A Mechanically Verified Compiling Specification
for a Lisp Compiler*

Axel Dold and Vincent Vialard

Fakultat fiir Informatik
Universitat Ulm
D-89069 Ulm, Germany
Fax: +49/(0)731/50-24119

{dold|vialard}@informatik.uni-ulm.de

Abstract. We report on an ongoing effort in mechanically proving cor-
rect a compiling specification for a bootstrap compiler from ComLisp (a
subset of ANSI Common Lisp sufficiently expressive to serve as a com-
piler implementation language) to binary Transputer code using the PVS
system. The compilation is carried out in four steps through a series of in-
termediate languages. This paper focuses on the first phase, namely, the
compilation of ComLisp to the stack-intermediate language SIL, where
parameter passing is implemented by a stack technique. The context of
this work is the joint research effort Verifiz aiming at developing meth-
ods for the construction of correct compilers for realistic programming
languages.

1 Introduction

The use of computer based systems for safety-critical applications requires high
dependability of the software components. In particular, it justifies and demands
the verification of programs typically written in high-level programming lan-
guages. Correct program execution, however, crucially depends on the correct-
ness of the binary machine code executable, and therefore, on the correctness
of system software, especially compilers. As already noted in 1986 by Chirica
and Martin [3], full compiler correctness comprises both the correctness of the
compiling specification (with respect to the semantics of the languages involved)
as well as the correct implementation of the specification.

Verifiz [6,9] is a joint German research effort of groups at the universities
Karlsruhe, Kiel, and Ulm. The project aims at developing innovative methods for
constructing provably correct compilers which generate efficient code for realistic,
practically relevant programming languages. These realistic compilers are to be
constructed using approved development techniques. In particular, even standard
unverified compiler generation tools (such as Lex or Yacc) may be used, the
correctness of the generated code being verified at compile time using verified

* This research has been funded by the Deutsche Forschungsgemeinschaft (DFG) un-
der project “Verifiz”.

program checkers [7]. Verifiz assumes hardware to behave correctly as described
in the instruction manuals.

In order not to have to write the verified parts of the compiler and checkers
directly in machine code, a fully verified and correctly implemented initial com-
piler is required, for which efficiency of the produced code is not a priority. The
initial correct compiler to be constructed in this project transforms ComLisp
programs into binary Transputer code. ComLisp is an imperative proper subset
of ANSI-Common Lisp and serves both as a source and implementation language
for the compiler. The construction process of the initial compiler consists of the
following steps:

— define syntax and semantics of appropriate intermediate languages.

— define the compiling specification, a relation between source and target lan-
guage programs and prove (with respect to the language semantics) its cor-
rectness according to a suitable correctness criterion.

— construct a correct compiler implementation in the source language itself
(a transformational constructive approach is applied which builds a cor-
rect implementation from the specification by stepwise applying correctness-
preserving development steps [5]).

— use an existing (unverified) implementation of the source language (here:
some arbitrary Common Lisp compiler) to execute the program. Apply the
program to itself and bootstrap a compiler executable. Check syntactically,
that the executable code has been generated according to the compiling spec-
ification. For this last step, a realistic technique for low level compiler verifi-
cation has been developed which is based on rigorous a posteriori syntactic
code inspection [8,11]. This closes the gap between high-level implementation
and executable code.

The size and complexity of the verification task in constructing a correct com-
piler is immense. In order to manage it, suitable mechanized support for both
specification and verification is necessary. We have chosen the PVS specification
and verification system [16] to support the verification of the compiling specifi-
cation and the construction process of a compiler implementation in the source
language.

In this paper, we focus on the mechanical verification of the compiling spec-
ification for the ComLisp compiler. In particular, we describe the formalization
and verification process of the first compilation phase from ComLisp to the stack-
based intermediate language SIL, the first of a series of intermediate languages
used to compile ComLisp programs into binary Transputer machine code:

ComLisp — SIL — C** — TASM — TC

First, ComLisp is translated into a stack intermediate language (SIL), where
parameter passing is implemented by a stack technique. Expressions are trans-
formed from a prefix notation into a postfix notation according to the stack
principle. SIL is then compiled into C'™ where the ComLisp data structures
(s-expressions) and operators are implemented in linear integer memory using a

run-time stack and a heap. These two steps are machine independent. In the next
step, control structures of Ci"* are implemented by linear assembler code with
jumps, and finally, abstract assembler code is transformed into binary Trans-
puter code.

This paper is organized as follows. The next section presents the formalization
of the languages ComULisp and SIL, that is, their abstract syntax and semantics.
Operational semantics in a structural operational style are provided for both
languages by means of a set of inductive rules. Section 3 then focuses on the
compilation process from ComLisp to SIL. Finally, Section 4 is concerned with
the correctness of this compilation process.

2 Syntax and Semantics of the Languages

2.1 ComlLisp

A ComLisp program consists of a list of global variables, a list of possibly mutual
recursive function definitions, and a main form. ComLisp forms (expressions)
include the abort form, s-expression constants, variables, assignments, sequential
composition (progn), conditional, while loop, call of user defined functions, call of
built-in unary (uop) and binary (bop) ComLisp operators, local let-blocks, listx
operator (constructing a s-expression list from its evaluated arguments), case-
instruction, and instructions for reading from the input sequence and writing to
the output. The ComLisp operators include the standard operators for lists (e.g.
length), type predicates for the different kinds of s-expressions, and the standard
arithmetic operations (e.g. +, , floor). The only available datatype is the type
of s-expressions which are binary trees built with constructor “cons”, where the
leaves are either integers, characters, strings, or symbols. The set of symbols
includes T" and NIL. The abstract syntax of ComLisp is given as follows:

p u= T1,...,%p; f1,..., [nje€

f o= h(xy,...,zm) < e

e u= abort|c|x|x:=e|progn(er,...,en) | if(e1,ea,e3) | while(er,es) |
call(h,eq,...,e,) | uop(e) | bop(er,eq2) | let(zx1 =e1,...,2, = en;e) |
listx(eq,...,en) | cond(p1 — e1,...,pn = €n) |

read_char | peek_char | print_char(e)

The static semantics of ComLisp programs, function definitions, and forms is
specified by means of several well-formedness predicates. A ComLisp form is well-
formed—with respect to a local variable environment ((a list of formal parame-
ters), a list of global variables 7, and a function environment I" (a list of function
definitions)—if the list of local and global variables are disjoint, all variables are
declared (that is, occur either in ¢ or) and each user-defined function is declared
in I and called with the correct number of arguments (correct parameter pass-
ing). Formally, a relation wf (e, (,~y,I") is defined inductively on the structure of
forms (omitted here). A function environment I" is well-formed with respect to a

list of global variables v, if the function names in I" are disjoint (no double dec-
larations of functions), and each function body in I" is well-formed with respect
to its local parameter list, , and I'. This is specified by predicate wf ,.,.(I7)-
Finally, the well-formedness relation for ComLisp programs is straightforward.
Let p=7; F; e. Then wfprogram(p) = wfproc(Fa 7) A wf(ea []777 F)

For the intermediate languages occurring in the different compilation phases
of the ComLisp to Transputer compiler, a uniform relational semantics descrip-
tion has been chosen. The (dynamic) semantics of ComLisp is defined in a struc-
tural operational way by a set of inductive rules for the different ComLisp forms.
This kind of semantics is also referred to as big-step semantics or evaluation se-
mantics in contrast to a transition semantics (small-step semantics) such as
abstract state machines (ASM’s). A ComLisp state is a triple consisting of an
(infinite) input sequence (stream) of characters, an output list of characters, and
the variable state which is a mapping from identifiers to values (s-expressions):

statecy, := sequence[char]| x char® x (Ident — SExpr)

ComLisp forms are expressions with side-effects, that is, they denote state trans-
formers transforming states to pairs of result value and result state. The defini-
tion of the semantics of forms uses the following notation: I' F s : e = (v, q).
It states that evaluating form e in state s and function environment I termi-
nates and results in a value v and final state ¢. Given rules for each kind of
form, the semantics is defined as the smallest relation — satisfying the set of
rules. For example, the semantics of a function call is given by two rules. One
for parameterless functions, and one for functions with parameters, where the
parameters are sequentially evaluated, the resulting values being then bound to
the parameters before evaluation of the body and unbound after returning the
value:

(o1 2a) body] € T (n > 1)
I'tgize; = (vi,qiy1) (1 <i<n)
I'bF gpia[z < v1,. .0 @0 vy 2 body — (v, 1)
I'tqq:eal(f,er, ... en) = (0,721 < Gui1(21), ..., T < qnt1 (z0)])

The complete set of rules for ComLisp forms can be found in the appendix A.

The semantics of a ComLisp program is given by the input/output behavior
of the program defined by a relation Psem,, between input streams is and output
lists ol. Psemq,, (P)(is,0l) holds if the evaluation of the main form e in an initial
state, where the input stream is given by is, the output list is empty and all
variables are initialized with NIL, terminates with a value v in some state ¢ with
output list ol. Formally:

Paemey, () (is, 00) ::= Jv, q. (I'F (is,], \o.NIL) : € = (v, q)) A (qoutpus = ol)

2.2 SIL

SIL, the stack intermediate language, is a language with parameterless proce-
dures and s-expressions as available datatype. Programs operate on a runtime

stack with frame-pointer relative addresses. A SIL program consists of a list of
parameterless procedure declarations and a main statement. There are no vari-
ables, only memory locations and the machine has statements for copying values
from the global to the local memory and vice versa. For example, copy(i, j) copies
the content at stack relative position i to relative position j, gcopy(g,i) copies
from the global memory at position g to the relative position ¢, and itef (i, s1, s2)
executes instruction ss if the content of stack relative position i is NIL, otherwise
s1 is executed.

p == fi,...,fn;8
f = h+s
s u= abort | copyc(c,i) | copy(i,j) | gcopy(g,i) | copyg(g,i) |

itef (i, 51, 82) | 8q(s1,- .-, 8n) | feall(h, i) | wop(i) | bop(i) |
while(i, s1, $2) | read_char (i) | peek_char(i) | print_char(i) | listx(n,1)

The static semantics is again specified by means of well-formedness predicates for
SIL statements, SIL procedure declarations, and SIL programs (definitions omit-
ted here). SIL statements denote state transformers, where a SIL state consists
of the input stream, the output list, the global memory (a list of s-expressions),
and the local memory (consisting of the frame pointer base : Nat and the stack,
a function from natural numbers to s-expressions).

statestr, ::= sequence[char] X char® x SEzpr* x Nat x (Nat — SEzpr)

As for ComLisp, an evaluation semantics for SIL statements is defined as the
smallest relation I' F s : emd — ¢ satisfying the set of rules given for the
language constructs. The relation states that executing the statement cmd in
state s and SIL procedure environment I" (a list of procedure declarations) is
defined, terminates, and results in a new state ¢q. The rules for SIL statements
are listed in the appendix B.

As for ComLisp, the semantics of a SIL program is its I/O behavior:

Piemgrr, (D) (is,0l) :=3q. (I'Finit : s = q) A (Qoutput = 0l)

where the initial state is defined by énit ::= (is, [], [NIL, ..., NIL],0, \n.NIL).

2.3 PVS Formalization of the Languages

Abstract syntax, static and dynamic semantics of the languages have to be for-
malized in the PVS specification language. The language is based on classical
higher-order logic with a rich type system including dependent types. In addi-
tion, the PVS system provides an interactive proof checker that has a reasonable
amount of theorem proving capabilities. A strategy language enables to combine
atomic inference steps into more powerful proof strategies allowing to define
reusable proof methods.

1. Abstract Syntax: the PVS abstract data type (ADT) construct is used. Com-
Lisp forms, for example, are defined by an ADT, where for each kind of form
there exists a corresponding constructor. For ADT definitions in PVS, a large
theory is automatically generated including induction and reduction schemes
for the ADT, termination measures, and a set of axioms stating that the data
type denotes the initial algebra defined by the constructors. Note that the
formalizations make heavily use of library specifications. However, a lot of
new types, functions, and predicates must be added for the specifications,
as well as lemmas for their useful properties (which have to be proved).

2. Static Semantics: the well-formedness predicates must be formalized. Since
each function must be total in PVS, a termination measure must be pro-
vided for the recursive definitions. We have specified the structural size of a
ComLisp form using the reduction scheme from the ADT theory.

3. Dynamic Semantics: the rules must be represented in PVS. A set of structural
rules is represented as an inductive PVS relation which combines all the rules
in one single definition E(I")(s,e,v,q, N) which denotes I' F s : ¢ — (v, q).
Free logical variables in the rules are existentially quantified in the corre-
sponding PVS relation. In general, properties about inductive relations can
be proved by rule induction. Here, the definition of relation E has an ad-
ditional counter parameter N to formulate an induction principle needed
for the proof for the selected notion of correctness (see Sect. 4). N is de-
creased when entering the body of a function or while loop, since in this case
the forms in the antecedents of the corresponding rules are not structurally
smaller, and left unchanged otherwise.

3 Compiling ComLisp to SIL

The compilation from ComLisp to SIL generates code according to the stack
principle and translates parameter passing to statements which access the data
stack. For a given expression e, a sequence of SIL instructions is generated that
computes its value and stores it at the top of the stack (relative position k in
the current frame). The parameters z1,...,z, of a function are stored at the
bottom of the current frame (at relative positions 0,...,n — 1) (see Fig. 1). A
SIL function call feall(h,i) increases the frame pointer base by i which is reset to
its old value after the call and local variables introduced by let are represented
within the current frame. For each syntactical ComLisp category, a compiling
function is specified.

— Ctorm(e, 7y, p, k) is defined inductively on e. It takes a form e, a global environ-
ment ~y (a list of identifiers), a compile time environment p (an association
list which associates relative positions in the current stack frame with local
variables), and a natural number k (denoting the current top of stack) and
produces a SIL statement. Its definition can be found in the appendix C.

— A function definition is compiled by compiling the body in a new environment
(where the formal parameters are associated with relative positions 0, ...,n—
1) with the top of stack set at position n. Finally, the current stack frame has

base + k | top of stack

base +n Un—1
base + 1 V2
base V1

Fig. 1. Parameter passing on the stack

to be removed, leaving only the result on top (achieved by a copy instruction
from position n to 0).

Caet(h(x1,...,xn) < €)(7) == h < $q(Crorm(e, 7, [z; < (i—1)],n), copy(n,0))

— A function environment I" is compiled by compiling each function definition
in I':
Caets([f1s -, fa) (V) 2= [Caer (f1)(7); - - - 5 Caet (fn) (V)]

— A program p = «v; ;e is compiled by compiling its function environment
and main form:

Cprog (p) = Cdefs(F) (7)) Cform(ea e []a 0)

4 Correctness of the Compilation Process

An appropriate notion of correct compilation for sequential imperative languages
on a concrete target processor must take the finite resource limitations of the
target architecture into account. The notion of correctness used in Verifiz is the
preservation of the observable behavior up to resource limitations. In our case
correctness of the compilation process is stated as follows: for any well-formed
ComLisp program p, whenever the semantics of the compiled program is defined
for some input stream is and output list ol, this is also the case for p for the
same is and ol:

Theorem 1 (Correctness of Program Compilation).
VP, i8, 0. Wf program (P) = (Psemsm. (Corog () (5)(0l) = Fremer. (p)(i5)(0l))

Unfolding Piemgy, and Psemc,,, the semantics of forms and corresponding SIL
statements have to be compared. In particular, this requires relating source and
target language states. ComLisp forms denote state transformers transforming
a state into a result value and a result state (if defined) o —. (v,0’). On the
other hand, SIL statements denote ordinary state transformers s —; s'. Two
relations are required: one relation p;, relates ComLisp input states ¢ with SIL

states s, while the other relation p,yt relates ComLisp output states (v, o') with
SIL states s’. Figure 2 illustrates the correctness property for forms by means
of a commuting diagram. The relations are parameterized with a list of global

statect, D o —re - (v,0") € SEzpr X statecr,
Pin Q Pout
—s

statesir, D s - s' € stategst,

Fig. 2. Correctness property for the compilation of ComLisp forms

variables «y, the local compile time environment p, and the current top of stack
position k. Relation p;, distinguishes between local and global variables. The
relative address for variables for which p is defined is given by p(x), while the
address of the global variables in v is given by 7(z). Relation po, additionally
assumes that the final value v is available at the stack top (relative address k).
In addition, it is required that the input streams and the output lists of o and
s correspond. The data representation relations are defined as follows:
pin(’Y: P, k) (Ua S) =

¥z € dom(p). (p(x) < k) A (0(x) = siocai(nase + p(a)))] A

Vo € 7. (7(@) < Isgiopatl) A (&) = sgiobar(Y(@))] A

(Sinput - Uinput) A (Soutput - Uoutput)
Pout (7, p: k) (0,07, 8") 1= (Slgcar(Shase +5) = 0) A (pin(7,p, k) (0", 8))

In order to state the correctness property for the compilation of forms two
additional invariants are required:

1. The first invariant relates ComLisp input and output states. It assures that
identifiers not belonging to ¢ or v (the local and global identifier lists) do
not alter their values.

source_invar?((,y)(o,0") :=Ve. (x € N € vy) = o'(z) =0o(x)

2. The second one relates input SIL states s with output SIL states s’. It states
that

(a) the frame pointers of s and s’ are identical.

(b) the contents of all stack cells with addresses not within the range of
the local environment p do not change from s to s'. In particular, this
includes all stack cells below the current stack frame.

invar?(p, k)(s,s") ==

Sbase = Si)ase A
Vadr. adr < kA adr & ran(p) = Siocai(Sbase + 04r) = 8], oa1(Shase + 247) A
Vadr. adr < spase = Siocal(adr) = s|,..;(adr)

This property is required to ensure that for function and operator calls the

computed values of the arguments are still available (and not overwritten)

when the operator is applied or the function body is executed.

All ingredients have now been collected to state the correctness property for
the translation of forms. The diagram in Fig. 2 has to commute in the sense
of preservation of partial program correctness. The property states that if the
function environment and the ComLisp form is well-formed, the compile time
environment p is injective and its domain corresponds to the local variable list
(, the initial ComLisp and SIL states are related by pi, and the code resulting
from compiling form e transforms SIL state s into s’, then there exists a value
v and ComLisp state ¢’ such that e evaluates in state o to (v,0’) and the final
ComLisp and SIL states are related by pous and the target states and source
states invariants hold:

Definition 1 (Correctness Property for Form Compilation).
correct_prop(I,v,(, p, k)(e) ==
V5,5 Wf proc(T57) A wf (6,67, T) A ingective?(p) A (dom(p) =C) A
pin (1,08 (3,5) A (Caets(T)) F 5 = Coomm(e,7,9,) —)
=, o :(Fo:e— (v,6") A pous(y,p, k) (v,0',8") A
invar?(p,k)(s,s') A source_invar?((,v)(o,0")

The main obligation is to prove that this property holds for each kind of form:

Theorem 2 (Correctness of Form Compilation).

ve) F’ 77 C) p) k' correCt—prop (F7 77 C) p’ k) (e)

In the PVS formalization, the correctness property has an additional counter
argument N according to the inductive relations defining the semantics. This
additional argument is required here since we prove that the target semantics
implies the source semantics but the compilation is defined structurally on the
source language. If we would prove the other way round, rule induction (without
a counter argument) would suffice. The PVS proof of this theorem is done by
measure induction (a variant of well-founded induction) using the lexicographic
combination of the counter N and the structural size of form e as termination
measure:

(N',e') < (N,e) == (N' < NV (N' = N Asize(e') < size(e)))

This measure ensures that for each kind of form the induction hypothesis is
applicable. To suitably manage the complexity of this proof, for each kind of
form a separate compilation theorem is introduced. The proof of Theorem 2 is
then carried out by case analysis and application of the compilation theorems.

Most of the proofs of the compilation theorems follow a similar scheme ac-
cording to the structure of the correctness property (see Definition 1):

1. First, definitions must be unfolded and the SIL statement which results from
compiling the ComLisp form must be “executed” symbolically according to
the operational SIL semantics.

2. The induction hypothesis (stated as a precondition in the compilation lem-
mas) must be instantiated.

3. Instantiations for the result value v and result state ¢’ (existentially quanti-
fied variables) of the ComLisp form must be found.

4. The consequent part of the formula must be proved. This reduces to showing
four properties:
(a) show that form e evaluates to the instantiated value and result state.
(b) show with the help of precondition p;, that the output source and target
states are related by pout (Note that pout is defined by means of piy,).
(c) show that the target state invariant holds.
(d) show that the source state invariant holds.

PVS strategies have been defined for some of the cases of the general scheme.
These strategies enable the (nearly) automatic discharge of the respective cases.
The proofs of most of the compilation lemmas are relatively straightforward
and follow directly the scheme. However, some of the compilation theorems are
tedious, in particular the theorems for function call, let-form, and listx. They
make use of an additional lemma which relates sequences of ComLisp forms with
SIL statement sequences. Due to lack of space we cannot go into the details of
the proofs. All the proofs have been completely accomplished using PVS.

Statistics

We present some statistics concerning the formalization and verification effort
for this compilation step. Table 1 summarizes the results. First of all, we have
extended the built-in PVS library with additional functions and properties for
lists, and with a new theory for association lists (finite maps). This library has
already been reused for other verification tasks. There are 7 additional PVS the-
ories with 621 lines of PVS specification code (LOC), 139 obligations to prove
including all type correctness conditions generated by the system. These obliga-
tions are proved interactively by invoking 1048 proof steps. The specifications
of the languages ComLisp and SIL including the definition of s-expressions and
corresponding unary and binary operators involve 7 theories. Not surprisingly,
the most effort lies in the verification of the compiling specification: 30 proof
obligations (mainly the compiling theorems) have been proved in more than
1600 proof steps. Most work has been put into the verification of the compila-
tion theorems for function call, let, and listx. Although strategies for parts of
the proofs have been developed, the number of manual steps is quite high and
shows that this verification task is by no means trivial.

It is hard to give an estimation of the amount of work invested in the final
verification, since we started the verification on a smaller subset of ComLisp
in order to experiment with different styles of semantics and find the necessary
invariants, and then incrementally extended this subset and tried to rerun and
adapt the already accomplished proofs. A coarse estimation of the total formal-
ization and verification effort required for the compiling specification for all 4
compilation phases is about 3 person-years.

Related Work

Verification of compiler correctness is a much-studied area starting with the
work by McCarthy and Painter in 1967 [13], where a simple compiler for arith-

10

Table 1. Formalization and verification statistics

PVS theories| LOC|proof obligations|proof steps

spec. of languages 7| 759 139 575
compiling specification 1| 122 36 95
compiling verification 1] 219 30 1617
list, alist library 7| 621 139 1048
16]1721] 344 3335

metic expressions has been proved correct. Many different approaches have been
taken since then, usually with mechanized support to manage the complexity
of the specifications and the proofs, for example [1,2,4,12,14,17]. Most of the
approaches only deal with the correctness of the compiling specification, while
the approach taken in the Verifiz project also takes care of the implementation
verification, even on the level of binary machine code. Another difference of our
approach is that we are concerned with the compilation of “realistic” source
languages and target architectures. A ComLisp implementation of the ComLisp
compiler as well as a binary Transputer executable is available.

Notable work in this area with mechanized support is CLInc’s verified stack
of system components ranging from a hardware-processor up to an imperative
language [14]. Both the compiling verification and the high-level implementation
(in ACL2 logic which is a LISP subset) have been carried out with mechanized
support using the ACL2 prover. Using our compiler, correct binary Transputer
code could be generated.

The impressive VLISP project [10] has focused on a correct translation for
Scheme. However, although the necessity of also verifying the compiler imple-
mentation has been expressed this has explicitly been left out. Proofs were ac-
complished without mechanized support.

P. Curzon [4] considers the verification of the compilation of a structured
assembly language, Vista, into code for the VIPER microprocessor using the
HOL system. Vista is a low-level language including arithmetic operators which
correspond directly to those available on the target architecture.

The compilation of PROLOG into WAM has been realized through a series of
refinement steps and has been mechanically verified using the KIV system [18].
A (small-step) ASM semantics is used for the languages.

5 Concluding Remarks

In this paper we have reported on an ongoing effort in constructing a correct
bootstrap compiler for a subset of Common Lisp into binary Transputer code.
We have focused on the formal, mechanically supported verification of the com-
piling specification of the first compilation phase. The verification of the second
phase, the translation from SIL to C"*, where s-expressions and their operators
are implemented in linear memory (classical data and operation refinement), is

11

also completed. Current work is concerned with the verification of the compiler
back-end, namely, the compilation from Ci"* into abstract Transputer assembler
code TASM. The standard control structures of C'™ must be implemented by
conditional and unconditional jumps, and the state space must be realized on
the concrete Transputer memory. Hence, this step is again a data refinement pro-
cess to be verified. The verification of the last compilation phase, where abstract
Transputer assembler is compiled into binary Transputer code (TC) has already
been accomplished following approved verification techniques [15]: starting from
a (low-level) base model of the Transputer, where programs are a part of the
memory, a series of abstraction levels is constructed allowing different views on
the Transputer’s behavior and the separate treatment of particular aspects.

We have demonstrated that the formal, mechanized verification of a non-
trivial compiler for a (nearly) realistic programming language into a real target
architecture is feasible with state-of-the-art prover technology.

Acknowledgements

The construction of the initial correct ComLisp compiler is joint work with the
project partners from the university of Kiel. We thank them for their constructive
collaboration and many discussions on this subject. The constructive criticism
and suggestions provided by the anonymous referees have been a great help to
improve this paper.

References

1. E. Borger and W. Schulte. Defining the Java Virtual Machine as Platform for
Provably Correct Java Compilation. In 23rd Int. Symposium on Mathematical
Foundations of Computer Science, volume 1450 of LNCS. Springer, 1998.

2. M. Broy. Experiences with Software Specification and Verification using LP, the
Larch Proof Assistant. Technical report, Digital Systems Research Center, 1992.

3. L.M. Chirica and D.F. Martin. Toward Compiler Implementation Correctness
Proofs. ACM Transactions on Programming Languages and Systems, 8(2):185—
214, April 1986.

4. Paul Curzon. The Verified Compilation of Vista Programs. Internal Report, Com-
puter Laboratory, University of Cambridge, January 1994.

5. Axel Dold. Formal Software Development using Generic Development Steps.
Logos-Verlag, Berlin, 2000. Dissertation, Universitat Ulm.

6. W. Goerigk, A. Dold, T. Gaul, G. Goos, A. Heberle, F. von Henke, U. Hoffmann,
H. Langmaack, H. Pfeifer, H. Ruess, and W. Zimmermann. Compiler Correctness
and Implementation Verification: The Verifix Approach. In Proceedings of the
Poster Session of CC’96 - International Conference on Compiler Construction.
ida, 1996. TR-Nr.: R-96-12.

7. Wolfgang Goerigk, Thilo Gaul, and Wolf Zimmermann. Correct Programs with-
out Proof? On Checker-Based Program Verification. In Proceedings ATOOLS’98
Workshop on “Tool Support for System Specification, Development, and Verifica-
tion”, Advances in Computing Science, Malente, 1998. Springer Verlag.

12

10.

11.

12.

13.

14.

15.

16.

17.

18.

Wolfgang Goerigk and H. Langmaack. Compiler Implementation Verification and
Trojan Horses. In D. Bainov, editor, Proc. of the 9th Int. Colloquium on Numerical
Analysis and Computer Sciences with Applications, Plovdiv, Bulgaria, 2000.

G. Goos and W. Zimmermann. Verification of Compilers. In B.Steffen E.-
R. Olderog, editor, Correct System Design, volume 1710 of LNCS, pages 201-230.
Springer-Verlag, 1999.

J. D. Guttman, L. G. Monk, J. D. Ramsdell, W. M. Farmer, and V. Swarup. A
Guide to VLISP, A Verified Programming Language Implementation. Technical
Report M92B091, The MITRE Corporation, Bedford, MA, September 1992.
Ulrich Hoffmann. Compiler Implementation Verification through Rigorous Syntac-
tical Code Inspection. PhD thesis, Technische Fakultdt der Christian-Albrechts-
Universitat zu Kiel, Kiel, 1998.

J.J. Joyce. A Verified Compiler for a Verified Microprocessor. Technical Report
167, University of Cambridge, New Museums Site, Pembroke Street, Cambridge,
CB2 3QG, England, March 1989.

J. McCarthy and J.A. Painter. Correctness of a Compiler for Arithmetical Ex-
pressions. In J.T. Schwartz, editor, Proceedings of a Symposium in Applied Math-
ematics, 19, Mathematical Aspects of Computer Science. American Mathematical
Society, 1967.

J S. Moore. A Mechanically Verified Language Implementation. Journal of Auto-
mated Reasoning, 5(4), 1989.

Markus Miiller-Olm. Modular Compiler Verification, volume 1283 of LNCS.
Springer Verlag, Berlin, Heidelberg, New York, 1997. PhD Thesis.

S. Owre, J. Rushby, N. Shankar, and F. von Henke. Formal Verification for Fault-
Tolerant Architectures: Prolegomena to the Design of PVS. IEEE Transactions
on Software Engineering, 21(2):107-125, February 1995.

W. Polak. Compiler Specification and Verification, volume 124 of LNCS. Springer-
Verlag, 1981.

Gerhard Schellhorn. Verifikation abstrakter Zustandsmaschinen. PhD thesis, Un-
versitdt Ulm, 1999.

A Semantics of ComLisp Forms

For a state s, we denote the input stream of s by Sinput, the output list of s by
Soutput, and the variable state of s by Sya, : Ident — SEzpr. In the following to
increase readability, we often write simply s instead of syar; s[z < v] denotes
the modification of s,., at z by v.

ComLisp operators denote partial functions on s-expressions which is ex-

pressed by two relations: relation vy : wop — ws for unary operators uop, and
v1,Us : bop — v for binary operators. For example, the first relation states that
the application of unary operator uop to s-expression v; is defined, terminates,
and yields s-expression vy as result.

— constants, variables

I'kFs:c—(cs) I'kts:xz— (s(x),s)

— assignment:

I'ks:e—(v,q)
I'kts:z:=e— (v,qx + v])

13

— sequential composition:

I'ts:e—(v,q)
't s: progn(e) — (v,q)

I't s: progn([]) = (NIL, s)

I'ks:er— (vi,q1)
't q : progn(es, ... en) = (v,9)

if n>2
't s:progn(er,...,en) = (v,q) e

— conditional:

I'ts:ep— (NILyq) ; TFqi:es = (v,q)
't s:if(er,e2,e3) = (v,q)

I'ts:ep— (vi,q1); T'Fquies = (v,q)
I'ks:if(er,e2,e3) = (v,q)

if v; # NIL
— while loop:

I'ts:c— (vi,q1) (v1 # NIL)
't q : body — (va,q2)
'+ o : while(c, body) — (v, q) I'ks:ec— (NILq)
I' + s : while(c, body) — (v, q) I' + s : while(c, body) — (NIL, q)

— call of user-defined functions:
[f(z1---2p) < bodyl € T' (n > 1)
I'-qi:e;— (vi,qi11) (1<i<n)
't quia[zr < v1y. 00,20 < vy body — (v, 1)
I'tq:eal(f,er,... en) = (v,r[21 < gui1(21), .-y Zn — qni1(Tn)])
[f() < bodyl € I
't s:body — (v,q)
I'ts:cal(f,() = (v,9)

— built-in unary and binary operators:

I'ks:er— (vi,q1)
I'ks:e— (v1,q) 'tk q :ex — (v2,q)
v uop — v V1,02 : bop > v
I'ts:uop(e) = (v,q) I't s:bop(er,es) = (v,q)

— let block:
I'kqizei — (vi,giv1) (1< <n)
b guii[zr < v1,.o @ < vp] i e = (v,r)
't q let(z) =eq,...,xn =epje) = (v,r[x1 < @1 (T1), .-, Tn qui1(2n)])

I'ks:e— (v,q)
I'ts:let([],e) = (v,q)

14

— listx operator:

I'kFs:er — (v1,q1)
I'ks:e—(v,q) 't g : listx(es, ... en) = (v2,q)
't s: listx(e) = (v,q) 't s: listx(er,...,e,) = (cons(vi,v2),q)

— case form:
I's:p—(v1i,q1) (v1# NIL)
I'q :e— (v,q)
'k s:cond(p < e) = (v,q)

I'ts:cond() = (NIL, s)

I'ts:py = (NIL,q,)
't g :cond(ps ¢ €2,...,0n < €n) = (v,q)

I'ts:cond(pr < e1,...,pn ¢ €n) = (v,9q)

— input/output:
I't s : read_char — (first(Sinput), S[Sinput := rest(Sinput)])

I't s : peek_char — (first(Sinput), S)

I'ts:e—(v,q) (v € char)
F '_ S print_char(e) - (Ua q[QOutput = QOutputHU])

B Semantics of SIL Statements

In the following, || denotes the length of list [, and (i) denotes the ith element of
I for (0 < < [s]). Siocal, Sglobal, Sbase denote the respective state components in
state s. To increase readability, we simply write s(7) for the relative local access
Slocal (Sbase + 1), and write s[i < v] for s[siocal(Sbase + 1) ¢ v].

— copy constant:
't s: copye(e,i) — sli + (]

— copy local:
't s:copy(i,j) — s[j « s(i)]

copy from global to local memory:

I't s : geopy(g,i) — s[i < Sgloba1(9)] if g < |sgloball

— copy from local to global memory:

I't s : copyg(i,g) = s[sglobai(g) < s(i)] if g < |sgioball
— conditional:

s(i) = NIL s(i) # NIL
I'kFs:f—q I'kFs:t—q
't s:itef(i,t, f) > q 't s:itef(i,t, f) = q

15

sequential composition:

I'kFs:ci —>q
I'kFs:c—q I'tq :sqea,...,cn) = ¢
I'ts:sq(c) = q I'ts:sqlery...,en) = q

ifn>2

— function call:

I~ S[sbaSe < Spbase + Z] : bOdy —q
't s feall(h,i) = q[qvase < Sbase]

if [1 + body] € T

— unary/binary operators:

s(i) : wop = v s(i),s(i + 1) : bop — v
't s:uwop(i) = s[i + v I't s: bop(i) — s[i « v]
— while loop:
I'ks:ec—r (r(i) # NIL)
I'kFr:b—t

I's:c—q(q(i) = NIL) 't t: while(i,e,b) — ¢
't s : while(i,e,b) — q 't s : while(i,e,b) — q

— input/output:

I't s : read_char(i) — s[i < first(Sinput), Sinput < reSt(Sinput)]

I't- s : peek_char(i) — s[i < first(Sinput)]
I'k s : print_char(i) — s[Soutput < Soutpus++s(i)] if s(i) € char
— listx

n>2
I'F s:listx(n,i) — s[i < cons(s(i),...cons(s(i +n—2),s(i+n—1))...)]

't s:listx(1,i) — s

C Compilation of ComLisp Forms

Ctorm(€,7, p, k) is defined inductively on e:

— Ctorm(abort,~y, p, k) = abort

- Cform(ca'% P, k) = COpyC(C, k)

B _ [copy(p(x),k) if p(x) is defined
Crorm (2,7, p, k) = {gcopy(v(m), k) otherwise

B _ _ [54(Crorm(e,v,p, k), copy(k, p(x))) if p(z) is defined
Corm(z :=€,7,p, k) = { $q(Crorm (e, 7, p, k), copyg(k,~v(x))) otherwise

= Crorm (progn([]),v, p, k) = copyc(NIL, k)

16

CfOrm(6177a j2 k)
— Ctorm(progn(ey, ... en),7y,p, k) = sq
Crorm (€n,7, ps k)
Crorm(€1,7, p, k) >
itef (k, Crorm (€2, 7, p, k), Crorm (€3, 7, p, k))

— Crorm (while(eq, €2),7, p, k) = while(k, Ctorm(€1,7, p, k), Corm (€2, 7, p, k))
- Cform(caf”(fa ())777 [2 k) = fca'll(fa k)

- Cform(if(ela62763)777p7k) = 5q <

CfOrm(ela Y5 P k)

= Cr rm(ca‘ll(faela---aen)77ap7k):Sq :
° Cform(ena'}/apak‘l'n_]-)

feall(f, k)

- Cform(uop(e)a'% P, k) = SQ(CfOI‘m(ev Y5 P k)v uop(k‘))
Cform(elafyapa k)

- Cform(bop(ela 62)7'%,0’ k/') = sq Cform(e277apa k+ 1)
bop (k)

- Cform(let(()a 6), Y5 Ps k) = Cform(ea Y5 Ps k)

— Crorm(let(z1 = €1,...,xn = en3e),7,p, k) =

Cform(ela'y’pa k)

54 Cform(en;’}/, Py (k +n— 1))
Cform(ea77p[x1 — ka eIy (k +n— 1)],k + n)
copy(k +n, k)
Cform(ela77p7k)

— Crorm (listx(e1,...,en),v,p, k) = sq | -
f ((') 7 p) q Cform(ena7apak+n_1)
listx(n, k)
- Cform(cond()7 Y P, k) = COpyC(N[L7 k)
- Cform(cond(pl —> €ly.-.,Pn — 6n),’)/,p, k) =

SQ(Cform(pla%P: k)a

itef(kacfbrm(ela Y, P, k)a CfOrm(cond(p2 —> €2,...,Pn — en)a Y, P k)))
— Ctorm(read_char,~, p, k) = read_char (k)
— Ctorm(peek_char, v, p, k) = peek_char (k)

Some remarks to this definition:

— for sequences progn(ei,...,e,) all values are stored at the same relative
position in the current stack frame since the value of a sequence is the value
of its rightmost subexpression e,. The intermediate values do not have to
be preserved.

— for the compilation of a let-form, new variable bindings are allocated in the
current stack frame beginning at relative position k. The body is evaluated
to return its value at k + n where n is the number of new local bindings. A
final copy instruction moves the result value to the desired location k.

— a cond-form is compiled into a nested conditional.

17

