �

0

) 2 SExpr � state

CL

s

0

2 state

SIL

�

out

Fig. 2. Corre
tness property for the
ompilation of ComLisp forms

variables
, the lo
al
ompile time environment �, and the
urrent top of sta
k

position k. Relation �

in

distinguishes between lo
al and global variables. The

relative address for variables for whi
h � is de�ned is given by �(x), while the

address of the global variables in
 is given by
(x). Relation �

out

additionally

assumes that the �nal value v is available at the sta
k top (relative address k).

In addition, it is required that the input streams and the output lists of � and

s
orrespond. The data representation relations are de�ned as follows:

�

in

(
; �; k)(�; s) ::=

[8x 2 dom(�): (�(x) < k) ^ (�(x) = s

lo
al

(s

base

+ �(x)))℄ ^

[8x 2
: (
(x) < js

global

j) ^ (�(x) = s

global

(
(x)))℄ ^

(s

input

= �

input

) ^ (s

output

= �

output

)

�

out

(
; �; k)(v; �

0

; s

0

) ::= (s

0

lo
al

(s

0

base

+ k) = v) ^ (�

in

(
; �; k)(�

0

; s

0

))

In order to state the
orre
tness property for the
ompilation of forms two

additional invariants are required:

1. The �rst invariant relates ComLisp input and output states. It assures that

identi�ers not belonging to � or
 (the lo
al and global identi�er lists) do

not alter their values.

sour
e invar?(�;
)(�; �

0

) ::= 8x: (x 62 � ^ x 62
)) �

0

(x) = �(x)

2. The se
ond one relates input SIL states s with output SIL states s

0

. It states

that

(a) the frame pointers of s and s

0

are identi
al.

(b) the
ontents of all sta
k
ells with addresses not within the range of

the lo
al environment � do not
hange from s to s

0

. In parti
ular, this

in
ludes all sta
k
ells below the
urrent sta
k frame.

invar?(�; k)(s; s

0

) ::=

s

base

= s

0

base

^

8adr : adr < k ^ adr 62 ran(�)) s

lo
al

(s

base

+ adr) = s

0

lo
al

(s

0

base

+ adr) ^

8adr : adr < s

base

) s

lo
al

(adr) = s

0

lo
al

(adr)

This property is required to ensure that for fun
tion and operator
alls the

omputed values of the arguments are still available (and not overwritten)

when the operator is applied or the fun
tion body is exe
uted.

8

All ingredients have now been
olle
ted to state the
orre
tness property for

the translation of forms. The diagram in Fig. 2 has to
ommute in the sense

of preservation of partial program
orre
tness. The property states that if the

fun
tion environment and the ComLisp form is well-formed, the
ompile time

environment � is inje
tive and its domain
orresponds to the lo
al variable list

�, the initial ComLisp and SIL states are related by �

in

and the
ode resulting

from
ompiling form e transforms SIL state s into s

0

, then there exists a value

v and ComLisp state �

0

su
h that e evaluates in state � to (v; �

0

) and the �nal

ComLisp and SIL states are related by �

out

and the target states and sour
e

states invariants hold:

De�nition 1 (Corre
tness Property for Form Compilation).

orre
t prop(� ;
; �; �; k)(e) ::=

8�; s; s

0

: wf

pro

(� ;
) ^ wf (e; �;
; �) ^ inje
tive?(�) ^ (dom(�) = �) ^

�

in

(
; �; k)(�; s) ^ (C

defs

(�)(
) ` s : C

form

(e;
; �; k)! s

0

)

) 9v; �

0

: (� ` � : e! (v; �

0

)) ^ �

out

(
; �; k)(v; �

0

; s

0

) ^

invar?(�; k)(s; s

0

) ^ sour
e invar?(�;
)(�; �

0

)

The main obligation is to prove that this property holds for ea
h kind of form:

Theorem 2 (Corre
tness of Form Compilation).

8e; �;
; �; �; k:
orre
t prop(� ;
; �; �; k)(e)

In the PVS formalization, the
orre
tness property has an additional
ounter

argument N a

ording to the indu
tive relations de�ning the semanti
s. This

additional argument is required here sin
e we prove that the target semanti
s

implies the sour
e semanti
s but the
ompilation is de�ned stru
turally on the

sour
e language. If we would prove the other way round, rule indu
tion (without

a
ounter argument) would suÆ
e. The PVS proof of this theorem is done by

measure indu
tion (a variant of well-founded indu
tion) using the lexi
ographi

ombination of the
ounter N and the stru
tural size of form e as termination

measure:

(N

0

; e

0

) < (N; e) ::= (N

0

< N _ (N

0

= N ^ size(e

0

) < size(e)))

This measure ensures that for ea
h kind of form the indu
tion hypothesis is

appli
able. To suitably manage the
omplexity of this proof, for ea
h kind of

form a separate
ompilation theorem is introdu
ed. The proof of Theorem 2 is

then
arried out by
ase analysis and appli
ation of the
ompilation theorems.

Most of the proofs of the
ompilation theorems follow a similar s
heme a
-

ording to the stru
ture of the
orre
tness property (see De�nition 1):

1. First, de�nitions must be unfolded and the SIL statement whi
h results from

ompiling the ComLisp form must be \exe
uted" symboli
ally a

ording to

the operational SIL semanti
s.

2. The indu
tion hypothesis (stated as a pre
ondition in the
ompilation lem-

mas) must be instantiated.

3. Instantiations for the result value v and result state �

0

(existentially quanti-

�ed variables) of the ComLisp form must be found.

9

4. The
onsequent part of the formula must be proved. This redu
es to showing

four properties:

(a) show that form e evaluates to the instantiated value and result state.

(b) show with the help of pre
ondition �

in

that the output sour
e and target

states are related by �

out

(Note that �

out

is de�ned by means of �

in

).

(
) show that the target state invariant holds.

(d) show that the sour
e state invariant holds.

PVS strategies have been de�ned for some of the
ases of the general s
heme.

These strategies enable the (nearly) automati
 dis
harge of the respe
tive
ases.

The proofs of most of the
ompilation lemmas are relatively straightforward

and follow dire
tly the s
heme. However, some of the
ompilation theorems are

tedious, in parti
ular the theorems for fun
tion
all, let-form, and list�. They

make use of an additional lemma whi
h relates sequen
es of ComLisp forms with

SIL statement sequen
es. Due to la
k of spa
e we
annot go into the details of

the proofs. All the proofs have been
ompletely a

omplished using PVS.

Statisti
s

We present some statisti
s
on
erning the formalization and veri�
ation e�ort

for this
ompilation step. Table 1 summarizes the results. First of all, we have

extended the built-in PVS library with additional fun
tions and properties for

lists, and with a new theory for asso
iation lists (�nite maps). This library has

already been reused for other veri�
ation tasks. There are 7 additional PVS the-

ories with 621 lines of PVS spe
i�
ation
ode (LOC), 139 obligations to prove

in
luding all type
orre
tness
onditions generated by the system. These obliga-

tions are proved intera
tively by invoking 1048 proof steps. The spe
i�
ations

of the languages ComLisp and SIL in
luding the de�nition of s-expressions and

orresponding unary and binary operators involve 7 theories. Not surprisingly,

the most e�ort lies in the veri�
ation of the
ompiling spe
i�
ation: 30 proof

obligations (mainly the
ompiling theorems) have been proved in more than

1600 proof steps. Most work has been put into the veri�
ation of the
ompila-

tion theorems for fun
tion
all, let , and list�. Although strategies for parts of

the proofs have been developed, the number of manual steps is quite high and

shows that this veri�
ation task is by no means trivial.

It is hard to give an estimation of the amount of work invested in the �nal

veri�
ation, sin
e we started the veri�
ation on a smaller subset of ComLisp

in order to experiment with di�erent styles of semanti
s and �nd the ne
essary

invariants, and then in
rementally extended this subset and tried to rerun and

adapt the already a

omplished proofs. A
oarse estimation of the total formal-

ization and veri�
ation e�ort required for the
ompiling spe
i�
ation for all 4

ompilation phases is about 3 person-years.

Related Work

Veri�
ation of
ompiler
orre
tness is a mu
h-studied area starting with the

work by M
Carthy and Painter in 1967 [13℄, where a simple
ompiler for arith-

10

Table 1. Formalization and veri�
ation statisti
s

PVS theories LOC proof obligations proof steps

spe
. of languages 7 759 139 575

ompiling spe
i�
ation 1 122 36 95

ompiling veri�
ation 1 219 30 1617

list, alist library 7 621 139 1048

16 1721 344 3335

meti
 expressions has been proved
orre
t. Many di�erent approa
hes have been

taken sin
e then, usually with me
hanized support to manage the
omplexity

of the spe
i�
ations and the proofs, for example [1, 2, 4, 12, 14, 17℄. Most of the

approa
hes only deal with the
orre
tness of the
ompiling spe
i�
ation, while

the approa
h taken in the Veri�x proje
t also takes
are of the implementation

veri�
ation, even on the level of binary ma
hine
ode. Another di�eren
e of our

approa
h is that we are
on
erned with the
ompilation of \realisti
" sour
e

languages and target ar
hite
tures. A ComLisp implementation of the ComLisp

ompiler as well as a binary Transputer exe
utable is available.

Notable work in this area with me
hanized support is CLIn
's veri�ed sta
k

of system
omponents ranging from a hardware-pro
essor up to an imperative

language [14℄. Both the
ompiling veri�
ation and the high-level implementation

(in ACL2 logi
 whi
h is a LISP subset) have been
arried out with me
hanized

support using the ACL2 prover. Using our
ompiler,
orre
t binary Transputer

ode
ould be generated.

The impressive VLISP proje
t [10℄ has fo
used on a
orre
t translation for

S
heme. However, although the ne
essity of also verifying the
ompiler imple-

mentation has been expressed this has expli
itly been left out. Proofs were a
-

omplished without me
hanized support.

P. Curzon [4℄
onsiders the veri�
ation of the
ompilation of a stru
tured

assembly language, Vista, into
ode for the VIPER mi
ropro
essor using the

HOL system. Vista is a low-level language in
luding arithmeti
 operators whi
h

orrespond dire
tly to those available on the target ar
hite
ture.

The
ompilation of PROLOG into WAM has been realized through a series of

re�nement steps and has been me
hani
ally veri�ed using the KIV system [18℄.

A (small-step) ASM semanti
s is used for the languages.

5 Con
luding Remarks

In this paper we have reported on an ongoing e�ort in
onstru
ting a
orre
t

bootstrap
ompiler for a subset of Common Lisp into binary Transputer
ode.

We have fo
used on the formal, me
hani
ally supported veri�
ation of the
om-

piling spe
i�
ation of the �rst
ompilation phase. The veri�
ation of the se
ond

phase, the translation from SIL to C

int

, where s-expressions and their operators

are implemented in linear memory (
lassi
al data and operation re�nement), is

11

also
ompleted. Current work is
on
erned with the veri�
ation of the
ompiler

ba
k-end, namely, the
ompilation from C

int

into abstra
t Transputer assembler

ode TASM. The standard
ontrol stru
tures of C

int

must be implemented by

onditional and un
onditional jumps, and the state spa
e must be realized on

the
on
rete Transputer memory. Hen
e, this step is again a data re�nement pro-

ess to be veri�ed. The veri�
ation of the last
ompilation phase, where abstra
t

Transputer assembler is
ompiled into binary Transputer
ode (TC) has already

been a

omplished following approved veri�
ation te
hniques [15℄: starting from

a (low-level) base model of the Transputer, where programs are a part of the

memory, a series of abstra
tion levels is
onstru
ted allowing di�erent views on

the Transputer's behavior and the separate treatment of parti
ular aspe
ts.

We have demonstrated that the formal, me
hanized veri�
ation of a non-

trivial
ompiler for a (nearly) realisti
 programming language into a real target

ar
hite
ture is feasible with state-of-the-art prover te
hnology.

A
knowledgements

The
onstru
tion of the initial
orre
t ComLisp
ompiler is joint work with the

proje
t partners from the university of Kiel. We thank them for their
onstru
tive

ollaboration and many dis
ussions on this subje
t. The
onstru
tive
riti
ism

and suggestions provided by the anonymous referees have been a great help to

improve this paper.

Referen
es

1. E. B�orger and W. S
hulte. De�ning the Java Virtual Ma
hine as Platform for

Provably Corre
t Java Compilation. In 23rd Int. Symposium on Mathemati
al

Foundations of Computer S
ien
e, volume 1450 of LNCS. Springer, 1998.

2. M. Broy. Experien
es with Software Spe
i�
ation and Veri�
ation using LP, the

Lar
h Proof Assistant. Te
hni
al report, Digital Systems Resear
h Center, 1992.

3. L.M. Chiri
a and D.F. Martin. Toward Compiler Implementation Corre
tness

Proofs. ACM Transa
tions on Programming Languages and Systems, 8(2):185{

214, April 1986.

4. Paul Curzon. The Veri�ed Compilation of Vista Programs. Internal Report, Com-

puter Laboratory, University of Cambridge, January 1994.

5. Axel Dold. Formal Software Development using Generi
 Development Steps.

Logos-Verlag, Berlin, 2000. Dissertation, Universit�at Ulm.

6. W. Goerigk, A. Dold, T. Gaul, G. Goos, A. Heberle, F. von Henke, U. Ho�mann,

H. Langmaa
k, H. Pfeifer, H. Ruess, and W. Zimmermann. Compiler Corre
tness

and Implementation Veri�
ation: The Veri�x Approa
h. In Pro
eedings of the

Poster Session of CC'96 - International Conferen
e on Compiler Constru
tion.

ida, 1996. TR-Nr.: R-96-12.

7. Wolfgang Goerigk, Thilo Gaul, and Wolf Zimmermann. Corre
t Programs with-

out Proof? On Che
ker-Based Program Veri�
ation. In Pro
eedings ATOOLS'98

Workshop on \Tool Support for System Spe
i�
ation, Development, and Veri�
a-

tion", Advan
es in Computing S
ien
e, Malente, 1998. Springer Verlag.

12

8. Wolfgang Goerigk and H. Langmaa
k. Compiler Implementation Veri�
ation and

Trojan Horses. In D. Bainov, editor, Pro
. of the 9th Int. Colloquium on Numeri
al

Analysis and Computer S
ien
es with Appli
ations, Plovdiv, Bulgaria, 2000.

9. G. Goos and W. Zimmermann. Veri�
ation of Compilers. In B.Ste�en E.-

R. Olderog, editor, Corre
t System Design, volume 1710 of LNCS, pages 201{230.

Springer-Verlag, 1999.

10. J. D. Guttman, L. G. Monk, J. D. Ramsdell, W. M. Farmer, and V. Swarup. A

Guide to VLISP, A Veri�ed Programming Language Implementation. Te
hni
al

Report M92B091, The MITRE Corporation, Bedford, MA, September 1992.

11. Ulri
h Ho�mann. Compiler Implementation Veri�
ation through Rigorous Synta
-

ti
al Code Inspe
tion. PhD thesis, Te
hnis
he Fakult�at der Christian-Albre
hts-

Universit�at zu Kiel, Kiel, 1998.

12. J.J. Joy
e. A Veri�ed Compiler for a Veri�ed Mi
ropro
essor. Te
hni
al Report

167, University of Cambridge, New Museums Site, Pembroke Street, Cambridge,

CB2 3QG, England, Mar
h 1989.

13. J. M
Carthy and J.A. Painter. Corre
tness of a Compiler for Arithmeti
al Ex-

pressions. In J.T. S
hwartz, editor, Pro
eedings of a Symposium in Applied Math-

emati
s, 19, Mathemati
al Aspe
ts of Computer S
ien
e. Ameri
an Mathemati
al

So
iety, 1967.

14. J S. Moore. A Me
hani
ally Veri�ed Language Implementation. Journal of Auto-

mated Reasoning, 5(4), 1989.

15. Markus M�uller-Olm. Modular Compiler Veri�
ation, volume 1283 of LNCS.

Springer Verlag, Berlin, Heidelberg, New York, 1997. PhD Thesis.

16. S. Owre, J. Rushby, N. Shankar, and F. von Henke. Formal Veri�
ation for Fault-

Tolerant Ar
hite
tures: Prolegomena to the Design of PVS. IEEE Transa
tions

on Software Engineering, 21(2):107{125, February 1995.

17. W. Polak. Compiler Spe
i�
ation and Veri�
ation, volume 124 of LNCS. Springer-

Verlag, 1981.

18. Gerhard S
hellhorn. Veri�kation abstrakter Zustandsmas
hinen. PhD thesis, Un-

versit�at Ulm, 1999.

A Semanti
s of ComLisp Forms

For a state s, we denote the input stream of s by s

input

, the output list of s by

s

output

, and the variable state of s by s

var

: Ident ! SExpr . In the following to

in
rease readability, we often write simply s instead of s

var

; s[x v℄ denotes

the modi�
ation of s

var

at x by v.

ComLisp operators denote partial fun
tions on s-expressions whi
h is ex-

pressed by two relations: relation v

1

: uop ! v

2

for unary operators uop, and

v

1

; v

2

: bop ! v for binary operators. For example, the �rst relation states that

the appli
ation of unary operator uop to s-expression v

1

is de�ned, terminates,

and yields s-expression v

2

as result.

{
onstants, variables

� ` s :
! (
; s) � ` s : x! (s(x); s)

{ assignment:

� ` s : e! (v; q)

� ` s : x := e! (v; q[x v℄)

13

{ sequential
omposition:

� ` s : progn([℄)! (NIL; s)

� ` s : e! (v; q)

� ` s : progn(e)! (v; q)

� ` s : e

1

! (v

1

; q

1

)

� ` q

1

: progn(e

2

; : : : ; e

n

)! (v; q)

� ` s : progn(e

1

; : : : ; e

n

)! (v; q)

if n � 2

{
onditional:

� ` s : e

1

! (NIL; q

1

) ; � ` q

1

: e

3

! (v; q)

� ` s : if (e

1

; e

2

; e

3

)! (v; q)

� ` s : e

1

! (v

1

; q

1

); � ` q

1

: e

2

! (v; q)

� ` s : if (e

1

; e

2

; e

3

)! (v; q)

if v

1

6= NIL

{ while loop:

� ` s :
! (v

1

; q

1

) (v

1

6= NIL)

� ` q

1

: body ! (v

2

; q

2

)

� ` q

2

: while(
; body)! (v; q)

� ` s : while(
; body)! (v; q)

� ` s :
! (NIL; q)

� ` s : while(
; body)! (NIL; q)

{
all of user-de�ned fun
tions:

[f(x

1

� � �x

n

) body ℄ 2 � (n � 1)

� ` q

i

: e

i

! (v

i

; q

i+1

) (1 � i � n)

� ` q

n+1

[x

1

 v

1

; : : : ; x

n

 v

n

℄ : body ! (v; r)

� ` q

1

:
all (f; e

1

; : : : ; e

n

)! (v; r[x

1

 q

n+1

(x

1

); : : : ; x

n

 q

n+1

(x

n

)℄)

[f() body ℄ 2 �

� ` s : body ! (v; q)

� ` s :
all (f; ())! (v; q)

{ built-in unary and binary operators:

� ` s : e! (v

1

; q)

v

1

: uop ! v

� ` s : uop(e)! (v; q)

� ` s : e

1

! (v

1

; q

1

)

� ` q

1

: e

2

! (v

2

; q)

v

1

; v

2

: bop ! v

� ` s : bop(e

1

; e

2

)! (v; q)

{ let blo
k:

� ` q

i

: e

i

! (v

i

; q

i+1

) (1 � i � n)

� ` q

n+1

[x

1

 v

1

; : : : ; x

n

 v

n

℄ : e! (v; r)

� ` q

1

: let(x

1

= e

1

; : : : ; x

n

= e

n

; e)! (v; r[x

1

 q

n+1

(x

1

); : : : ; x

n

 q

n+1

(x

n

)℄)

� ` s : e! (v; q)

� ` s : let([℄; e)! (v; q)

14

{ list� operator:

� ` s : e! (v; q)

� ` s : list�(e)! (v; q)

� ` s : e

1

! (v

1

; q

1

)

� ` q

1

: list�(e

2

; : : : ; e

n

)! (v

2

; q)

� ` s : list�(e

1

; : : : ; e

n

)! (
ons(v

1

; v

2

); q)

{
ase form:

� ` s :
ond()! (NIL; s)

� ` s : p! (v

1

; q

1

) (v

1

6= NIL)

� ` q

1

: e! (v; q)

� ` s :
ond(p e)! (v; q)

� ` s : p

1

! (NIL; q

1

)

� ` q

1

:
ond(p

2

 e

2

; : : : ; p

n

 e

n

)! (v; q)

� ` s :
ond(p

1

 e

1

; : : : ; p

n

 e

n

)! (v; q)

{ input/output:

� ` s : read
har ! (�rst(s

input

); s[s

input

:= rest(s

input

)℄)

� ` s : peek
har ! (�rst(s

input

); s)

� ` s : e! (v; q) (v 2
har)

� ` s : print
har (e)! (v; q[q

output

:= q

output

++v℄)

B Semanti
s of SIL Statements

In the following, jlj denotes the length of list l, and l(i) denotes the ith element of

l for (0 � i < jsj). s

lo
al

, s

global

, s

base

denote the respe
tive state
omponents in

state s. To in
rease readability, we simply write s(i) for the relative lo
al a

ess

s

lo
al

(s

base

+ i), and write s[i v℄ for s[s

lo
al

(s

base

+ i) v℄.

{
opy
onstant:

� ` s :
opy
(
; i)! s[i
℄

{
opy lo
al:

� ` s :
opy(i; j)! s[j s(i)℄

{
opy from global to lo
al memory:

� ` s : g
opy(g; i)! s[i s

global

(g)℄ if g < js

global

j

{
opy from lo
al to global memory:

� ` s :
opyg(i; g)! s[s

global

(g) s(i)℄ if g < js

global

j

{
onditional:

s(i) = NIL

� ` s : f ! q

� ` s : itef (i; t; f)! q

s(i) 6= NIL

� ` s : t! q

� ` s : itef (i; t; f)! q

15

{ sequential
omposition:

� ` s :
! q

� ` s : sq(
)! q

� ` s :

1

! q

1

� ` q

1

: sq(

2

; : : : ;

n

)! q

� ` s : sq(

1

; : : : ;

n

)! q

if n � 2

{ fun
tion
all:

� ` s[s

base

 s

base

+ i℄ : body ! q

� ` s : f
all (h; i)! q[q

base

 s

base

℄

if [h body ℄ 2 �

{ unary/binary operators:

s(i) : uop ! v

� ` s : uop(i)! s[i v℄

s(i); s(i+ 1) : bop ! v

� ` s : bop(i)! s[i v℄

{ while loop:

� ` s :
! q (q(i) = NIL)

� ` s : while(i;
; b)! q

� ` s :
! r (r(i) 6= NIL)

� ` r : b! t

� ` t : while(i;
; b)! q

� ` s : while(i;
; b)! q

{ input/output:

� ` s : read
har (i)! s[i �rst(s

input

); s

input

 rest(s

input

)℄

� ` s : peek
har (i)! s[i �rst(s

input

)℄

� ` s : print
har (i)! s[s

output

 s

output

++s(i)℄ if s(i) 2
har

{ list�

n � 2

� ` s : list�(n; i)! s[i
ons(s(i); : : :
ons(s(i+ n� 2); s(i+ n� 1)) : : :)℄

� ` s : list�(1; i)! s

C Compilation of ComLisp Forms

C

form

(e;
; �; k) is de�ned indu
tively on e:

{ C

form

(abort ;
; �; k) = abort

{ C

form

(
;
; �; k) =
opy
(
; k)

{ C

form

(x;
; �; k) =

�

opy(�(x); k) if �(x) is de�ned

g
opy(
(x); k) otherwise

{ C

form

(x := e;
; �; k) =

�

sq(C

form

(e;
; �; k);
opy(k; �(x))) if �(x) is de�ned

sq(C

form

(e;
; �; k);
opyg(k;
(x))) otherwise

{ C

form

(progn([℄);
; �; k) =
opy
(NIL; k)

16

{ C

form

(progn(e

1

; : : : ; e

n

);
; �; k) = sq

0

B

�

C

form

(e

1

;
; �; k)

.

.

.

C

form

(e

n

;
; �; k)

1

C

A

{ C

form

(if (e

1

; e

2

; e

3

);
; �; k) = sq

�

C

form

(e

1

;
; �; k)

itef (k; C

form

(e

2

;
; �; k); C

form

(e

3

;
; �; k))

�

{ C

form

(while(e

1

; e

2

);
; �; k) = while(k; C

form

(e

1

;
; �; k); C

form

(e

2

;
; �; k))

{ C

form

(
all (f; ());
; �; k) = f
all (f; k)

{ C

form

(
all (f; e

1

; : : : ; e

n

);
; �; k) = sq

0

B

B

B

�

C

form

(e

1

;
; �; k)

.

.

.

C

form

(e

n

;
; �; k + n� 1)

f
all (f; k)

1

C

C

C

A

{ C

form

(uop(e);
; �; k) = sq(C

form

(e;
; �; k); uop(k))

{ C

form

(bop(e

1

; e

2

);
; �; k) = sq

0

�

C

form

(e

1

;
; �; k)

C

form

(e

2

;
; �; k + 1)

bop(k)

1

A

{ C

form

(let((); e);
; �; k) = C

form

(e;
; �; k)

{ C

form

(let(x

1

= e

1

; : : : ; x

n

= e

n

; e);
; �; k) =

sq

0

B

B

B

B

B

�

C

form

(e

1

;
; �; k)

.

.

.

C

form

(e

n

;
; �; (k + n� 1))

C

form

(e;
; �[x

1

 k; : : : x

n

 (k + n� 1)℄; k + n)

opy(k + n; k)

1

C

C

C

C

C

A

{ C

form

(list�(e

1

; : : : ; e

n

);
; �; k) = sq

0

B

B

B

�

C

form

(e

1

;
; �; k)

.

.

.

C

form

(e

n

;
; �; k + n� 1)

list�(n; k)

1

C

C

C

A

{ C

form

(
ond ();
; �; k) =
opy
(NIL; k)

{ C

form

(
ond (p

1

! e

1

; : : : ; p

n

! e

n

);
; �; k) =

sq(C

form

(p

1

;
; �; k);

itef (k; C

form

(e

1

;
; �; k); C

form

(
ond(p

2

! e

2

; : : : ; p

n

! e

n

);
; �; k)))

{ C

form

(read
har ;
; �; k) = read
har (k)

{ C

form

(peek
har ;
; �; k) = peek
har (k)

{ C

form

(print
har (e);
; �; k) = sq(C

form

(e;
; �; k); print
har (k))

Some remarks to this de�nition:

{ for sequen
es progn(e

1

; : : : ; e

n

) all values are stored at the same relative

position in the
urrent sta
k frame sin
e the value of a sequen
e is the value

of its rightmost subexpression e

n

. The intermediate values do not have to

be preserved.

{ for the
ompilation of a let-form, new variable bindings are allo
ated in the

urrent sta
k frame beginning at relative position k. The body is evaluated

to return its value at k + n where n is the number of new lo
al bindings. A

�nal
opy instru
tion moves the result value to the desired lo
ation k.

{ a
ond -form is
ompiled into a nested
onditional.

17

