
Formal Analysis for Dependability Properties:
the Time-Triggered Architecture Example

Holger Pfeifer, Friedrich v. Henke
Abteilung Künstliche Intelligenz

Fakultät für Informatik
Universität Ulm, D-89069 Ulm

Germany

Appears in:Proc. of the 8th IEEE Int. Conf. on Emerging Technologies and Factory Automation, ETFA 2001, pp. 343–352, Oct. 2001, IEEE.
c© 2001 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes

or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must
be obtained from the IEEE.

Abstract – This paper describes the mechanized formal veri-
fication we have performed on some of the crucial algorithms
used in the Time-Triggered Architecture (TTA) for safety-
critical distributed control. We outline the approach taken to
formally analyse the clock synchronization algorithm and the
group membership service of TTA, summarize our experience
and describe remaining challenges.

I. INTRODUCTION

In recent years the use of computing elements to control
technical systems has become more and more common.
Suchembedded systemsoften provide increased functional-
ity and flexibility in comparison with the technical control
systems they are replacing. In safety-critical applications,
such as the control of processing plants, automotive con-
trol or avionics, the dependability of the computing element
becomes a prime issue since failure may have catastrophic
consequences. Embedded systems of this kind typically in-
volve distributed, real-time computations and requirements
of fault tolerance; this makes their analysis and the verifi-
cation that they behave as required inherently difficult. To
attain the desired – or required – level of confidence in cor-
rect behaviour, mere testing is usually insufficient; in fact, it
has been argued [2,15] that the kind of reliability requiredfor
highly safety-critical applications cannot be achieved with-
out a careful formal analysis of the mechanisms and algo-
rithms involved.

The formal analysis of a system may be viewed as typi-
cally involving the following steps:

1. Construction of a precise,formal descriptionof the
mechanisms and algorithms. The description focuses
on essential aspects and abstracts from inessential de-
tails. Developing such a formal model in itself often
has the benefit of clarifying issues left vague or open
or omitted altogether in more informal descriptions
that serve as the starting point.

The formal model is intended to be processed by ma-
chine; hence it is expressed in the formal language of
the verification tool to be employed in the next step.
Similarly, the properties to be verified must be ex-
pressed in a related formal language.

2. Verificationthat the system, as represented by the for-

mal model, satisfies the stated requirements. Among
verification techniques, we may distinguish two
classes: model checking and theorem proving.Model
checking[3] involves modeling the system as a fi-
nite state transition system and expressing the de-
sired properties as formulas in a temporal logic.
Model checking is the approach of choice for many
embedded systems that fit the underlying modeling
paradigm; it is popular because once a model has been
constructed the actual analysis process is “automatic”,
which contributed to widespread adoption of the ap-
proach by industry. Furthermore, the approach links
up well with common design methods, such as UML,
that employ some form of state charts; tools for map-
ping state charts into suitable input for model checkers
are under development.

However, the type of analysis we will be discussing in
the following section cannot be carried out with model
checking as it requires, for instance, arithmetic com-
putations for time bounds. This kind of problems can
be dealt with by theorem proving: the relevant sys-
tem aspects are modeled as theories in (first- or higher-
order) predicate logic, and the required properties are
derived as theorems by an interactive process of de-
duction. The two approaches to formal analysis and
verification should be regarded as complementary.

In most realistic situations, an iteration of the two steps
(modeling and verification) will be required to get both the
formal model and the formal arguments supporting the veri-
fication right. Here, the support by a computer-based tool is
crucial: the computer is much more reliable in handling the
typically large amount of uninteresting details. Furthermore,
a machine-supported verification can be repeated, adapted to
small system changes and may eventually serve as support-
ing evidence in a certification of safety-critical components.
In this paper we discuss the formal analysis of safety-critical
properties of one particular application, the Time-Triggered
Architecture, that we have performed using the specification
and verification system PVS [12].

The remainder of the paper is organized as follows: after
giving a brief overview of PVS in the next section, Sect. III.
describes the formal analysis of two important services of

1

the Time-Triggered Architecture, namely the clock synchro-
nization algorithm and the group membership protocol. Fi-
nally, we summarize our experience in the last section and
give directions for future work.

II. A BRIEF DESCRIPTION OF PVS

The PVS system combines an expressive specification lan-
guage with an interactive proof checker and has been used
for reasoning in domains as diverse as microprocessor ver-
ification, protocol verification, and algorithms and architec-
tures concerning fault-tolerance; see [12] for an overview.
This section provides a brief description of the PVS language
and prover, and introduces some of the concepts used in this
paper; a more thorough introduction is given in [4].

The PVS specification language builds on classical typed
higher-order logic with the usual base types,bool, nat,
integer, real, among others, and the function type con-
structor[A -> B]. The type system of PVS is augmented
with dependent typesandabstract data types.

In PVS, predicates over some typeA are, as usual,
boolean-valued functions onA, andpred[A] is an abbre-
viation for the function type[A -> bool]. A distinc-
tive feature of the PVS specification language arepredicate
subtypes: the subtype{x:A | P(x)} consists of exactly
those elements of typeA satisfying predicateP. One can use
the expression(P) to abbreviate the subtype induced by the
predicateP. Since sets can be described by their characteris-
tic predicates, the expression{x:A | P(x)} can also be
used to denote the set of elements satisfyingP, and conse-
quentlyset[A] is just a notational variant ofpred[A].
Hence,x:(P) also means thatx is an element of thesetP.

Predicate subtypes are used, for instance, for explicitly
constraining domains and ranges of operations in a speci-
fication, and to further qualify universally quantified vari-
ables in lemmas and theorems. As an example, the (uninter-
preted) predicatenonfaulty?(t) describes whether or
not a processorp is non-faulty at a given timet. The the-
oremagreement expresses the fact that at all times, all
non-faulty processors agree on their membership views.

agreement : THEOREM
FORALL (p,q:(nonfaulty?(t))):
membership(t,p) = membership(t,q)

The theorem could also be stated without predicate sub-
types using an implication with the non-faultiness constraint
for p andq as the hypothesis part. However, the predicate
subtype variant is preferable in many cases as it can help au-
tomating proofs that apply the agreement theorem: a crucial
aspect in proof automation is to find suitable instances of
variables. The annotation of type information to quantified
variables enables the PVS prover to restrict the search for
adequate values forp andq to those for which the predicate
nonfaulty?(t) is known to hold.

In general, type-checking with predicate subtypes is un-
decidable; the type-checker generates proof obligations,so-
called type correctness conditions(TCCs) in cases where
type conflicts cannot immediately be resolved. The use of

predicate subtypes frequently gives rise to TCCs: for exam-
ple, if a function with a domain type{x:A | P(x)} is
applied to an elementa of typeA a subtype TCCis gener-
ated that requires a proof ofP(a). A large number of TCCs
are discharged by specialized proof strategies, and a PVS ex-
pression is not considered to be fully type-checked until all
generated TCCs have been proved.

PVS specifications are packaged astheoriesthat can be
parametric in types and constants. A built-inpreludeand
loadablelibrariesprovide standard specifications and proved
facts for a large number of theories. As an example, the spec-
ification below shows the theorysynchronous system
that serves as a foundation to describe a distributed algorithm
as a synchronous system.

synchronous_system
[(IMPORTING types)
State : TYPE+,
Message : TYPE+,
InitState : TYPE FROM State,
initialstate : [Proc -> InitState],
sender : [Slot -> Proc],
trans : [Proc,Message ->

[State->State]],
msg : [Proc,Proc,Slot->Message]

] : THEORY

BEGIN

slot : VAR Slot
p : VAR Proc

run(slot)(p) : RECURSIVE State =
IF slot = 0 THEN initialstate(p)
ELSE

LET q = sender(slot-1),
s = run(slot - 1)

IN
trans(p,msg(p,q,slot-1))(s(p))

ENDIF
MEASURE slot

END synchronous_system

The theory defines a recursive functionrun that computes
the state of a processorp in a given Slotslot. It is based
on a state transition functiontrans which is intended to
model the behaviour of a processor depending on the current
states(p) and the messagep has received, as described
by the functionmsg. Note that these functions are param-
eters of the theory. Thus the theory captures the essence of
the synchronous behaviour of a systems and can be applied
to model a given synchronous algorithm, such as the group
membership algorithm as described in the next section, by
instantiating the parameters with concrete values.

A theory can use the definitions and theorems of another
theory by importing it. Parameterized theories can be im-
ported in either of two ways: first, one instantiates the theory
by providing actual values for the formal parameters, or, sec-
ond, the theory is imported without any instantiation. In the
latter case all possible instantiations of the imported theory

2

may be used; in the case of ambiguities, actual values can be
provided to any used definition if necessary.

In the sequel, we do not always present the complete the-
ory declarations but only the most important definitions and
theorems. We do include, however, parts of the context of
the definitions such as theory parameters or variable decla-
rations ascomments; these are marked with the symbol% at
the beginning of a line.

For instance, in the following axiomatization of the maxi-
mum drift of a processor’s clock,rho is a real-valued theory
parameter,C is a variable ranging over the set of clocks, and
t1 andt2 are variables of typerealtime. To increase
the readability of PVS specifications we liberally modify the
syntax by replacing some ASCII codings with a more famil-
iar mathematical notation.

% ρ : {x:real | 0 ≤ x ∧ x < 1}
% C : VAR Clock
% t1,t2 : VAR realtime

max_drift : AXIOM
|C(t1)-C(t2) - (t1-t2)| ≤ ρ

2
*|t1-t2|

The PVS language supports many features for making
specifications more readable. For example, function and op-
erator names can be overloaded. Moreover, variables, such
asC, t1 andt2 in the axiommax drift above, can occur
free in formulae and are implicitly universally quantified.

Finally, we sketch some characteristics of the PVS prover.
Proofs in PVS are presented in a sequent calculus. The
atomic commands of the PVS prover component include
induction, quantifier instantiation, automatic conditional
rewriting, simplification using arithmetic and equality de-
cision procedures and type information, and propositional
simplification using binary decision diagrams. PVS has an
LCF-like strategy language for combining inference steps
into more powerful proof strategies. The strategyGRIND,
for example, combines rewriting with propositional simplifi-
cation using BDDs and decision procedures. The most com-
prehensive strategies manage to generate proofs fully auto-
matically.

III. FORMAL ANALYSIS OF TTA

The Time-Triggered Architecture(TTA) provides an inte-
grated set of services for the implementation of depend-
able distributed real-time systems [6, 7]. It has been devel-
oped by the University of Vienna over the past twenty years
and is now commercially promoted by TTTech. TTA is in-
tended for devices controlling safety-critical electronic sys-
tems without mechanical backup, so-called “by-wire” sys-
tems such as those for automotive steering, braking, and sus-
pension control [18]. TTA has been evaluated in two recent
European projects – “Time-Triggered Architecture” (Esprit
OMI program) and “X-by-Wire” (Brite EuRam program) –
that have applied TTA to several prototype applications, in-
cluding brake-by-wire and steer-by-wire. Recently, Audi
and Honeywell have decided to utilize TTA as the basic plat-
form for new safety-critical automotive and avionics appli-
cations, respectively; other car manufacturers are adopting

the time-triggered paradigm with somewhat different archi-
tectures.

The Time-Triggered Protocol (TTP) [8] is the core of
the communication level of TTA. In TTP, several distinct
services, such as clock synchronization, group membership
or redundancy management, are tightly integrated. For in-
stance, there are no distinct phases for exchanging messages
for clock synchronization or message acknowledgement; in-
stead, those services are realized as side effects of ordinary,
scheduled message exchanges. This tight integration makes
it particularly difficult to carry out a formal analysis. It is
necessary to first isolate the core algorithms that provide
these services from the integrated protocol by abstracting
from features that are irrelevant to the algorithm under study.
Furthermore, the existing description of TTP [22] is “struc-
tured English” that has to undergo a process of formaliza-
tion to obtain a formal specification. The resulting formal
model can then be subjected to a rigorous mathematical anal-
ysis. We have examined two of the most important services
of TTP, clock synchronization and group membership, and
used the PVS verification system [12] to formally analyse
their properties.

A. Ground model of TTA

The distinguishing characteristic of time-triggered systems
is that all system activities are initiated by the progress of
time. From an abstract point of view, the TTP protocol op-
erates cyclically. Each node is supplied with a clock and
a static schedule, themessage descriptor list (MEDL). The
schedule determines when certain actions have to be per-
formed, in particular when messages of a certain type are
to be sent by a particular node. The message descriptor list
contains an entry which determines at which clock time a
particular slot begins.

The MEDL contains global information common to all
nodes in the cluster about the communication structure, such
as the duration of a given slot or the identity of the sending
node. As the intended system behaviour is thus known to
all nodes, important information can be obtained indirectly
from the messages. For example, explicit acknowledgments
need not be sent since a receiving node can determine that
a message is missing immediately after the anticipated ar-
rival time has passed. Similarly, the successful receptionof
a message is a sufficient condition for the sending node to be
considered active.

The nodes communicate via a replicated broadcast bus.
Access to this bus is determined by a time-division multi-
ple access (TDMA) schema which is pre-compiled into the
schedule. Every node thus owns certainslots, in which it is
allowed to send messages on the bus. A complete cycle dur-
ing which every node has had access to the bus once is called
a TDMA round. After a TDMA round is completed, the
same temporal access pattern is repeated again. The length
of the message descriptor list reflects the number of different
TDMA rounds and determines the duration of the so-called
cluster cyclewhich, as the name suggests, is repeated over
and over again.

3

In each slot, one of the nodes of a cluster sends a frame
on each of the two channels of the bus, whereas the other
nodes listen on the bus for incoming messages for a certain
period of time. According to certain aspects of the received
message, such as content, arrival time, etc., each node then
changes its internal state at some point in time before the
next slot begins. Each slot is conceptually divided into two
phases: during the first, thecommunication phase, the cur-
rent sender is broadcasting a message via the bus; in the sec-
ond, in thecomputation phase, each node changes its in-
ternal state depending on the current state and the received
message.

In order to describe the state of a node at particular clock
times we introduce a functionsched(r) which denotes the
clock time at which a given slotr starts. The schedule is
not directly available in TTP, but there is an entry for the
duration of each slotr in the message descriptor list; this
is formally captured by the functionduration. Given a clock
time constantsystemstart timewhich is assumed to initially
show up on every node’s local clock, it is a simple matter to
defineschedby recursively summing up the duration of the
slots:

sched(r:Slot) : RECURSIVE Clocktime =
IF r = 0 THEN system_start_time
ELSE sched(r-1) + duration(r-1)

ENDIF MEASURE r

The state of a nodep at a certain clock timeT is given
by a functionstate. Let commdur(r) denote the duration of
the communication phase of a slotr, during which a node
p waits for a message to arrive. Within the communication
phase the internal state ofp remains unchanged:

% r: VAR Slot; T: VAR Clocktime;
% p: VAR Proc

communication_phase_def : AXIOM
sched(r)≤T ∧ T<sched(r)+comm_dur(r) ⇒
state(T)(p) = state(sched(r))(p)

At some point during the computation phase nodep is
changing its internal state depending on its current state and
the message it has received. This behaviour is described by
a state transition functiontranssuch thattrans(p, m)(s) de-
notes the next state of a nodep that has received messagem
in states. The state ofp is unspecified during the computa-
tion phase; all that is said is that by the beginning of the next
slotsched(r +1) nodep has changed into a new state. By the
start of the first slot,p is in its initial state. Here, the function
msg(p, T) models the messagep has received at clock time
T.

state_transition_def : AXIOM
state(sched(r))(p) =
IF r = 0 THEN initialstate(p)
ELSE trans(p,msg(p)(T))(state(T)(p))

WHERE T = sched(r-1)+comm_dur(r-1)
ENDIF

So far we have described the general behaviour of a node
in a time-triggered system. What remains is to model the
state transitions that a node performs in each slot, i. e. the
state transition functiontrans. This function captures, for
instance, the algorithms for clock synchronization and group
membership, which are described in the following sections.

B. Clock synchronization

Distributed dependable real-time systems crucially depend
on fault-tolerant clock synchronization. This is particularly
true in distributed architectures like TTA in which proces-
sors (or nodes) perform their actions according to a pre-
determined, static schedule. Obviously, clock synchroniza-
tion is a central element of a time-triggered architecture for
it to function properly: it is essential that the clocks of all
processes be kept sufficiently close together and that the syn-
chronization be able to tolerate faults to a limited extent.

Clock synchronization algorithms have been a matter of
particular interest for formal analysis since years. Schnei-
der [19] has observed that the correctness arguments of so-
called averaging algorithmsare quite similar. This class
of algorithms is described using aconvergence function.
Schneider stated several rather general assumptions on the
convergence function and showed that they are sufficient
to prove the correctness of the algorithm. Subsequently,
Shankar used EDHM, the predecessor to PVS, to mechan-
ically verify Schneider’s proof [20, 21]. Miner [11] signifi-
cantly improved Shankar’s verification (by weakening its as-
sumptions) and recast it in PVS.

For the actual verification of the clock synchronization al-
gorithm of TTA, major emphasis has been given to making
use of the cumulative development described above. This led
to splitting up the proof into a generic part in which the syn-
chronization property is proved based on several abstract as-
sumptions, and a TTP-specific part in which the specification
of the algorithm is shown to satisfy those assumptions. The
specification and verification system PVS which has been
used as mechanical proof assistant directly supports such an
approach: parameters of theories can be constrained to sat-
isfy certain assumptions and when using concrete instances
of theorems occurring in such theories PVS serves as a book
keeper that requires proofs for the concrete values to satisfy
all the assumptions.

The TTA algorithm belongs to the class of averaging algo-
rithms and is based on a variant [9] of the Lundelius-Lynch
algorithm [10]. However, for optimization reasons it con-
tains several details that complicate the direct application of
existing work. For example, processors do not have access
to the clock values of all other processors, but only to some
of them (a possibly different set at each processor) because
time difference values are stored in a queue of length four.
Thus, in order to verify the TTA algorithm by showing it to
be an instance of the previously verified generic derivations,
those derivations had to be generalized to accommodate its
peculiarities [13].

A processor’s clock, more precisely itsphysical clock, is
typically implemented by a discrete counter. The counter
is incremented periodically, triggered by a crystal oscillator.

4

As these oscillators do not resonate with a perfectly constant
frequency, the clocks drift apart from real time. It is the task
of clock synchronization algorithms to repeatedly compute
an adjustment of a node’s physical clock in order to keep
it in agreement with the other nodes’ clocks. The adjusted
physical clock is what is used by a node during operation
and it is commonly called a node’slocal clock.

The general way clock synchronization algorithms oper-
ate is to gather estimates of the readings of other nodes’
clocks to calculate an adjustment for the local clock. Since,
in TTP, every node knows beforehand at which time cer-
tain messages will be sent, the difference between the time a
message is expected to be received by a node and the actual
arrival time can be used to calculate the deviation between
the sender’s and the receiver’s clock. In this way, no spe-
cial synchronization messages are needed in TTP. The time
measurements are stored on a push-down stack of depth four
with the most recent one on top. Thus, older values get dis-
carded after a while. In general, there are more than four
nodes in a cluster and hence not every node contributes to
the calculation of a new correction term for a node’s local
clock. This approach is feasible under the hypothesis that at
most one of the values on the stack may be faulty in some
sense, i. e. does not represent a proper clock reading.

TTP allows messages from nodes with clocks of minor
quality to be excluded from the calculation of adjustments in
order to improve the precision of the synchronization. Thisis
accomplished by selecting the messages according to aSYF
flag (for synchronization frame) in the message descriptor
list. If this flag is not set in the MEDL for the current slot,
the obtained time difference value is not stored on the stack.

In some slots, after the communication, the adjustment
term is calculated from the time values on the stack. The
slots in which this is to occur are marked in the message
descriptor list by a special flag namedCS(for clock synchro-
nization). TTP uses the Fault-Tolerant Average Algorithm
(FTA) [9] to calculate the adjustment: The largest and the
smallest value are discarded and the average of the remain-
ing two is used as the new adjustment term.

In our formalization the physical clock of a nodep is mod-
eled by a functionPCp which maps real time to clock time;
thus,PCp(t) denotes the reading ofp’s physical clock at real
time t. The reading of the local clock of a nodep in some
given states at real timet is obtained by adding the adjust-
mentadj(s) to the reading of the node’s physical clockPC.

% s : VAR State

adj(s) : Clocktime =
current_corr(s) + total_corr(s)

LC(p,s,t) : Clocktime =
PCp(t) + adj(s)

Here, current corr and total corr are two registers that
contain the value of the most recently calculated clock ad-
justment and the sum of all adjustments calculated so far,
respectively. These registers are modeled as parts of the in-
ternal state of a node, as well as, e. g., the stack of time
difference values.

A clock synchronization protocol implements avirtual
clock by repeatedly adjusting a node’s physical clock. The
task of the synchronization algorithm is to bound theskew,
i. e. the absolute difference between the virtual clock read-
ings of any two (non-faulty) nodesp andq, by a small value
δ at any timet:

VC_agreement : THEOREM
|VCp(t) - VCq(t)| ≤ δ

The proof of this property is generally accomplished
through mathematical induction on the number of synchro-
nization intervals. The induction hypothesis states that at
the beginning of each interval, the skew between any two
clocks is bounded by some valueδS < δ. Then it is shown
that during the next interval, when the clock readings drift
apart, the skew does not exceedδ. Finally one has to prove
that the application of the convergence function brings the
clocks together again withinδS. The latter step is the harder
one, since the former rather imposes certain constraints on
the maximum precision that can be achieved given concrete
values for the drift rateρ of the clocks and the length of a
synchronization interval.

To facilitate the induction proof several additional con-
cepts and notations have proven useful, in particular the ab-
stract notion ofinterval clocks. Instead of repeatedly ap-
plying adjustments to a local clock one could also think of
a node starting a new clock each time the synchronization
algorithm has been executed. These clocks are indexed by
the number of the synchronization intervali and are denoted
ICi

p(t). The value ofp’s interval clock in theith synchroniza-
tion interval is obtained by adding theith adjustment to the
reading ofp’s physical clock:

% i: VAR Round

ICi
p(t) : Clocktime = PCp(t) + adjip

These interval clocks are then put together to form the
node’s virtual clock: in theith synchronization intervalp’s
virtual clock corresponds to theith interval clock:

VC_defn : AXIOM
tip ≤ t ∧ t < ti+1

p ⇒ VCp(t) = ICi
p(t)

Here,tip denotes the start time of theith synchronization
interval. The way the adjustments to a node’s physical clock
are computed is abstractly captured by the concept of acon-
vergence function Cfn. The convergence function takes an
arrayΘi

p of readings of the clocks of some or all other nodes
to calculate a corrected clock reading forp. The valueΘi

p(q)

is p’s estimate ofq’s clock reading at timetip. The adjust-
ment top’s physical clock is then given by the difference of
its physical clock and the result of the convergence function;
initially it is taken to be0:

adjip : Clocktime =
IF i = 0 THEN 0 ELSE Cfn(p, Θi

p) − PCp(tip)
ENDIF

5

Schneider [19] has stated several conditions that are nec-
essary to complete the proof of the bounded skew property.
Some of them, e. g. those concerning the interrelationships
among the various quantities introduced, are of minor im-
portance in that they can be derived more easily for concrete
algorithms. The most important of the conditions are con-
cerned with the behaviour of the convergence function that
a clock synchronization algorithm exploits. The usefulness
of these conditions is for the most part due to its isolation of
purely mathematical properties from other concepts such as,
e. g., failed nodes.

While the formal model of TTP is describing the clock
synchronization algorithm on the level of slots, the generic
verification is based on the notation of synchronization inter-
vals. In order to exploit the generic proof of clock synchro-
nization for the TTP algorithm the concrete model of TTP
has to be abstracted to the level of the concepts used in the
generic model. This means in particular that the definition of
the local clocks and the calculation of the adjustments needs
to be in terms of interval clocks and a convergence function.

The formal verification of Schneider’s abstract properties
in PVS turned out to be quite challenging, especially because
TTP’s special feature of discarding correct messages from
some nodes according to theSYFflag had to be taken into
account, too. This required some subtle reasoning about the
cardinality of various sets of slot numbers.

C. Group membership

Group membership is another central service of TTP as it
provides to all non-faulty processors a consistent view of
which nodes are operational and which are not at any given
moment. Distributed fault-tolerant algorithms are inherently
difficult to reason about, since careful attention has to be
drawn to faults and failed components. In order to make
formal verification feasible it is essential that the various
aspects of an algorithm are specified and verified at appro-
priate levels of abstraction that capture the essence of the
property under study and abstract from irrelevant details.
In contrast to the clock synchronization service described
above, the group membership algorithm [1] is modeled as
a synchronous system – see the corresponding PVS theory
in Sect. II. It abstracts from the clock synchronization ser-
vice that justifies the synchrony assumption. Its verification
is significantly more difficult than other fault-tolerant algo-
rithms because information about the failure of processors
is not available immediately but only with a certain delay.
Therefore one has to be very careful when reasoning about
possibly faulty components.

Every processorp maintains a setmemt
p—the membership

set of processorp—that contains all processors thatp con-
siders operational at timet. In slot t the processor with label
t mod n is the broadcaster. In addition to the message data,
the broadcaster sends those parts of its internal state thatare
critical for the protocol to work properly. More precisely,a
CRC checksum that is calculated over the message data and
the critical state information, which includes the member-
ship set, is appended to the message. For the analysis of the
group membership algorithm it is sufficient to assume that a

message contains the broadcaster’s local viewmemt
b on the

membership.

As the order of messages is statically defined there is no
need for special membership messages. Instead, a success-
fully received message is interpreted as a life-sign of the
sender and a receiver will maintain the broadcaster in its lo-
cal membership set if it agrees with the broadcaster’s critical
state information and hence with its membership set. Con-
versely, if a processor does not receive an expected message
or does not agree with the broadcaster’s view on the mem-
bership, the broadcaster will be considered faulty and the
receiver removes it from its membership set.

The group membership algorithm is designed to operate
in the presence of faults. A processor can besend-faulty,
in which case it will fail to broadcast in its next slot, while
a receive-faultyprocessor will not succeed in receiving the
message of the next non-faulty processor. This restricted
fault model is appropriate since other protocol services of
TTP ensure that other fault modes manifest themselves as
either send or receive faults by enforcing a faulty processor
to fail silently. For example, the bus guardian, a special hard-
ware element of the TTP controller, prevents a processor that
has lost synchrony of its clock from accessing the broadcast
bus outside its designated slots. We useNF t to denote the
set of non-faulty processors at timet, andp 6∈ NF t indicates
thatp is either send-faulty or receive-faulty at timet.

The task of a group membership algorithm is to diagnose
the failure of a faulty processor and to inform all non-faulty
processors about it. In order to cause a broadcaster to realize
that it is send-faulty the TTP group membership algorithm
uses an (implicit) acknowledgment mechanism. A proces-
sorp that is the broadcaster in slott checks whether the next
non-faulty broadcaster, sayq, that sends in the next slot has
the same membership set asq and in particular containsp in
its membership set. If so,p can conclude that its broadcast
was successful. Otherwise, eitherp failed to broadcast orq
is receive-faulty. To resolve this ambiguityp waits for the
next non-faulty broadcaster followingq, sayr. If r contains
p in its membership set but notq while having the same view
considering other processors, the original message ofp was
sent correctly andq failed. If p is not inr ’s membership set,
but q is (and the rest of the membership sets ofp andr are
the same), thenq andr agree thatp failed to send. In this
case,p will remove itself from its own membership set and
fail silently.

A similar mechanism could be used for diagnosing receive
faults: if a processorp does not receive an expected message
it could check whether the next non-faulty broadcaster main-
tained the original sender in its membership set in which case
p must realize that it has suffered from a receive fault. How-
ever, TTP employs a slightly different mechanism that is also
used to avoid the formation of disjoint cliques at the same
time. A clique is a group of processors where agreement
on the current state is reached only within the group. Each
processorp maintains two counters,acct

p andrejt
p, which

keep track of how many messagesp hasaccepted(success-
fully received) andrejected, respectively. A processorp will
increment the counterrejt

p if p does not agree with the

6

broadcaster’s view on the membership. Inp’s next broad-
cast slot it checks whether it has accepted more messages in
the last round than it has rejected. If so,p resets the counters
and broadcasts; the other case indicates thatp suffered from
a receive fault and thereforep removes itself from the mem-
bership and by not broadcasting its messagep can inform the
other processors about its failure.

The group membership algorithm has to fulfill the follow-
ing major correctness requirements:

Validity: At all times, non-faulty processors should have
all and only the non-faulty processors in their membership
sets, while faulty processors should have removed them-
selves from their sets. This requirement is, however, im-
possible to satisfy as it may take some time to diagnose the
faultiness of a processor. We therefore must allow a single
faulty processor to be included in the membership sets of
non-faulty processors, while faulty processors may have (a
subset of) the non-faulty processors plus themselves in their
sets.

validity : THEOREM
(∀(p:(NF t)):memt

p = NF t ∨

∃x: x 6∈ NF t ∧memt
p = NF t ∪{x})

∧∀p: p 6∈ NF t ⇒ (p 6∈ memt
p ∨ memt

p ⊆ NF t ∪{p})

Agreement: All non-faulty processors should have the
same membership sets.

agreement : THEOREM
∀(p,q:(NF t)):memt

p = memt
q

The requirementsvalidity andagreementexpress proper-
ties that should hold for all reachable states of the system.
Such invariants, orsafety-properties, are usually verified by
some form of induction proof. In order to establish the in-
duction step, however, one generally has to strengthen the
invariant because often enough the property of interest is not
inductive. Usually repeated strengthening is necessary be-
fore an inductive invariant is found and although some of the
strengthening can be generated automatically this becomes
the main task when performing a mechanized verification.
Experience with a membership algorithm similar to that of
TTP [5] showed that this verification strategy is infeasible
for our purpose.

Therefore, we take a different approach proposed by
J. Rushby: instead of expressing the correctness property
as one large conjunction, we use a set of disjunctively con-
nected formulas that can be seen as the description of an ab-
stract state machine [17]. Each disjunct contains the desired
property and represents a particular configuration the mem-
bership algorithm can reach. To establish the correctness of
the algorithm one has to show that at every point in time the
system is in one of these configurations.

Thus, the main part of the proof can be represented as a
configuration diagram. The diagram for the group member-
ship algorithm is shown in Fig. 1. The nodes of the diagram
represent theconfigurations, and arrows denote transitions
from one configuration to others and are labeled with tran-
sition conditions. Configurations are parameterized by the

time t and describe the global state the system is in. Configu-
rations can have additional parameters such as processors (x,
y, . . .) that behave differently from the rest of system, or ad-
ditional entities necessary to describe the system state. The
labels of transitions express the preconditions for the system
to move from one configuration to another. For example,
the labelb = x from the transition fromlatent to excluded
means that the system takes this transition ifx is the cur-
rent broadcaster, while a transition with the labeldead6= x is
taken whenever the current broadcaster is already faulty but
different fromx. The transition conditions leading from one
configuration need not necessarily be disjoint, but one has to
show that they are complete in the sense that their disjunc-
tion is true.

The diagram can be developed step-by-step. One usually
starts by defining some initial configuration or the one in
which the system stays under normal circumstances, i. e. as
long as no fault occurs. For TTP, this central configuration
is the one labeledstable. By symbolically evaluating the al-
gorithm in the current configuration and by splitting on pos-
sible cases we generate some new configurations, and the
transitions from the original configuration are labeled with
the appropriate conditions. By repeatedly applying this con-
struction on each transition and each new configuration one
aims to develop a closed diagram. This approach can be seen
as a symbolic forward exploration of the state space of the
membership algorithm. To prove safety properties likeva-
lidity or agreementone then has to demonstrate that every
configuration implies the desired property and that the dis-
junction of the transition conditions leading from any one
configuration evaluates to true; this ensures that there is no
other configuration the system can possibly get into.

For the TTP group membership algorithm, we have for-
mally proved both the safety propertiesvalidity andagree-
ment mentioned above and a liveness property that states
that a faulty processor will eventually remove itself from the
membership. All definitions and proofs have been developed
and mechanically checked with PVS [14].

D. Integration of services

As mentioned above, we have analysed the algorithms for
clock synchronization and group membership separately
from each other. While these analyses are valuable in their
own right, it is the integrated protocol that is implemented
in hardware and run in a TTP controller chip. Hence, the
question arises whether the results of the isolated analyses
still hold for the integration. In fact, a closer look at the
formal models reveals that clock synchronization and group
membership depend on each other. On the one hand, there
is a hierarchical dependency in our treatment: the verifica-
tion of the group membership algorithm is carried out at the
level of a synchronous system, where one assumes that all
processors are perfectly synchronized and run in lock-step.
This assumption abstracts from a synchronization mecha-
nism and therefore the proofs for group membership depend
on the correctness of the clock synchronization service. On
the other hand, the clock synchronization algorithm of TTP
differs from many standard algorithms in several ways. Most

7

pending−
selfdiag−

no−1st−succ
(t,x,z,S)

dead x

good missed

good disagree

stable(t,z)

dead good

no new fault
occurs

good disagree

good missedgood disagree

pending−
selfdiag

(t,x,y,z,S)

dead

excluded−
doubt−

no−2nd−succ
(t,x,xs,z,S)

dead good disagree

good missed

good disagree

good missed

good no ack

dead x

missed−rcv
(t,x,z,S)

excluded−
z−doubt
(t,z,x,S)

dead

latent(t,x,z)
excluded−

doubt
(t,x,xs,y,z,S)

missed−rcv−
x−not−ack

(t,x,z,S)

good no ack

good no ack

excluded
(t,z,x,S)

dead

dead x

self diagnose
b = x

b x

zx

b x

x = z

b = x

good missed

good

good

no message

new

dead

good

b = x

dead

good no ack

self diagnose

good no ack

b = x
self diagnose

b = x

b = x

b = x

b = x

no message

good

good missed

good missed

fault
occurs

message rejected

message no ack

Fig. 1: Configuration diagram for the TTP group membership algorithm.

importantly, the way a processor obtains information about
the clock readings of other processors is totally integrated
into the exchange of data messages. Since a processor only
accepts messages from processors that it considers to belong
to the same membership set, clock synchronization actually
depends also on group membership. These apparently cir-
cular dependencies need to be broken by reorganizing the
proofs so that the results previously obtained by analysing
the individual services in isolation can also be established
for the integrated services. In the following, we sketch the
major guidelines how this can be achieved.

The first step is to split up the analysis into a series of suc-
cessive intervals, corresponding to the synchronization in-
tervals used in the verification of the clock synchronization
algorithm. The ultimate goal is then to prove, by induction
on the synchronization intervali, that for all intervals both
the clock synchronization property and the group member-
ship property hold:

% i: VAR SyncRound

clocksync_and_membership : THEOREM
clock_sync_prop(i)∧membership_prop(i)

The membership part of this theorem is trivially true, since

the proof for the group membership property as described
earlier is actually independent of synchronization intervals:
the property holds for all slots and hence also for all inter-
vals. As for the clock synchronization part, things are a bit
more involved. From an abstract point of view, the proof
of the induction step of the clock synchronization property
proceeds according to the following lemma:

clocksync_step : LEMMA
clock_sync_req(i)∧clock_sync_prop(i)

⇒clock_sync_prop(i+1)

This lemma expresses that fact that, given the clocks are
synchronized during theith interval and certain requirements
are met in this interval, the synchronization property will
hold in the intervali + 1. The expressionclock syncreq(i)
captures the requirements that are necessary for the synchro-
nization algorithm to work properly. In the case of TTP, it
is, for example, necessary that sufficiently many messages
will be accepted by any non-faulty processor in order to pro-
duce adequate clock readings on its stack of time difference
measurements. This requirement directly relies on the avail-
ability of the group membership service. Hence, we need to

8

show that the membership property ensures that the require-
ments for clock synchronization can be fulfilled:

membership_provides_cs_req : LEMMA
membership_prop(i)∧clock_sync_prop(i)

⇒clock_sync_req(i)

There is an additional conjunct,clock syncprop(i), in the
hypothesis of the lemma above. This is due to the fact that
the membership property and the requirements for clock syn-
chronization are expressed at different levels of abstraction.
As explained earlier, group membership is dealt with at the
synchronous system level, where the notion of time is ab-
stracted away. In contrast to this, the clock synchronization
requirements are expressed in terms of the ground model of
TTA, cf. Sect. III.A., which explicitly deals with timing is-
sues. It is therefore necessary to “map” the proof of group
membership down to the time-triggered system level. This
transformation, however, requires that synchronized clocks
are present [16].

Together with the hypothesis that clocks are initially syn-
chronized these lemmas are sufficient to prove the desired
theorem of integrated synchronization and membership ser-
vices.

The outlined approach deals with the dependencies be-
tween group membership and clock synchronization in two
ways of abstraction. First, the dependency of membership
on clock synchronization is resolved by describing the group
membership algorithm at the abstract level of synchronous
systems, where synchronized clocks are assumed. Second,
the clock synchronization algorithm is parameterized by an
abstract assumption that captures the essence of what is re-
quired from the membership service. The benefit of this ap-
proach is that there is no need to perform a double or parallel
induction to accomplish the proof of the integration theorem.
In fact, the two properties can be analysed more or less inde-
pendently from each other and the interdependencies of the
two services can be clearly isolated and resolved separately.

IV. CONCLUSIONS

In this paper we have discussed how formal analysis may as-
sist in ascertaining safety-critical dependability properties of
the Time-Triggered Architecture.

Besides establishing, by giving a mathematical proof, the
mere fact that some important properties do hold for a sys-
tem (more precisely: the model of the system), a formal anal-
ysis can have further benefits. Indeed, some consider prov-
ing a system or a program correct rather uninteresting. What
is more valuable is that a careful formal analysis can reveal
imprecise requirements, inconsistencies, or even bugs. Our
experience with formally analysing several services of TTP
shows that also the first of the two steps mentioned at the
beginning, the modeling phase, is beneficial to the system it-
self. The need of precise statements within the formal model
can yield to a substantially improved description of the al-
gorithms by clarifying issues initially missing or left vague.
Furthermore, developing a formal model can contribute to
the understanding of the service under study. The group

membership algorithm of TTA, for example, is extremely
complex, because it also incorporates other services, suchas
implicit acknowledgement of messages. The formal analysis
of the algorithm yielded considerable insight into its opera-
tion, and the model has also proven useful to explain how it
works (or in which cases it does not).

The work discussed here is still ongoing; we expect to
expand it by investigating further system properties and to
adapt it to a variant of the architecture in the context of a
forthcoming new EU project.

V. ACKNOWLEDGMENTS

This work was partly supported by the European Commis-
sion under project ESPRIT OMI 23396 “Time-Triggered Ar-
chitecture (TTA)”.

VI. REFERENCES

[1] G. Bauer and M. Paulitsch. An Investigation of Mem-
bership and Clique Avoidance in TTP/C. InProc.
of 19th IEEE Symposium on Reliable Distributed Sys-
tems. IEEE, Oct. 2000. To appear.

[2] R. W. Butler and G. B. Finelli. The Infeasibility
of Quantifying the Reliability of Life-Critical Real-
Time Software.IEEE Trans. on Software Engineering,
19(1):3–12, Jan. 1993.

[3] E. Clarke, O. Grumberg, and D. Peled.Model Check-
ing. The MIT Press, Cambridge, London, 1999.

[4] J. Crow, S. Owre, J. Rushby, N. Shankar, and M. Srivas.
A Tutorial Introduction to PVS. Presented at WIFT
’95: Workshop on Industrial-Strength Formal Specifi-
cation Techniques, Boca Raton, Florida, April 1995.

[5] S. Katz, P. Lincoln, and J. Rushby. Low-Overhead
Time-Triggered Group Membership. In M. Mavronico-
las and P. Tsigas, editors,11th International Workshop
on Distributed Algorithms: WDAG’97, volume 1320
of Lecture Notes in Computer Science, pages 155–169,
1997.

[6] H. Kopetz. The Time-Triggered Approach to Real-
Time System Design. In B. Randell, J.-C. Laprie,
H. Kopetz, and B. Littlewood, editors,Predictably De-
pendable Computing Systems. Springer-Verlag, 1995.

[7] H. Kopetz. Real-Time Systems: Design Principles for
Distributed Embedded Applications. Engineering and
Computer Science. Kluwer, 1997.

[8] H. Kopetz and G. Grünsteidl. TTP – A Time Triggered
Protocol for Fault-Tolerant Real-Time Systems.IEEE
Computer, 27(1):14–23, 1994.

[9] H. Kopetz and W. Ochsenreiter. Clock Synchroniza-
tion in Distributed Real-Time Systems.IEEE Trans.
Computers, 36(8):933–940, 1987.

9

[10] J. Lundelius-Welch and N. Lynch. A new fault-tolerant
algorithm for clock synchronization.Information and
Computation, 77(1):1–36, Apr. 1988.

[11] P. S. Miner. Verification of Fault-Tolerant Clock Syn-
chronization Systems. NASA Technical Paper 3349,
NASA Langley Research Center, January 1994.

[12] S. Owre, J. Rushby, N. Shankar, and F. von Henke. For-
mal Verification for Fault-Tolerant Architectures: Pro-
legomena to the Design of PVS.IEEE Trans. on Soft-
ware Engineering, 21(2):107–125, February 1995.

[13] H. Pfeifer, D. Schwier, and F. W. von Henke. Formal
Verification for Time-Triggered Clock Synchroniza-
tion. In C. B. Weinstock and J. Rushby, editors,De-
pendable Computing for Critical Applications 7, vol-
ume 12 ofDependable Computing and Fault-Tolerant
Systems, pages 207–226. IEEE Computer Society, Jan-
uary 1999.

[14] Holger Pfeifer. Formal Verification of the TTP Group
Membership Algorithm. In Tommaso Bolognesi and
Diego Latella, editors,Formal Methods for Distributed
System Development – Proceedings of FORTE XIII /
PSTV XX 2000, pages 3–18, Pisa, Italy, October 2000.
Kluwer Academic Publishers.

[15] J. Rushby. Formal Methods and their Role in the Certi-
fication of Critical Systems. In R. Shaw, editor,Safety
and Reliability of Software Based Systems (Twelfth An-
nual CSR Workshop). Springer-Verlag, 1995.

[16] J. Rushby. Systematic Formal Verification for Fault-
Tolerant Time-Triggered Algorithms. In M. Dal Cin,

C. Meadows, and W. H. Sanders, editors,Dependable
Computing for Critical Applications – 6, pages 203–
222. IEEE Computer Society, March 1997.

[17] J. Rushby. Verification Diagrams Revisited: Disjunc-
tive Invariants for Easy Verification. InComputer
Aided Verification (CAV 2000), Chicago, IL, July 2000.
To appear.

[18] C. Scheidler, G. Heiner, R. Sasse, E. Fuchs, H. Kopetz,
and C. Temple. Time-Triggered Architecture. In J.-
Y. Roger, B. Stanford-Smith, and P. T. Kidd, editors,
Advances in Information Technologies: The Business
Challenge. Proceedings of EMMSEC’97. IOS Press,
1997.

[19] F. B. Schneider. Understanding Protocols for Byzan-
tine Clock Synchronization. Technical Report 87-859,
Cornell University, Aug. 1987.

[20] N. Shankar. Mechanical Verification of a Schematic
Byzantine Clock Synchronization Algorithm. Techni-
cal Report CR-4386, NASA, 1991.

[21] N. Shankar. Mechanical Verification of a Generalized
Protocol for Byzantine Fault-Tolerant Clock Synchro-
nization. In J. Vytopil, editor,Formal Techniques in
Real-Time and Fault-Tolerant Systems, volume 571 of
Lecture Notes in Computer Science, pages 217–236.
Springer-Verlag, January 1992.

[22] TTTech. Specification of the TTP/C Protocol.
Available on request from TTTech,http://www.
tttech.com/, 2000.

10

