Appears inProc. of the 8 IEEE Int. Conf. on Emerging Technologies and Factory AutiionaETFA 2001, pp. 343-352, Oct. 2001, IEEE.
(© 2001 IEEE. Personal use of this material is permitted. H@xgvermission to reprint/republish this material for adi®ing or promotional purposes
or for creating new collective works for resale or redistriton to servers or lists, or to reuse any copyrighted congmbrof this work in other works must

be obtained from the IEEE.

Formal Analysis for Dependability Properties:
the Time-Triggered Architecture Example

Holger Pfeifer, Friedrich v. Henke
Abteilung Kinstliche Intelligenz
Fakultat for Informatik
Universitat Uim, D-89069 UIm

Germany

Abstract — This paper describes the mechanized formal veri-
fication we have performed on some of the crucial algorithms
used in the Time-Triggered Architecture (TTA) for safety-
critical distributed control. We outline the approach taken to
formally analyse the clock synchronization algorithm and he
group membership service of TTA, summarize our experience
and describe remaining challenges.

I. INTRODUCTION

In recent years the use of computing elements to control
technical systems has become more and more common.
Suchembedded systeroften provide increased functional-
ity and flexibility in comparison with the technical control
systems they are replacing. In safety-critical applicatjo
such as the control of processing plants, automotive con-
trol or avionics, the dependability of the computing elemen
becomes a prime issue since failure may have catastrophic
consequences. Embedded systems of this kind typically in-
volve distributed, real-time computations and requiretsen
of fault tolerance; this makes their analysis and the verifi-
cation that they behave as required inherently difficult. To
attain the desired — or required — level of confidence in cor-
rect behaviour, mere testing is usually insufficient; irtfitc
has been argued [2,15] that the kind of reliability requficed
highly safety-critical applications cannot be achievethwi
out a careful formal analysis of the mechanisms and algo-
rithms involved.

The formal analysis of a system may be viewed as typi-
cally involving the following steps:

mal model, satisfies the stated requirements. Among
verification techniques, we may distinguish two
classes: model checking and theorem provivigdel
checking[3] involves modeling the system as a fi-
nite state transition system and expressing the de-
sired properties as formulas in a temporal logic.
Model checking is the approach of choice for many
embedded systems that fit the underlying modeling
paradigm; it is popular because once a model has been
constructed the actual analysis process is “automatic”,
which contributed to widespread adoption of the ap-
proach by industry. Furthermore, the approach links
up well with common design methods, such as UML,
that employ some form of state charts; tools for map-
ping state charts into suitable input for model checkers
are under development.

However, the type of analysis we will be discussing in
the following section cannot be carried out with model
checking as it requires, for instance, arithmetic com-
putations for time bounds. This kind of problems can
be dealt with by theorem proving: the relevant sys-
tem aspects are modeled as theories in (first- or higher-
order) predicate logic, and the required properties are
derived as theorems by an interactive process of de-
duction. The two approaches to formal analysis and
verification should be regarded as complementary.

In most realistic situations, an iteration of the two steps

(modeling and verification) will be required to get both the

1. Construction of a preciséormal descriptionof the fprm_al m.odel and the formal arguments supporting the ver.i-
mechanisms and algorithms. The description focusd§ation right. Here, the support by a computer-based tool is
on essential aspects and abstracts from inessential géucial: the computer is much more reliable in handling the
tails. Developing such a formal model in itself oftentypically large amount of uninteresting details. Furtherey
has the benefit of clarifying issues left vague or ope Machine-supported verification can be repeated, adapted t

or omitted altogether in more informal descriptionsmall system changes and may eventually serve as support-
that serve as the starting point. ing evidence in a certification of safety-critical compotsen

. In this paper we discuss the formal analysis of safetyegiti
The formal model is intended to be processed by may operties of one particular application, the Time-Triggk

cr:une; hf_encg Itis elxprebssed ml the (fjo-rmil language rchitecture, that we have performed using the specifinatio
the verification tool to be employed in the next step, \ rification system PVS [12].

Similarly, the properties to be verified must be ex-) .)
pressed in a related formal language. The remainder of the paper is organized as follows: after
giving a brief overview of PVS in the next section, Sect. lII.
2. Verificationthat the system, as represented by the fodescribes the formal analysis of two important services of

1

the Time-Triggered Architecture, namely the clock synehrgpredicate subtypes frequently gives rise to TCCs: for exam-
nization algorithm and the group membership protocol. Fiple, if a function with a domain typéx: A | P(x)} is
nally, we summarize our experience in the last section arapplied to an elemera of type A a subtype TCQs gener-

give directions for future work. ated that requires a proof 8{ a) . A large number of TCCs
are discharged by specialized proof strategies, and a PVS ex
Il. A BRIEF DESCRIPTION OF PVS pression is not considered to be fully type-checked uritil al

generated TCCs have been proved.

The PVS system combines an expressive specification lan-PVS specifications are packagedthsoriesthat can be
guage with an interactive proof checker and has been uspérametric in types and constants. A builtgreludeand
for reasoning in domains as diverse as microprocessor végadabldibraries provide standard specifications and proved
ification, protocol verification, and algorithms and arebit facts for alarge number of theories. As an example, the spec-
tures concerning fault-tolerance; see [12] for an overviewfication below shows the theosynchr onous_syst em
This section provides a brief description of the PVS languaghat serves as a foundation to describe a distributed dhgori
and prover, and introduces some of the concepts used in thig a synchronous system.
paper; a more thorough introduction is given in [4].

The PVS specification language builds on classical typegynchr onous_syst em
higher-order logic with the usual base typésiol , nat, [(1 MPORTI NG t ypes)

i nt eger,real ,among others, and the function type con- St at e . TYPE+,
structor{ A -> B] . The type system of PVS is augmented Message : TYPE+,
with dependent typeandabstract data types InitState : TYPE FROM St at e,
In PVS, predicates over some typge are, as usual, initialstate : [Proc -> InitState],
boolean-valued functions ofy andpr ed[A] is an abbre- sender : [Slot -> Proc],
viation for the function typg A -> bool]. A distinc- trans : [Proc, Message ->
tive feature of the PVS specification language predicate [State->State]],
subtypesthe subtypg x: A | P(x)} consists of exactly nsg . [Proc, Proc, Sl ot - >Message]

those elements of typlsatisfying predicat®. One canuse | : THEORY

the expressio(P) to abbreviate the subtype induced by theBEGI N

predicateP. Since sets can be described by their characteris-

tic predicates, the expressién: A | P(x)} canalsobe Slot : VAR Slot

used to denote the set of elements satisfffipgnd conse- P : VAR Proc

quentlyset [A] is just a notational variant gfr ed[A] . run(slot)(p) : RECURSI VE State =

Hencex: (P) also means that is an element of theetP. IF slot = 0 THEN initial state(p)
Predicate subtypes are used, for instance, for explicitly ELSE

constraining domains and ranges of operations in a speci- LET q = sender(slot-1),

fication, and to further qualify universally quantified vari s = run(slot - 1)

ables in lemmas and theorems. As an example, the (uninter- IN

preted) predicateonf aul t y?(t) describes whether or trans(p, msg(p,q,slot-1))(s(p))

not a processop is non-faulty at a given timé¢ The the- ENDI F

oremagr eenent expresses the fact that at all times, all MEASURE sl ot

non-faulty processors agree on their membership views. END synchr onous_syst em

agreenment : THEOREM }))
FORALL (p, q: (nonfaul ty?(t))): The theory defines a recursive functiomn that computes

menber shi p(t, p) = menbership(t, q) the state of a processprin a given Slots| ot . Itis based
on a state transition functionr ans which is intended to
The theorem could also be stated without predicate subrodel the behaviour of a processor depending on the current
types using an implication with the non-faultiness coristra states(p) and the message has received, as described
for p andq as the hypothesis part. However, the predicatey the functionnsg. Note that these functions are param-
subtype variant is preferable in many cases as it can help aiers of the theory. Thus the theory captures the essence of
tomating proofs that apply the agreement theorem: a crucidile synchronous behaviour of a systems and can be applied
aspect in proof automation is to find suitable instances & model a given synchronous algorithm, such as the group
variables. The annotation of type information to quantifietnembership algorithm as described in the next section, by
variables enables the PVS prover to restrict the search finstantiating the parameters with concrete values.
adequate values fgrandq to those for which the predicate A theory can use the definitions and theorems of another
nonf aul t y?(t) is known to hold. theory byimportingit. Parameterized theories can be im-
In general, type-checking with predicate subtypes is urported in either of two ways: first, one instantiates the theo
decidable; the type-checker generates proof obligatgms, by providing actual values for the formal parameters, ar; se
called type correctness conditiondCCs) in cases where ond, the theory is imported without any instantiation. la th
type conflicts cannot immediately be resolved. The use dditter case all possible instantiations of the importeaiie

2

may be used; in the case of ambiguities, actual values canthe time-triggered paradigm with somewhat different archi
provided to any used definition if necessary. tectures.

In the sequel, we do not always present the complete the-The Time-Triggered Protocol (TTP) [8] is the core of
ory declarations but only the most important definitions anghe communication level of TTA. In TTP, several distinct
theorems. We do include, however, parts of the context gkrvices, such as clock synchronization, group membership
the definitions such as theory parameters or variable decla: redundancy management, are tightly integrated. For in-
rations axzommentsthese are marked with the symi86lt stance, there are no distinct phases for exchanging message
the beginning of a line. for clock synchronization or message acknowledgement; in-

For instance, in the following axiomatization of the maxi-stead, those services are realized as side effects of oydina
mum drift of a processor’s clockho is areal-valued theory scheduled message exchanges. This tight integration makes
parameterCis a variable ranging over the set of clocks, andt particularly difficult to carry out a formal analysis. 1§ i
t, andt , are variables of typeeal ti ne. To increase necessary to first isolate the core algorithms that provide
the readability of PVS specifications we liberally modifgth these services from the integrated protocol by abstracting
syntax by replacing some ASCII codings with a more familfrom features that are irrelevant to the algorithm undeshgtu
iar mathematical notation. Furthermore, the existing description of TTP [22] is “struc
tured English” that has to undergo a process of formaliza-

S;Z é : ilﬁRr eCIalocL 0 <xAXx<1} tion to obtain a formall speciﬁcati(_)n. The resulting .formal
%t t : VAR real time mc_>de| canthenbe sgbjected toa rlgorous.mathematlcal gnal—
Ltz ysis. We have examined two of the most important services
max_drift : AXI QM of TTP, clock synchronization and group membership, and
[C(t1)-C(ta) - (ti-ta2)| < 5*[ti-ty used the PVS verification system [12] to formally analyse

The PVS language supports many features for makir;[{;]1e|r properties.

specifications more readable. For example, function and op-
erator names can be overloaded. Moreover, variables, su§hGround model of TTA
asC, t ; andt 5 in the axiommax_dr i f t above, can occur
free in formulae and are implicitly universally quantified. The distinguishing characteristic of time-triggered sys$
Finally, we sketch some characteristics of the PVS proves that all system activities are initiated by the progress o
Proofs in PVS are presented in a sequent calculus. Thisme. From an abstract point of view, the TTP protocol op-
atomic commands of the PVS prover component includerates cyclically. Each node is supplied with a clock and
induction, quantifier instantiation, automatic conditbn a static schedule, theessage descriptor list (MEDL}he
rewriting, simplification using arithmetic and equality-de schedule determines when certain actions have to be per-
cision procedures and type information, and proposition&rmed, in particular when messages of a certain type are
simplification using binary decision diagrams. PVS has ato be sent by a particular node. The message descriptor list
LCF-like strategy language for combining inference stepsontains an entry which determines at which clock time a
into more powerful proof strategies. The stratggjl ND, particular slot begins.
for example, combines rewriting with propositional sirfipli The MEDL contains global information common to all
cation using BDDs and decision procedures. The most comedes in the cluster about the communication structurda, suc
prehensive strategies manage to generate proofs fully autts the duration of a given slot or the identity of the sending
matically. node. As the intended system behaviour is thus known to
all nodes, important information can be obtained indisectl
IIl. EORMAL ANALYSIS OF TTA from the messages. For example, explicit acknowledgments
need not be sent since a receiving node can determine that
The Time-Triggered ArchitecturéTTA) provides an inte- a message is missing immediately after the anticipated ar-
grated set of services for the implementation of dependival time has passed. Similarly, the successful recepifon
able distributed real-time systems [6, 7]. It has been deved message is a sufficient condition for the sending node to be
oped by the University of Vienna over the past twenty yeargonsidered active.
and is now commercially promoted by TTTech. TTA is in- The nodes communicate via a replicated broadcast bus.
tended for devices controlling safety-critical electmays- Access to this bus is determined by a time-division multi-
tems without mechanical backup, so-called “by-wire” sysple access (TDMA) schema which is pre-compiled into the
tems such as those for automotive steering, braking, and sseshedule. Every node thus owns certsliots in which it is
pension control [18]. TTA has been evaluated in two recerllowed to send messages on the bus. A complete cycle dur-
European projects — “Time-Triggered Architecture” (Espriing which every node has had access to the bus once is called
OMI program) and “X-by-Wire” (Brite EuRam program) — a TDMA round After a TDMA round is completed, the
that have applied TTA to several prototype applications, irsame temporal access pattern is repeated again. The length
cluding brake-by-wire and steer-by-wire. Recently, Audofthe message descriptor list reflects the number of differe
and Honeywell have decided to utilize TTA as the basic plafFDMA rounds and determines the duration of the so-called
form for new safety-critical automotive and avionics appli cluster cyclewhich, as the name suggests, is repeated over
cations, respectively; other car manufacturers are adgptiand over again.

3

In each slot, one of the nodes of a cluster sends a frameSo far we have described the general behaviour of a node
on each of the two channels of the bus, whereas the othiara time-triggered system. What remains is to model the
nodes listen on the bus for incoming messages for a certatate transitions that a node performs in each slot, i. e. the
period of time. According to certain aspects of the receivestate transition functiotrans. This function captures, for
message, such as content, arrival time, etc., each node thestance, the algorithms for clock synchronization andigro
changes its internal state at some point in time before threembership, which are described in the following sections.
next slot begins. Each slot is conceptually divided into two
phases: during the first, ttedmmunication phasehe cur- B Clock synchronization

rent sender is broadcasting a message via the bus; in the sec-))
ond, in thecomputation phaseeach node changes its in- Distributed dependable real-time systems crucially ddpen

ternal state depending on the current state and the receiy¥yfault-tolerant clock synchronization. This is partaly
message. true in distributed architectures like TTA in which proces-

§ors (or nodes) perform their actions according to a pre-
times we introduce a functioschedr) which denotes the determined, static schedule. Obviously, clock synchimniz
clock time at which a given slat starts. The schedule is tion is a central element of a time-triggered architectore f
not directly available in TTP, but there is an entry for thdt {0 function properly: it is essential that the clocks of al
duration of each slot in the message descriptor list; thisProcesses be keptsufficiently close together and that the sy
is formally captured by the functiouration Given a clock chronization be able to tolerate faults to a limited extent.
time constansystemstart timewhich is assumed to initially ~ C0Ck synchronization algorithms have been a matter of
show up on every node’s local clock, it is a simple matter tgarticular interest for formal analysis since years. Sehne

defineschedby recursively summing up the duration of theder [19] has observed that the correctness arguments of so-
called averaging algorithmsare quite similar. This class

In order to describe the state of a node at particular clo

slots:
of algorithms is described using @nvergence function
sched(r: Slot) : RECURSI VE O ocktine = Schneider sta}}ed s_everaldratfr:er gzniral ahssumptloniro_n the
IF r = 0 THEN systemstart tine convergenrcl:e unction an fs ﬁweI t gtht eysars su |C|elnt
ELSE sched(r-1) + duration(r-1) tsohprtla(ve t edcgré?_(':;;\eshs 0 tde algorit miDVSu sequeﬂty,
ENDI E MEASURE r ankar use , the predecessor to , to mechan-

ically verify Schneider’s proof [20, 21]. Miner [11] signifi
cantly improved Shankar’s verification (by weakening its as
sumptions) and recast it in PVS.

For the actual verification of the clock synchronization al-
ﬁorithm of TTA, major emphasis has been given to making
use of the cumulative development described above. This led
to splitting up the proof into a generic part in which the syn-
chronization property is proved based on several abstsact a
sumptions, and a TTP-specific part in which the specification
of the algorithm is shown to satisfy those assumptions. The

The state of a nodp at a certain clock timd is given
by a functionstate Let commudur(r) denote the duration of
the communication phase of a sigtduring which a node
p waits for a message to arrive. Within the communicatio
phase the internal state pfemains unchanged:

%r: VAR Slot; T:. VAR O ocktine;
% p: VAR Proc

communi cati on_phase_def : AXI OM specification and verification system PVS which has been
sched(r) <T A T<sched(r)+commdur(r) = used as mechanical proof assistant directly supports such a
state(T)(p) = state(sched(r))(p) approach: parameters of theories can be constrained to sat-

isfy certain assumptions and when using concrete instances

At some point during the computation phase n@dis of theorems occurring in such theories PVS serves as a book
changing its internal state depending on its current stade akeeper that requires proofs for the concrete values tofgatis
the message it has received. This behaviour is described &ythe assumptions.
a state transition functiomans such thatrans(p, m)(s) de- The TTA algorithm belongs to the class of averaging algo-
notes the next state of a nod¢hat has received message rithms and is based on a variant [9] of the Lundelius-Lynch
in states. The state op is unspecified during the computa-algorithm [10]. However, for optimization reasons it con-
tion phase; all that is said is that by the beginning of the nexains several details that complicate the direct appboati
slotschedr + 1) nodep has changed into a new state. By theexisting work. For example, processors do not have access
start of the first slotp is in its initial state. Here, the function to the clock values of all other processors, but only to some
msgp, T) models the messagehas received at clock time of them (a possibly different set at each processor) because

T. time difference values are stored in a queue of length four.
Thus, in order to verify the TTA algorithm by showing it to
state_transition_def : AXIOM be an instance of the previously verified generic derivation
state(sched(r))(p) = those derivations had to be generalized to accommodate its
IFr =0 THEN initial state(p) peculiarities [13].
ELSE trans(p, nsg(p)(T))(state(T)(p)) A processor’s clock, more precisely jhysical clockis
WHERE T = sched(r-1)+commdur(r-1) typically implemented by a discrete counter. The counter
ENDI F is incremented periodically, triggered by a crystal oatilt.

As these oscillators do not resonate with a perfectly caista A clock synchronization protocol implementsvatual
frequency, the clocks drift apart from real time. It is theka clock by repeatedly adjusting a node’s physical clock. The
of clock synchronization algorithms to repeatedly computtask of the synchronization algorithm is to bound gkew
an adjustment of a node’s physical clock in order to keep e. the absolute difference between the virtual clock read
it in agreement with the other nodes’ clocks. The adjusteidgs of any two (nhon-faulty) nodgsandq, by a small value
physical clock is what is used by a node during operatiofiat any timet:
and it is commonly called a noddiscal clock

The general way clock synchronization algorithms opeiC_agr eenent : THEOREM
ate is to gather estimates of the readings of other nodes’ | VGy(t) - VC(t)| < 4
clocks to calculate an adjustment for the local clock. Since
in TTP, every node knows beforehand at which time cer- The proof of this property is generally accomplished
tain messages will be sent, the difference between the timétaough mathematical induction on the number of synchro-
message is expected to be received by a node and the actiaation intervals. The induction hypothesis states that a
arrival time can be used to calculate the deviation betwedhe beginning of each interval, the skew between any two
the sender’s and the receiver’s clock. In this way, no spelocks is bounded by some valdg < §. Then it is shown
cial synchronization messages are needed in TTP. The tirtteat during the next interval, when the clock readings drift
measurements are stored on a push-down stack of depth fagart, the skew does not exceedrinally one has to prove
with the most recent one on top. Thus, older values get dithat the application of the convergence function brings the
carded after a while. In general, there are more than foatocks together again withifs. The latter step is the harder
nodes in a cluster and hence not every node contributesdoe, since the former rather imposes certain constraints on
the calculation of a new correction term for a node’s locaihe maximum precision that can be achieved given concrete
clock. This approach is feasible under the hypothesis thatealues for the drift rate of the clocks and the length of a
most one of the values on the stack may be faulty in sonsynchronization interval.
sense, i. e. does not represent a proper clock reading. To facilitate the induction proof several additional con-

TTP allows messages from nodes with clocks of minocepts and notations have proven useful, in particular the ab
guality to be excluded from the calculation of adjustments istract notion ofinterval clocks Instead of repeatedly ap-
order to improve the precision of the synchronization. This plying adjustments to a local clock one could also think of
accomplished by selecting the messages accordin@gdFa a node starting a new clock each time the synchronization
flag (for synchronization framein the message descriptor algorithm has been executed. These clocks are indexed by
list. If this flag is not set in the MEDL for the current slot, the number of the synchronization intervaind are denoted
the obtained time difference value is not stored on the stachL(t). The value op’s interval clock in thdéth synchroniza-

In some slots, after the communication, the adjustmetibn interval is obtained by adding thith adjustment to the
term is calculated from the time values on the stack. Theeading ofp’s physical clock:
slots in which this is to occur are marked in the message
descriptor list by a special flag namé&&(for clock synchro- % i : VAR Round
nization). TTP uses the Fault-Tolerant Average Algorithmici () - Q ocktine = PGy(t) + adij,
(FTA) [9] to calculate the adjustment: The largest and the
smallest value are discarded and the average of the remainThese interval clocks are then put together to form the

ing two is used as the new adjustment term. node’s virtual clock: in théth synchronization intervad's

In our formalization the physical clock of a nopés mod- yjrtual clock corresponds to thih interval clock:
eled by a functiorPG, which maps real time to clock time;,

thus,PC,(t) denotes the reading pfs physical clock atreal v/c defn : AXI OM

timet. The reading of the local clock of a nogen some <t A t<tfl = VGC(t) = ICi(t)

given states at real timet is obtained by adding the adjust- P P P

mentadj(s) to the reading of the node’s physical claek. Here, t, denotes the start time of tlith synchronization

interval. The way the adjustments to a node’s physical clock

% s @ VAR State are computed is abstractly captured by the conceptoia

adj (s) : Cocktime = vergence function CfnThe convergence function takes an
current _corr(s) + total _corr(s) array@ip of readings of the clocks of some or all other nodes

LC(p,s,t) : Cocktine = to calculate a corrected clock reading fofThe vaIue@ip(q)
PCy(t) + adj(s) is p's estimate ofg’s clock reading at timeb. The adjust-

ment top’s physical clock is then given by the difference of
Here, current.corr andtotal_corr are two registers that its physical clock and the result of the convergence functio
contain the value of the most recently calculated clock adpitially it is taken to be0:
justment and the sum of all adjustments calculated so far,
respectively. These registers are modeled as parts of the &¢lj, : C ocktime =
ternal state of a node, as well as, e. g., the stack of time IF i = 0 THEN 0 ELSE Cfn(p,©,) — PGCy(t,)
difference values. ENDI F

Schneider [19] has stated several conditions that are nenessage contains the broadcaster’s local view)j, on the
essary to complete the proof of the bounded skew propertpembership.

Some of them, e. g. those concerning the interrelationshipsas the order of messages is statically defined there is no
among the various quantities introduced, are of minor inmeed for special membership messages. Instead, a success-
portance in that they can be derived more easily for concrefglly received message is interpreted as a life-sign of the
algorithms. The most important of the conditions are consender and a receiver will maintain the broadcaster in its lo
cerned with the behaviour of the convergence function thak| membership set if it agrees with the broadcastersatiti

a clock synchronization algorithm exploits. The usefutnesstate information and hence with its membership set. Con-
of these conditions is for the most part due to its isolatibn Q/erse|y, if a processor does not receive an expected message
purely mathematical properties from other concepts such as does not agree with the broadcaster’s view on the mem-

e. g., failed nodes. bership, the broadcaster will be considered faulty and the
While the formal model of TTP is deSCfibing the ClOCkreceiver removes it from its membership set.

synchronization algorithm on the level of slots, the gemeri o or0un membership algorithm is designed to operate
verification is based on the notation of synchronizatioerint ;. ha presence of faults. A processor canseed-faulty

vals. In order to exploit the generic proof of clock synchroin which case it will fail to broadcast in its next slot, while

nization for the TTP algorithm the concrete model of TTF, (o ceive-faultyprocessor will not succeed in receiving the

has to be abstracted to the level of the concepts used in thassage of the next non-faulty processor. This restricted
generic model. This means in particular that the definition G, i+ model is appropriate since other protocol services of
the local clocks and the calculation of the adjustments ieeg¢rp ansure that other fault modes manifest themselves as
to be in terms of |.n.terv-al clocks a”‘?' a convergence funCt',o'éither send or receive faults by enforcing a faulty processo
The formal verification of Schneider’s abstract propertieg, ¢,;, silently. For example, the bus guardian, a specietha
in PVS turned out to be quite challenging, especially begaug,a e glement of the TTP controller, prevents a processor tha
TTP’s special feature of discarding correct messages o |ost synchrony of its clock from accessing the broadcast
some nodes according to t¥Fflag had to be taken into 1 s oyside its designated slots. We W&E' to denote the
account, too. This required some subtle reasoning about tgg; ¢ non-faulty processors at timendp ¢ V! indicates
cardinality of various sets of slot numbers. thatp is either send-faulty or receive-faulty at tirhe

The task of a group membership algorithm is to diagnose
the failure of a faulty processor and to inform all non-fgult

Group membership is another central service of TTP as Rfocessors aboutit. In order to cause a broadcaster taeeali
provides to all non-faulty processors a consistent view dhat it is send-faulty the TTP group membership algorithm
which nodes are operational and which are not at any givét$es an (implicit) acknowledgment mechanism. A proces-
moment. Distributed fault-tolerant algorithms are inmelye ~ Sorp that is the broadcaster in stothecks whether the next
difficult to reason about, since careful attention has to beon-faulty broadcaster, say that sends in the next slot has
drawn to faults and failed components. In order to mak#e same membership setaand in particular containsin
formal verification feasible it is essential that the vasouits membership set. If sqy can conclude that its broadcast
aspects of an algorithm are specified and verified at appré/as successful. Otherwise, eithefailed to broadcast o
priate levels of abstraction that capture the essence of tifereceive-faulty. To resolve this ambiguipywaits for the
property under study and abstract from irrelevant detail§€xt non-faulty broadcaster followirgy sayr. If r contains
In contrast to the clock synchronization service describein its membership set but ngqwhile having the same view
above, the group membership algorithm [1] is modeled aPnsidering other processors, the original messagens
a synchronous system — see the corresponding PVS the&Bht correctly and failed. If pis notinr’s membership set,
in Sect. II. It abstracts from the clock synchronization sefoutq is (and the rest of the membership setpeindr are
vice that justifies the synchrony assumption. Its verifarati the same), then andr agree thap failed to send. In this
is significantly more difficult than other fault-tolerangal ~ casep will remove itself from its own membership set and
rithms because information about the failure of processof8il silently.
is not available immediately but only with a certain delay. A similar mechanism could be used for diagnosing receive
Therefore one has to be very careful when reasoning abdaults: if a processgp does not receive an expected message
possibly faulty components. it could check whether the next non-faulty broadcaster main
Every processqu maintains a sete rri,—the membership tained the original sender in its membership setin whick cas
set of processop—that contains all processors thaton- p must realize that it has suffered from a receive fault. How-
siders operational at tinte In slott the processor with label ever, TTP employs a slightly different mechanism that is als
t mod n is the broadcaster. In addition to the message datased to avoid the formation of disjoint cliques at the same
the broadcaster sends those parts of its internal statartmat time. A clique is a group of processors where agreement
critical for the protocol to work properly. More precisely, on the current state is reached only within the group. Each
CRC checksum that is calculated over the message data grdcessop maintains two counterza,cc}J andr ej }) which
the critical state information, which includes the memberkeep track of how many messagebasacceptedsuccess-
ship set, is appended to the message. For the analysis of thiy received) andejected respectively. A process@rwill
group membership algorithm it is sufficient to assume thatiacrement the counterej ;, if p does not agree with the

C. Group membership

6

broadcaster’s view on the membership. pia next broad- timet and describe the global state the system is in. Configu-
cast slot it checks whether it has accepted more messagesdtions can have additional parameters such as procegsors (
the last round than it has rejected. If paesets the counters vy, .. .) that behave differently from the rest of system, or ad-
and broadcasts; the other case indicatespisaffered from ditional entities necessary to describe the system stdte. T
a receive fault and therefoperemoves itself from the mem- labels of transitions express the preconditions for th&esys
bership and by not broadcasting its mesgagen informthe to move from one configuration to another. For example,

other processors about its failure. the labelb = x from the transition fromatentto excluded
The group membership algorithm has to fulfill the follow-means that the system takes this transition i§ the cur-
ing major correctness requirements: rent broadcaster, while a transition with the latbehd+# x is

Validity: At all times, non-faulty processors should havgaken whenever the current broadcaster is already fautty bu
all and only the non-faulty processors in their membershigifferent fromx. The transition conditions leading from one
sets, while faulty processors should have removed thergonfiguration need not necessarily be disjoint, but onedas t
selves from their sets. This requirement is, however, inshow that they are complete in the sense that their disjunc-
possible to satisfy as it may take some time to diagnose tiien is true.
faultiness of a processor. We therefore must allow a single The diagram can be developed step-by-step. One usually
faulty processor to be included in the membership sets 6tarts by defining some initial configuration or the one in
non-faulty processors, while faulty processors may have {ghich the system stays under normal circumstances, i. e. as
subset of) the non-faulty processors plus themselves in théong as no fault occurs. For TTP, this central configuration

sets. is the one labeledtable By symbolically evaluating the al-
gorithm in the current configuration and by splitting on pos-
validity : THEOREM sible cases we generate some new configurations, and the
(V(p: (NFY): menj, = NFY v transitions from the original configuration are labeledhwit

Ix: x € NFUA nen’}, = NF'U{x}) the appropriate conditions. By repeatedly applying this-co
AVP: PENF' = (p¢ m:"”ia v r’ren’fj C NF'U {p}h) struction on each transition and each new configuration one
aims to develop a closed diagram. This approach can be seen
Agreement: All non-faulty processors should have theas a symbolic forward exploration of the state space of the

same membership sets. membership algorithm. To prove safety properties liae
lidity or agreemenbne then has to demonstrate that every
agreenent : THEOREM configuration implies the desired property and that the dis-
v(p, g: (NFY)): menf, = menj, junction of the transition conditions leading from any one

h . lidi q configuration evaluates to true; this ensures that there is n
The requirementsalidity andagreemenexpress proper- e configuration the system can possibly get into.

ties that should hold for all reachable states of the system. . o TTP group membership algorithm, we have for-
Such invariants, osafety-propertiesare usually verified by mally proved both the safety propertiealidity andagree-

some form of induction proof. In order to establish the Nt ent mentioned above and a liveness property that states

duction step, however, one generally has to strengthen e a1ty processor will eventually remove itself frame t

invariant because often enough the property of interesitis N, o b e rship. Al definitions and proofs have been developed
inductive. Usually repeated strengthening is necessary b&nd mechanically checked with PVS [14]
fore an inductive invariant is found and although some of the '

strengthening can be generated automatically this becon]ss
the main task when performing a mechanized verification.
Experience with a membership algorithm similar to that oAs mentioned above, we have analysed the algorithms for
TTP [5] showed that this verification strategy is infeasibl&lock synchronization and group membership separately
for our purpose. from each other. While these analyses are valuable in their
Therefore, we take a different approach proposed bywn right, it is the integrated protocol that is implemented
J. Rushby: instead of expressing the correctness propeiiyhardware and run in a TTP controller chip. Hence, the
as one large conjunction, we use a set of disjunctively comuestion arises whether the results of the isolated armlyse
nected formulas that can be seen as the description of an atill hold for the integration. In fact, a closer look at the
stract state machine [17]. Each disjunct contains the @@sirformal models reveals that clock synchronization and group
property and represents a particular configuration the memembership depend on each other. On the one hand, there
bership algorithm can reach. To establish the correctriessis a hierarchical dependency in our treatment: the verifica-
the algorithm one has to show that at every point in time thgon of the group membership algorithm is carried out at the
system is in one of these configurations. level of a synchronous system, where one assumes that all
Thus, the main part of the proof can be represented agpeaocessors are perfectly synchronized and run in lock-step
configuration diagramThe diagram for the group member-This assumption abstracts from a synchronization mecha-
ship algorithm is shown in Fig. 1. The nodes of the diagramism and therefore the proofs for group membership depend
represent theonfigurations and arrows denote transitionson the correctness of the clock synchronization service. On
from one configuration to others and are labeled with trarthe other hand, the clock synchronization algorithm of TTP
sition conditions. Configurations are parameterized by thiffers from many standard algorithms in several ways. Most

Integration of services

7

good missed no new fault
occurs

dead #x dead good

pending-
selfdiag—
no-1st-succ
(tx,z,S)

[

b=x
self diagnose

»| stable(t,z)

good disagree

good no ack dead #x

missed-rcv— .
Xx—nhot-ack
(tx,2,S)

good no ack =
self diagnose

good

ood no ack
good missed g

excluded- good disagree

doubt- =
no-2nd-succ | g
(t,x,xs,z,S) good missed

excluded—
doubt
(t.x,xs,y,2,S)

A

=X
self diagnose

dead good disagree

no me;sage good missed dead #x

good disagree good missed good no ack

— b=x
good no ack no message

missed-rcv
(t,x,2,S)

excluded
(t,z,x,S)

b=x

good disagree .
message rejected

b=x

good missed message no ack good

dead dead

Y

excluded—
z—doubt

(t.z.x,S)

pending—
selfdiag
(t,x,y,z,S)

good

Fig. 1: Configuration diagram for the TTP group membershioathm.

importantly, the way a processor obtains information abouhe proof for the group membership property as described
the clock readings of other processors is totally integratesarlier is actually independent of synchronization indsy
into the exchange of data messages. Since a processor ahly property holds for all slots and hence also for all inter-
accepts messages from processors that it considers tagbelonls. As for the clock synchronization part, things are a bit
to the same membership set, clock synchronization actualtyore involved. From an abstract point of view, the proof
depends also on group membership. These apparently @f-the induction step of the clock synchronization property
cular dependencies need to be broken by reorganizing theoceeds according to the following lemma:
proofs so that the results previously obtained by analysing
the indiyidual services_ in isolation can qlso be estabtishe,| ocksync_step : LEMMA
for the integrated services. In the following, we sketch the
major guidelines how this can be achieved.

The first step is to split up the analysis into a series of suc-

cessive intervals, corresponding to the synchronizatien i This | that fact that. ai the clock
tervals used in the verification of the clock synchronizatio IS lemma expresses that tact that, given the clocks are

algorithm. The ultimate goal is then to prove, by inductior?ynchron_ized.du.ring théh interval and cgrta_in requirement;
on the synchronization interval that for all intervals both are met in this interval, the synchronization property will

the clock synchronization property and the group membelfl-OId in the mtervql + 1. The expressionlock syncreq(i)
captures the requirements that are necessary for the nchr

cl ock_sync_req(i) Acl ock_sync_prop(i)
=cl ock_sync_prop(i +1)

ship property hold: e , .

P property nization algorithm to work properly. In the case of TTP, it
%i: VAR SyncRound is, for example, necessary that sufficiently many messages
cl ocksync_and_menber ship : THEOREM will be accepted by any non-faulty processor in order to pro-

duce adequate clock readings on its stack of time difference
measurements. This requirement directly relies on thd-avai
The membership part of this theorem is trivially true, sincability of the group membership service. Hence, we need to

cl ock_sync_prop(i) Anmenbershi p_prop(i)

8

show that the membership property ensures that the requireembership algorithm of TTA, for example, is extremely

ments for clock synchronization can be fulfilled: complex, because it also incorporates other services,agich
implicit acknowledgement of messages. The formal analysis
menber shi p_provi des_cs_req : LEMVA of the algorithm yielded considerable insight into its aper
menber shi p_prop(i) Aclock_sync_prop(i) tion, and the model has also proven useful to explain how it
= cl ock_sync_req(i) works (or in which cases it does not).

The work discussed here is still ongoing; we expect to

There is an additional conjuncock syncprop(i), in the . . Co .
hypothesis of the lemma above. This is due to the fact thg%(pand it by investigating further system properties and to

. . adapt it to a variant of the architecture in the context of a
the membership property and the requirements for clock Syﬂ)‘rthcoming new EU project.
chronization are expressed at different levels of abstrnact
As explained earlier, group membership is dealt with at the
synchronous system level, where the notion of time is ab- V. ACKNOWLEDGMENTS
stracted away. In contrast to this, the clock synchrorozati
requirements are expressed in terms of the ground model Bis work was partly supported by the European Commis-
TTA, cf. Sect. lll.A., which explicitly deals with timing is Sion under project ESPRIT OMI 23396 “Time-Triggered Ar-
sues. It is therefore necessary to “map” the proof of groughitecture (TTA)".
membership down to the time-triggered system level. This
transformation, however, requires that synchronizedksoc VI]. REFERENCES
are present [16].

Together with the hypothesis that clocks are initially syn-[1] G. Bauer and M. Paulitsch. An Investigation of Mem-
chronized these lemmas are sufficient to prove the desired pership and Clique Avoidance in TTP/C. Proc.
theorem of integrated synchronization and membership ser- of 19th IEEE Symposium on Reliable Distributed Sys-
vices. tems IEEE, Oct. 2000. To appear.

The outlined approach deals with the dependencies be-
tween group membership and clock synchronization in two[2] R. W. Butler and G. B. Finelli. The Infeasibility
ways of abstraction. First, the dependency of membership of Quantifying the Reliability of Life-Critical Real-
on clock synchronization is resolved by describing the grou ~ Time Software IEEE Trans. on Software Engineering
membership algorithm at the abstract level of synchronous 19(1):3-12, Jan. 1993.
systems, where synchronized clocks are assumed. Second
the clock synchronization algorithm is parameterized by al]
abstract assumption that captures the essence of what is re-

quired f_rom the mer_nbership service. The benefit of this apLA'] J. Crow, S. Owre, J. Rushby, N. Shankar, and M. Srivas,
proachiis that there is no need to perform a double or parallel © » 1t rial Introduction to PVS. Presented at WIET

induction to accomplis_h the proof of the integration thmr_e '95: Workshop on Industrial-Strength Formal Specifi-

In fact, the two properties can be anfilysed more or I(_ass inde- cation Techniques, Boca Raton, Florida, April 1995.

pendently from each other and the interdependencies of the

two services can be clearly isolated and resolved sepgratel [5] S. Katz, P. Lincoln, and J. Rushby. Low-Overhead
Time-Triggered Group Membership. In M. Mavronico-

IV. CONCLUSIONS las and P. Tsigas, editork]lth International Workshop

on Distributed Algorithms: WDAG’97volume 1320

In this paper we have discussed how formal analysis may as- of Lecture Notes in Computer Scienpages 155-169,

sist in ascertaining safety-critical dependability pndies of 1997.

the Time-Triggered Architecture. . .

Besides establishing, by giving a mathematical proof, thel6] H. Kopetz. The Time-Triggered Approach to Real-
mere fact that some important properties do hold for a sys- 1ime System Design. In B. Randell, J.-C. Laprie,
tem (more precisely: the model of the system), aformalanal- H- Kopetz, and B. Littlewood, editorgredictably De-
ysis can have further benefits. Indeed, some consider prov- Pendable Computing Syster@pringer-Verlag, 1995.
ing a system or a program correct rather uninteresting. Wh
is more valuable is that a careful formal analysis can revea
imprecise requirements, inconsistencies, or even bugs. Ou
experience with formally analysing several services of TTP

shows that also the first of the two steps mentioned at theg] H. Kopetz and G. Griinsteidl. TTP — A Time Triggered

beginning, the modeling phase, is beneficial to the system it protocol for Fault-Tolerant Real-Time SystemEEE
self. The need of precise statements within the formal model computey27(1):14-23, 1994.

can yield to a substantially improved description of the al-

gorithms by clarifying issues initially missing or left vag. [9] H. Kopetz and W. Ochsenreiter. Clock Synchroniza-
Furthermore, developing a formal model can contribute to tion in Distributed Real-Time SystemdEEE Trans.
the understanding of the service under study. The group Computers36(8):933—-940, 1987.

E. Clarke, O. Grumberg, and D. Pelellodel Check-
ing. The MIT Press, Cambridge, London, 1999.

] H. Kopetz. Real-Time Systems: Design Principles for
Distributed Embedded Applicationg&ngineering and
Computer Science. Kluwer, 1997.

9

(10]

(11]

(12]

(13]

(14]

(15]

(16]

J. Lundelius-Welch and N. Lynch. A new fault-tolerant
algorithm for clock synchronizationinformation and
Computation77(1):1-36, Apr. 1988.

P. S. Miner. Verification of Fault-Tolerant Clock Syn-[17]

chronization Systems. NASA Technical Paper 3349,
NASA Langley Research Center, January 1994.

S. Owre, J. Rushby, N. Shankar, and F. von Henke. For-

mal Verification for Fault-Tolerant Architectures: Pro—[ls]

legomena to the Design of PVEEEE Trans. on Soft-
ware Engineering21(2):107-125, February 1995.

H. Pfeifer, D. Schwier, and F. W. von Henke. Formal
Verification for Time-Triggered Clock Synchroniza-
tion. In C. B. Weinstock and J. Rushby, editobBs-
pendable Computing for Critical Applications Vol-
ume 12 ofDependable Computing and Fault-Tolerant
Systemspages 207-226. IEEE Computer Society, Jan-
uary 1999.

Holger Pfeifer. Formal Verification of the TTP Group[zo]

Membership Algorithm. In Tommaso Bolognesi and
Diego Latella, editordrormal Methods for Distributed

System Development — Proceedings of FORTE XIll511 N shankar. Mechanical Verification of a Generalized

PSTV XX 2000pages 3-18, Pisa, Italy, October 2000.
Kluwer Academic Publishers.

J. Rushby. Formal Methods and their Role in the Certi-
fication of Critical Systems. In R. Shaw, edit&afety

and Reliability of Software Based Systems (Twelfth An-
nual CSR Workshopgpringer-Verlag, 1995.

J. Rushby. Systematic Formal Verification for Fault-
Tolerant Time-Triggered Algorithms. In M. Dal Cin,

10

[19]

(22]

C. Meadows, and W. H. Sanders, editddgpendable
Computing for Critical Applications —,6pages 203—
222. |IEEE Computer Society, March 1997.

J. Rushby. Verification Diagrams Revisited: Disjunc-
tive Invariants for Easy Verification. h€omputer
Aided Verification (CAV 2000 hicago, IL, July 2000.
To appear.

C. Scheidler, G. Heiner, R. Sasse, E. Fuchs, H. Kopetz,
and C. Temple. Time-Triggered Architecture. In J.-
Y. Roger, B. Stanford-Smith, and P. T. Kidd, editors,
Advances in Information Technologies: The Business
Challenge. Proceedings of EMMSEC!9IDS Press,
1997.

F. B. Schneider. Understanding Protocols for Byzan-
tine Clock Synchronization. Technical Report 87-859,
Cornell University, Aug. 1987.

N. Shankar. Mechanical Verification of a Schematic
Byzantine Clock Synchronization Algorithm. Techni-
cal Report CR-4386, NASA, 1991.

Protocol for Byzantine Fault-Tolerant Clock Synchro-
nization. In J. Vytopil, editorFormal Techniques in
Real-Time and Fault-Tolerant Systemslume 571 of
Lecture Notes in Computer Sciengeges 217-236.
Springer-Verlag, January 1992.

TTTech. Specification of the TTP/C Protocol.
Available on request from TTTecttt p:// ww.
tttech. conl, 2000.

