
1

Planning Agents in James

Bernd Schattenberg Adelinde M. Uhrmacher

Faculty Computer Science Computer Science Department

University of Ulm University of Rostock

D-89081 Ulm D-18059 Rostock

schatten@informatik.uni-ulm.de lin@informatik.uni-rostock.de

Abstract— Testing is an obligatory step in developing
multi-agent systems. For testing multi-agent systems in
virtual, dynamic environments, simulation systems are re-
quired that support a modular, declarative construction of
experimental frames, that facilitate the embeddence of a
variety of agent architectures, and that allow an efficient
parallel, distributed execution. We introduce the system
James (A Java-Based Agent Modeling Environment for Sim-
ulation). In James agents and their dynamic environment
are modeled as reflective, time triggered state automata. Its
possibilities to compose experimental frames based on pre-
defined components, to express temporal interdependencies,
to capture the phenomenon of pro-activeness and reflectiv-
ity of agents are illuminated by experiments with planning
agents. The underlying planning system is a general pur-
pose system, about which no empirical results exist besides
traditional static benchmark tests. We analyze the interplay
between heuristics for selecting goals, viewing range, com-
mitment strategies, explorativeness, and trust in the persis-
tence of the world and uncover properties of the agent, the
planning engine and the chosen test scenario: Tileworld.

I. Introduction

Testing is an obligatory step of each software engineer-
ing process and becomes even more important if the de-
velopment of a software system must be considered as
experimental itself. “At the time of writing, the devel-
opment of any agent system - however trivial - is essen-
tially a process of experimentation. There are no tried
and trusted techniques available to assist the developer”
[61]. The development of agents faces problems associ-
ated with traditional distributed concurrent systems. Ad-
ditional difficulties arise from complex interactions between
autonomous problem solving components [29, p.298]. The
construction of agents reincarnates troubles of embedded,
real-time knowledge based systems due to the environment
of agents being typically dynamic, inaccessible, and non-
deterministic.
The complexity of agents, their environment, and the in-

teraction between agents and environment suggest that ex-
perimental testing represents a major research effort in the
area of multi-agent systems. However, systematic experi-
ments with agents have not found the expected attention in
designing agent architectures. Jennings and his colleagues
observe at the end of the 90ties that testing agents is the
least developed research area in multi-agent systems [29].
Some time has elapsed since Paul Cohen, Steve Hanks, and
Martha Pollack wrote their paper on controlled experimen-
tation, agent design, and associated problems [26]. Their
controversy about the role of concrete test beds in designing
agent systems has neither lost its topicality nor its virtue,

though. Test beds, e.g. Dvmt [17], Phoenix [24], Tile-
world [43], the soccer game [34], and the proposed large
scale disasters [33] represent a complement to conventional
benchmark tests, offering test scenarios which are aimed at
revealing prototypical problems in dynamic environments.
Within this testing in the small, it is not the purpose to
confront the agent with a valid model of the concrete envi-
ronment the agent shall dwell in. Instead, it aims at pre-
senting a simplistic world in which properties of a concrete
agent or a simplified version of an agent can be analyzed
in isolation, e.g. properties of the built-in planning compo-
nents [35] – of course, finding such “correct” simplifications
is a very crucial part in the experimentation process. Test
beds help to explain and understand why agents behave as
they do by illuminating behavior facets of a given agent
architecture.

Planning agents are a research area where the need for
experimental testing becomes especially apparent as their
behavior is often difficult to predict. Adding planning ca-
pabilities to an agent architecture offers the advantage of an
explicit knowledge representation combined with a stable
and robust decision procedure for the strategic behavior
of the agent (for an introduction to planning techniques
see [60], [59]). Planning showed to be very useful in many
agent-based applications, e.g. the New Millennium Remote

Agent controlling the Deep Space 1 probe [40] or for col-
lecting data on the Internet [22]. The techniques itself are
well developed and in most cases provably correct. But the
difficulty in prediction arises from the fact that we still do
not have enough theoretical knowledge about the structure
of complexity in planning problems in general, as well as
the specific needs of a given domain and their influence on
planning performance. Most symbolic planners have fully
deterministic algorithms and are well understood by the
researchers, but e.g. the planning competition at the Inter-
national Conference on Artificial Intelligence Planning and
Scheduling (AIPS)1 still leads to big surprises. Further-
more, these competitions are based on (compared to real-
world problems) relatively simple benchmark problems –
definitely not the kinds of environments agent-applications
would be used for. So the question still is to determine
the behavior of an agent using a planning system for deci-
sion making in a dynamic world: Given the planning sys-
tem, will it be fast enough to produce a valid plan for the

1See http://www.cs.toronto.edu/aips2000/ for the results of the
AIPS 2000 competition.

2

changing settings, and is the environment not too complex
in terms of memory consumption?
Therefore, planning agents shall illustrate the approach

we took with the simulation system James to meet the
need for flexible, efficient, and sound methods that sup-
port experiments with and thus the development of multi-
agent system. The experiments will be executed within the
Tileworld scenario. Therefore, both, planning agents
and the scenario are modeled in James. In contrast to
other projects in which agents utilize specialized planning
systems to maximize their score in the Tileworld, in our
experiments agents are equipped with general planners,
based on which the interplay between time pressure, so-
cial awareness, opportunism, trust and viewing range will
be explored – in terms of the planning system we vary the
time the initial state will persist, the used heuristic func-
tions and the size of the domain model.
Whereas in the paper we only describe experiments we

executed with planning agents in the Tileworld, James
has been used to test other types of agents in other scenar-
ios as well, e.g. to test mobile agents and their strategies
in virtual networks [55]. Its broad applicability is one of
the properties which distinguishes James from other ap-
proaches to test multi-agent systems and among which its
firm roots in a formal approach to discrete event simulation
might be the most dominant.

II. JAMES - a tool for designing multi-agent test
beds

The objective in developing James, a Java-based Agent
Modeling Environment for Simulation, has been to support
a modular and flexible construction of experimental frames
for multi-agent systems. A declarative and modular model
design is central in designing test beds which might range
from simple benchmarks to application-oriented test sce-
narios. As Hanks points out, testing should ultimately be
aimed at analyzing how agents will perform in the envi-
ronment they are constructed for. “The ultimate interest
being not simplified systems and environments but rather
real world systems deployed in complex environments.”[26,
p.18]. This is interestingly the very reason why Steve
Hanks doubts the effectiveness of small world experimen-
tation and Martha Pollack interprets them as the only pos-
sible approach to begin with. If we assume that testing in
the small and testing in the large complement each other
in constructing agents, compositional experimental designs
are asked for which help to re-use and refine components
according to the user’s and the objective’s needs.

James is based on Devs [62] which belongs to the for-
mal and general approaches to discrete event simulation.
The model design is coined by a modular compositional
construction of models. It clearly separates the model from
the experimental frame, i.e. the environment and context, a
model shall be tested in. Unlike other formal approaches to
discrete event simulation, it emphasizes a state based view
rather than focusing the modeler’s attention on events and
processes: This allows the modeler to capture agents and
their environment as situated automata which are widely

used as a unifying abstract perception throughout the liter-
ature on agents and multi-agent systems. E.g. Rosenschein
and Kaelbling introduce a situated automaton whose inter-
action with its environment is characterized as the trans-
formation of a stream of inputs into a stream of outputs
[47]. Thus, control systems and agents are similar, in the
sense that both maintain an ongoing, non-terminating re-
lationship with their environment.

Within situated automata, knowledge is compiled into
transition rules. Therefore, they are typically associated
with reactive agent architectures, or “reflex agents with
state”, which do not totally depend on perfect percep-
tions. Their internal state helps them to distinguish be-
tween environmental states which produce the same input
but, according to the given context (encoded within the
agent’s state), are different and should be treated as such.
An agent updates its state according to the percepts that
are interpreted with respect to its current state, chooses
its action, updates its state to report its selection, and fi-
nally executes the action. Whereas strategies to select the
best action vary and the state is structured differently, the
sketched scheme resurfaces in different architectures.

State automata are not only used as a frame to con-
struct agents, they also form an abstraction to specify the
behavior of agents. This type of abstraction can also be
employed by agents themselves. Agents might perceive
other agents as state automata. In this case, learning the
behavior pattern of another agent means deriving a state
automaton which mimics the “opponent’s” behavior and
allows the agent to choose the most rational action [13].
Thus, state automata play a central role in bringing to-
gether “the different strands of research and development
in multi-agent systems” as d’Inverno and his colleagues ob-
serve and demonstrate “by taking a commercially devel-
oped system (Agentis) and providing it with a firm, for-
mal foundation (i.e. Z) that lends itself to further analysis
and investigation” [16].

Another of Devs’s benefits is making the temporal di-
mension of an agent’s behavior explicit by adding time trig-
gered events. Often, test beds represent time only implic-
itly, and proceed stepwise [37]. In contrast Devs defines
for each state the time it will persist “per se” and thus
allows to simulate a variety of “pro-active” and “reactive”
behaviors.

However, as do other formal approaches to discrete event
simulation, the Devs formalism presupposes static model
structures and does not provide means for reflection; both
are crucial in modeling and simulating agents. To support
variable structure models which are able to assess and ac-
cess their composition, interaction, and behavior structure
from an agent’s perspective, a new formalism was intro-
duced which expresses agents as reflective concurrent dy-
namic systems [53]. James represents an implementation
of this formalism.

As does Devs, James distinguishes between atomic and
coupled models. An atomic model is described by a set of
input events, a state set, and a set of output events. Tran-
sitions dictate state and model transitions due to internal

3

GRID

0/0 0/1 0/2

1/11/0

Agent

1/2

Fig. 1. Composition and coupling of the models

events, respectively external input. An output function
generates events as outputs based on the current state, and
the time advance function determines the time of the next
internal event, i.e. how long the state will persist “per se”.

A coupled model does not have a state nor a behavior
of its own. Its interface to its environment is given by a
set of external input and output events. It is made up of
a set of (sub-)models, i.e. its components, which may be
atomic or coupled, and the couplings which exist among
these components. The structure of a coupled model and
the behavior pattern of each single atomic model are fre-
quently apt to change depending on the activities of the
atomic models.

Coupled models support the modular, compositional
construction of experimental frames. It is a matter of indif-
ference for the coupled model whether its components are
atomic or coupled. Thus, compositional hierarchies can be
constructed. The composite structure of models supports
the re-use of components as it supports the refinement of
components.

Figure 1 illustrates the structure of a test scenario as a
James model. It comprises seven atomic models, the agent
and six grid fields, named after the positions they represent.
These models are components of the coupled model grid,
but could equally be re-used to specify refined components
for other grid worlds, as has been done in another scenario
where the neighborhood of each grid field embraces adja-
cent, diagonal grids as well and fire spread through the grid
world. Another advantage of modeling the environment in
this way is the uniform representation of possibly very dif-
ferent locations. We could plug-in physically more realistic
atomic models, e.g. to simulate the spreading of fires in
national parks [14], or by using coupled models instead,
we could e.g. simulate the effects of disasters in urban re-
gions [33] or scenarios like loading docks as in [39]. The
coupled model can easily represent a refined structure of a
location – logical or “real”. This means, that on the one
hand the modeler can use the compositional structure of
a location as an abstraction, a support tool for developing
the environment. On the other hand the location can have
sub-locations and other entities, like e.g. a building with
machines in it. Outside the buildings, the agents use the
streets, but inside the granularity of motion increases, and

state

output

d
ext

t
a

l

d
int

input

changes

influences

triggers

Agent

perception

action

cognition

memory

Fig. 2. The internal structure of atomic models and their role in
modeling agents in James

the agents ascend stairs, enter rooms, etc.

At this stage, we do not have such elaborated, complex
models, but our approach supports them already in two
ways: First, the formalisms provides flexible composition,
and second, the simulation can be run distributed. The last
point is especially important for the use of “sub-locations”,
where defined parts of the simulation with potentially many
interactions, namely the location itself and the interacting
agents, can be re-located to reduce load of the local simu-
lation engine.

The state space of an atomic model can easily be struc-
tured to reflect aspects of deliberative agents, e.g goals (de-
sires), intentions, and beliefs. Figure 2 shows an agent’s
representation in terms of an atomic Devs model: the cog-
nitive component embraces the transition functions which
are responsible for invoking a planning system.

The activities of an agent are modeled by charging its
output ports with messages, or by accessing the structure
of its environment. Output ports are charged the moment
an internal transition function is executed. Thus, they are
triggered by the flow of simulation time.

Accordingly, an agent’s “output” activities are decou-
pled from receiving external events. Both, the perception
of events and the reaction directed to the environment in-
teract via state and the time advance function (Figure 2).
An agent’s first reaction to external perturbations will be
a change of its internal state. With each state, the time
advance function associates the time this state will persist
“per se”. It determines the time of the next internal event
and output, e.g., the time an agent needs for reacting. In
the meanwhile, external events might shorten or lengthen
the time period until the next output. E.g. some external
events might require an agent’s immediate reaction which
is achieved by producing a state with which a time-advance
close to zero is associated. Besides modeling the temporal
aspect of an agent’s reaction to external events, the time-
advance function allows also for a pro-active behavior of
an agent, since outputs depend on an agent’s current state
and are triggered by the flow of time. Thus, an agent does
not require any external event to become and stay active.

The “reaction” time refers in some cases to an agent’s
“deliberation” time. A valid model of the deliberation time
is central in testing agents, whose performance typically de-
pends on a timely response. Most approaches model the

4

deliberation time as a function of the actual computation
time [14], other estimate it according to the used deliber-
ation component and the size of the problem [17], again
others weight and count instructions which are executed
during “deliberation” [3]. James supports the former two
time models, since the latter presupposes that the delibera-
tion component can be executed in a “timed” programming
language, e.g. “Timed Lisp” which overloads the standard
lisp functions [3]. The deliberation components that are
tested in James are typically implemented in different lan-
guages, e.g. Java and C, and started as external threads.
Neither Java nor C nor other non-interpretative languages
lend themselves to an easy implementation of a timed vari-
ant.

If internal information about the deliberation component
can be accessed, other measures than the real time con-
sumption might be introduced as well: the size of the vis-
ited search space by counting expanded nodes, the number
of rules triggered, or the number of resolution steps. The
size of the beliefs, their structure in terms of literal length
or expression depth, or the number of query operations
within the beliefs databases can be used as an estimator
for deliberation complexity.

Although the above measure support reproducible test
runs, their applicability is restricted. E.g. if different plan-
ning systems shall be tested and compared, the number
of expanded nodes is no valid measure. SAT-based plan-
ners generate every possible state and operator instance
to start with whereas Graphplan style planners expand
nodes when required. Similar arguments might apply when
different knowledge revision algorithms or rule-based sys-
tems shall be compared.

Since measures based on easily available information, e.g.
the size of the knowledge base, can often only be used as
a first very coarse approximation, the consumption of real-
time, although polluted by noise introduced due to the run-
time environment, seems often the best applicable, most
valid time-model to employ. This showed also in experi-
ments we executed in James.

Beliefs about itself and the world around it, not only af-
fect a model’s behavior which is articulated by charging its
output ports, but determine its possibility to manipulate
its surrounding, as well, e.g. to create other models or to
change its interaction structure. Structural changes are in-
trinsically connected with agents, as agents are constructed
to work in open environments whose composition and in-
teraction might vary due to the environment’s inherent dy-
namics or due to an agent’s deliberative manipulation.

In James, all atomic models are able to create new mod-
els and to add existing ones within the boundary of the
embedding coupled model. They can delete themselves
and their couplings from their interaction context, and de-
termine their own interaction with their environment [56].
Models can initiate their movement from one interaction
context (in)to another. Please note, that the interaction
context is determined by the surrounding coupled model
and the coupling structure. E.g. in the above model (Fig-
ure 1) the agent might move “from field 0/2 to field 0/1” by

establishing a coupling with the destination grid element
and removing the connection to the original one. This kind
of structural changes can be handled rather simply – in
other scenarios, e.g. a softbot within clusters of database
servers, the agent might move from one cluster (coupled
model) into another. It can initiate such a move however
for its completion, i.e. for being embedded within the new
context, it needs the cooperation of an on-site model [56].

To initiate structural changes outside their boundary,
agents have to turn to communication and negotiation in
James. Thus, a movement from one coupled model to
another implies that another atomic model complies with
the request to add the moving model into the new inter-
action context. To facilitate modeling, all atomic models
are equipped with default methods that allow them to re-
act to requests, e.g. to add models, to create new ones, or
to delete themselves. However, these default reactions can
be suppressed to decide deliberately what requests shall
be executed. The freedom to decide whether to follow a
certain request, and its knowledge, i.e. beliefs, about itself
and its environment, distinguish active agents from more
“reactive” entities [29]. Thus, typically only some of the
models which make up the overall model will form agents.

As do many simulation systems, James distinguishes be-
tween the model, where the dynamic system is described
declaratively, and the execution of the model, which inter-
prets the dynamics as it is specified within the modeling
formalism. The functions of a model, i.e. transition, out-
put, and time advance function are implemented in Java.
However, the modeling formalism describes “what” causal
and temporal dependencies exist. To exploit this knowl-
edge and to transform the description into the production
of trajectories are the responsibility of the simulation layer.

The simulation layer adopts the structure of the ab-
stract simulator proposed by Zeigler [62]. With each atomic
model a simulator is associated and with each coupled
model a coordinator. They form a tree of processors whose
leaves are the simulators. The simulation is realized as
an exchange of messages between simulators and coordina-
tors up and down the hierarchy. Activated by messages,
coordinators direct the inputs or outputs to the addressees
and the simulators invoke the corresponding transition and
output functions to update state and to produce outputs.
They determine the time of next event of the associated
model by applying the time advance function. This infor-
mation they make known to the superior coordinator. If
the models are not affected by incoming events they will
be activated the next time when their own internal event
is scheduled.

To efficiently test more than a single deliberative agent,
which consumes significant space and computation re-
sources, often a concurrent, distributed simulation proves
beneficial [36]. Therefore, the processor tree realizes dif-
ferent execution strategies, whereas one adopts a conser-
vative strategy where only processes which occur at ex-
actly the same simulation time are processed concurrently
[56], two other strategies split simulation and agent pro-
cesses into different threads and allow simulation and de-

5

liberation to proceed concurrently by utilizing simulation
events as synchronization points. One of the latter two im-
plements a moderately optimistic simulation strategy and
has been developed to support the simulation of planning
agents where the agents are modeled within James but in-
voke external planning and deliberation processes. As ex-
periments demonstrated, the algorithm simulates several
planning agents close to the cost of a single agent and in-
creases the performance significantly, given that a sufficient
number of machines are available and the agents plan suf-
ficiently long [54].
To test agents of the mobile agent system Mole [6]

within virtual networks a library to describe networks with
some simple routing protocols and an interface for plugging
existing Mole agents into the virtual world have been im-
plemented in James [55]. This approach renders an addi-
tional modeling of agents superfluous, as they can be tested
as they are. This “plug and test” has also been raised
as a requirement in testing multi-agent systems, e.g. in
the contributions by Logan and Theodoropoulos [36] and
Sarjoughian and his colleagues [49]. In James, the en-
tire Mole agents with their states can be “plugged” into
the virtual world. Therefore, a conservative variant of the
above optimistic strategy has been developed, which allows
simulation and deliberation to proceed concurrently how-
ever which avoids rollbacks from the outset. Performance
differences of the conservative and optimistic variant have
still to be explored.

III. Planning Agents in JAMES

The “simple planning agent” (Figure 3) shall illustrate
how an agent can be modeled in James. The agent gener-
ates a plan and then executes the plan stepwise and blindly.
Its activity is triggered by perceptions only, the agent is
called from the environment with new percepts. Time is
considered in a rudimentary manner by increasing an inter-
nal count by one. The simple planning agent is obviously
inspired by the beliefs, desires, and intention (BDI) model
of agent architectures [9].
The attitudes, beliefs, desires, and intentions, comprise

an agent’s internal state. The external, internal transition,
and output function are responsible for updating attitudes
and determining suitable (re-)actions:

• The external transition function encodes the reaction of
the agent to incoming events in terms of state changes.
First, its beliefs are updated. Updating the intentions
means to develop a plan to achieve the newly selected goals.
The transition function relates the different attitudes of an
agent, i.e. its beliefs, desires, and intentions. The time ad-
vance function determines the reaction time, the time an
agent needs to produce its output.
• Part of the agent’s activities is communicating actions to
other models. The output function takes the “first” of the
intentions and charges its output ports with effects directed
to the environment. These are messages which have to be
interpreted by the receiving model.
• The internal transition completes the activity by updat-
ing the agent’s state. E.g. the expected effects of the action

class SimplePlanningAgent extends AtomicModel {

State deltaExt(State state, double elapsedTime) {
state.beliefs.update(input, elapsedTime);
if (intentions.plan == noOp) {

state.goals.update();
state.intentions.update(beliefs,goals,operators);
state.setTimeAdvance(intentions.deliberationTime);

} else {
state.setTimeAdvance(REACTION);

}
return state;

}

void lambda(State state) {
Action action = state.intentions.getAction();
if (state.beliefs.entail(action.pre))

outPortPut("out",action.outputEffect(state));
else outPortPut("out", noOp);

}

State deltaInt(State state) {
Action action = state.intentions.getAction();
if (state.beliefs.entail(action.pre)) {

action.transitionEffect(state);
state.intentions.popAction();
state.setTimeAdvance(INFINITY); }

else { // re-planning ...
state.intentions.update(beliefs,goals,operators);
state.setTimeAdvance(intentions.deliberationTime);

}
return state;

}
}

Fig. 3. Extract of the “simple planning agent” in James

are added to its beliefs, and the time to the next internal
event is determined. Sometimes an agent’s activity might
also refer to structural changes. In this case, the internal
transition function will execute one of a set of predefined
methods which are responsible for e.g. creating, adding
a model, removing itself, or changing an interaction with
another model.

The approach assumes actions with two layers. The sym-
bolic layer is comprised by beliefs, goals and intentions,
which are interpreted by the planning system. On the lower
layer, the actual execution of the intended symbolic activ-
ity in James has to be specified, i.e. action.outputEffect
and action.transitionEffect. It has to be deter-
mined with what kind of information which output port
is charged, and what effect the action has on the agent’s
state, particularly beliefs, and its environment in terms of
structural changes. In the latter case the transition precip-
itates a change of the overall structure of the model.

The “simple planning agent” in Figure 3 takes its deliber-
ation time into account, and considers whether the current
action is executable as planned. If the current planning
step is not executable according to its beliefs, it starts re-
planning. The time for deliberation determines when the
agent will be able to start with plan execution, it models
the time needed for planning. The longer the agent needs
for plan generation, the more likely re-planning is required
in a dynamic environment.

The agent works well if the completion or failure of a plan
step is the only thing to be observed in the environment.

6

class PatientPlanningAgent extends AtomicModel {

State deltaExt(State state, double elapsedTime) {
state.beliefs.update(input, elapsedTime);
if (intentions.plan == noOp) ||

(state.beliefs.planFailed()) ||
(elapsedTime > state.timeForAction) {

state.goals.update();
state.intentions.update(beliefs,goals,operators);
state.setTimeAdvance(intentions.deliberationTime);

} else {
if (state.beliefs.entail(action.pre)) {

state.setTimeAdvance(REACTION);
} else {

state.setTimeAdvance(INFINITY);
}

}
return state;

}

Fig. 4. External transition of the “patient simple planning agent” in
James (δint and λ are identical with the “simple planning agent”,
Figure 3)

However, it does not refer to the problem that some plan
step might take some time to be completed, and in the
meantime other things might happen in the environment.
Interrupted while executing the agent will notice that the
preconditions for the next plan steps are not achieved and
will start re-planning. The moment the agent is triggered
by an incoming event, it is not able to distinguish between
a failure in execution and a still ongoing plan execution.
This requires differentiating between inputs that refer to
the current plan step and inputs that do not. A “fail”
requires re-planning. If the desired effect of the current
plan step is confirmed, the agent continues executing the
plan after the reaction time. If the environment does not
inform the agent about a failure, our agent needs some
other means to proceed. The time an action will likely
take to complete helps in designing a less irritable agent
(Figure 4). Whereas the first step of a plan is executed
after generating the plan, to proceed executing the plan
steps both agents wait for inputs.

IV. The “Tileworld” scenario

Tileworld [43] has been initially created to test dif-
ferent control, particularly commitment strategies of Irma
agents [8].

Tileworld is a two dimensional grid world with tiles
which can be moved, and holes which should be filled with
tiles. There are obstacles which impede the movement of
agents, and gas stations which allow the refilling of con-
sumed energy. Tiles, holes, and obstacles appear and dis-
appear at a certain rate, according to global parameter
settings. Thus, the environment displays probabilistic (we
will come back to this point later) dynamic behavior.
The effectiveness of an agent is measured in terms of

scores that summarize the number and kind of holes filled,
and the type of tiles used for filling. An agent’s activity
consumes more resources, the more tiles it carries and the
longer it walks. Therefore, it has to re-charge its energy
frequently by visiting a “gas station” (Figure 5). Tile-
world combines a counting problem, i.e. how many more

1 765432

B

(3)

10/5

C

(3)

8/6

A

(3)

9/6

B

(1)

10/7

B

(1)

6/2

A

(2)

4/3

C

(2)

10/8

A

B

AA

AB

A

B

AA

A

AC

AC

TGA

OGA

1

7

6

5

4

3

2

Fig. 5. The Tileworld scenario in James. Diamonds denote tiles,
black circles holes which are attributed with a type, a depth,
and with a score to be gained by filling it with the correct and
incorrect type of tiles (6/2). The grey grids are obstacles.

tiles of what type does the agent need to fill a particular
hole, with route planning in a grid world. This setting
puts only few constraints on the search space and implies
a costly deliberation with respect to computing time and
memory.
It is in fact very similar to the logistics benchmarks, e.g.

in the AIPS competitions, but has some unique character-
istics. First of all the navigation task is more difficult than
that of typical benchmarks, as they deliver parcels via a
smaller set of possible paths. The goal to have not only “a”
solution but an “optimal” solution by choosing the appro-
priate tiles for the holes, once again increases the difficulty.
Last but not least, the changing environment has never
been captured by classical planning systems’ benchmarks,
as they are primarily designed for static environments only
– and for exactly one acting entity.
Most test beds for multi-agent systems represent the en-

vironment by a single entity the agents interact with. De-
scribing the grid world as a composition of multiple grids
enables the experimentator to plug in new physical features
or types of grid elements, and to adapt the given test bed
easily to more complex spatial dynamics, e.g. the spread-
ing of fires or other disasters which call for the agents’
decisions and actions. Each grid is modeled as an atomic
model which changes its internal behavior with a certain
probability after a certain time. The behavior pattern and
state space of a grid change depending whether it plays
the role of a “normal” grid, a hole, an obstacle, or a gas
station. Also the interaction structure between grids and
agents exhibits some dynamics. Agents are located on the
grid, they are attached to by couplings. They move by
removing and adding those couplings to adjacent grids.
The agents, whose primary goal is to increase their

scores, are based on the refined version of the “simple plan-

7

Agent

grid-Element

G

Request(...moveNorth)

Agent

grid-Element

G

t(move)

grid-Element

H

position= G

Request(...moveNorth)

grid-Element

H

0

grid-Element

H

grid-Element

G

Agent

position= G position= G

0

Inform(...moveOK)

grid-Element

H

Agent

position= H

Inform(...moveOK)

Fig. 7. The agent is moving from grid position G to H

ning agent” with distinguished phases of plan generation
and execution. They are bold agents: as long as their plan
is executable, they will stick to that plan and reconsider
new options only if a plan explicitly fails. More reactive
agents would tend to adapt their behavior strategy each
time an action is required, see also [20]. In addition and
in contrast to the “simple planning agent”, the activity of
our Tileworld-agent is not triggered by external events
only, but can easily exhibit pro-activity as well, e.g. if no
plan can be generated, an agent can start to explore its sur-
roundings, with the hope that new options might present
themselves. The interaction with its environment is based
on the agent’s request and the environment which does or
does not grant what has been requested. Each interaction
with the environment is structured by protocols [50].

scanning the environment: The agent sends a request to
the grid it is attached to asking for information (Figure 6).
This request is propagated according to the sensor range of
an agent among adjacent grids. The result is collected by
the central grid and sent back to the agent. The agent in-
terprets the results and updates its egocentric map which is
part of its beliefs. This modeling facilitates an easy exten-
sion of the scenario with physically more accurate sensor
models, e.g. directed or non-perfect sensors, like decreas-
ing accuracy or noise. Thus, we do not take omniscience
for granted, as Gelenbe and his colleagues do [20], but ex-
plore how incomplete information might influence the per-
formance of the agents.
picking up: The agent sends a request for picking up tiles
to the grid it is attached to. The grid answers the request
by forwarding the tiles if available, otherwise it declines the
request.
putting down: The agent puts down tiles, either to gain
the score connected with a hole or to lighten its burden if
it is running short on gas. All grids except obstacles will
welcome tiles. A hole answers to the put request by sending
the scores gained to the agent.
moving: If the agent wishes to move, it does so by request-
ing a move from the grid it is attached to (Figure 7). The
grid asks the desired location, and if the location is free, it
will grant the moving request and the agent is moved, i.e.
its couplings are moved to the new grid.

refilling: If the agent is running out of gas, it will send a
request to the grid to refill the gas. The request is positively
answered only if the grid represents a gas station.

For an example of these protocols from the agent’s point
of view see Figure 8.
The agent gets the requested facts about its environment

at time point t1, saying among other things that there is
a hole on the field to the east. After some deliberation
(planning, etc.) the agent sends its current intention, i.e.
to move east, to the associated grid element. The (simu-
lation) time the agent needs for its deliberation, d − time

is calculated according to the real-time consumed during
deliberation multiplied with the “real-time knob”. The
processing of the move takes a pre-defined amount of sim-
ulation time, and the agent, which has set its time of next
internal event to infinity, is waken up at t3 by the field it
moved to. The agent then decides after some time (t4) to
lay down one of its tiles, which is acknowledged by the field
and rewarded with ten points at t5.
In our agent architecture the agent plans its movement

between locations and which tile to pick up, whereas the
goal selection, i.e. which hole shall be filled, is done by
heuristic functions.

V. Experiments in JAMES

The mediation between reactivity and deliberation and
its effect on the performance of agents is often at the core
of evaluating agents, e.g. [14], [32].
In designing rational agents, commitment strategies de-

cide whether agents are likely to drop goals and seize new
options. The filtering of options, as done in the Irma archi-
tecture, means that according to the current commitment,
an agent will bypass options that conflict with its goals
and the goals of its group. With less committed and more
opportunistic agents, the coordination of agents becomes
more difficult. But an absolute commitment is not realis-
tic in a dynamic environment. An “appropriate” response
to environmental change depends on valuing the options
an agent has with respect to the given context [27]. To
become aware about relevant changes in the environment,
monitoring strategies have to be realized. E.g., Pollack
introduces a rationale-based monitoring which focuses the
attention of an agent to that part of the environment which
is included in the plan rationale and thus likely related
to the current commitments [57]. The trade off between
reactive and deliberative capabilities implies agent archi-
tectures that comprise different layers. The design of these
agent architectures requires answering the question of what
aspects should be included within a plan, and what should
be deferred to lower, “more reactive” layers. Within multi-
agent scenarios questions of inter-agent interaction arise,
e.g. how shall work load and tasks be distributed among
agents [15], what benefits are to be gained by a cooper-
ative community of agents [23], and what strategies shall
agents use to negotiate [48]. All of these design decisions
are subject to testing.
Our objectives in testing our agent appear comparatively

modest, which is also caused by the agents’ simple struc-

8

Scan Layer

Request(...scanAll0)

Request(...scanAll0)

Scan Layer

Inform

Inform t(spreading)

t(spreading)

Agent

grid-Element

Request(...scanAll1)

Request(...scanAll1)

Agent

grid-Element

Inform

Inform
t(scan)

t(spreading)

Fig. 6. The agent scans its environment

t
1

t
0

t
2
=t

1
+d-time t

3
=t

2
+move-time t

4
=t

3
+d-time t

5
=t

4
+put-time

t

hole(p8/3,...) move Ok transfer Ok 10

move East laydown C

Fig. 8. An example for the interaction between the agent and its environment.

ture. To speed up the design process of an agent applica-
tion, we wanted to use a standard general planning system

for decision making instead of building highly specialized
Tileworld-planning components. We found it more fea-
sible to look for existing tools, in this case Graphplan
[7], a recent planning system that induced a large number
of successor systems, due to its extraordinary good perfor-
mance on several benchmark problems. We considered it
being capable of doing the job, because of two reasons: Al-
thoughGraphplan’s strength lies in producing plans with
many steps being executed in parallel – which is not appli-
cable here – it is searching for many plan step sequences
in parallel. By filtering out mutual exclusive plan steps it
is relatively easy for it to find the executable sequences,
which is a big advantage in a domain, where you can do
many things at each point in time (moving somewhere or
picking up). The second thing is the memoisation tech-
nique Graphplan uses, it helps especially in the naviga-
tion task. Please note that these have been (and still are)
conjectures, as all experimental results were not applicable
to the given situation.

The question still remained, how useful such a general
purpose tool would be, after it seemed obvious that spe-
cialized components would do better, anyway. Therefore
we wished to explore the principles in the underlying do-
main that affect the planner’s performance. What possi-

bilities does the architecture offer to meet deficiencies of
the general planner, and what principles of the underly-
ing domain could be used to support the planning system,
e.g. by modifying the domain model? We started with
the most fundamental question of any deliberative architec-
ture, namely what difference planning for one or two goals
makes for a resource-bounded agent in a Tileworld sce-
nario: in which situations it pays to plan more far ahead.
On the other hand we were interested in the conditions un-
der which the architecture reaches a balance between re-
active and deliberative behavior. Therefore we conducted
two series of experiments.
To initialize the scenarios, holes up to a certain depth,

obstacles, tiles, gas stations, and agents are distributed
stochastically. As in original Tileworld, the scenario is
controlled with a set of parameters which define the size
of the grid, the maximum number of holes, tiles and hole
depth, the frequency of environmental changes, etc.

A. The First Experimental Series

In our first scenario two agents are concurrently active
on a 7×7 grid. Their relationship is characterized by com-
petition rather than cooperation.
The “real time factor” parameter is set to relate the ac-

tual computing time in seconds to the agent’s simulated
deliberation time in time units. It determines the time

9

Agents rtf: 1.000 rtf: 0.100 rtf: 0.010 rtf: 0.001

OGA 71 % 63 % 65 % 53 %
TGA 29 % 37 % 35 % 47 %

Fig. 9. Percentage of scores gained by the agents OGA and TGA
with different real time factor values

pressure agents are exposed to, e.g with a real time factor
of 0.1, ten seconds of CPU-time are mapped to one time
unit. Each agent is able to scan the area 3 grids around
it. Thus, it is equipped with an ego centric map with size
7 × 7: In the center of the grid an agent sees its entire
world. Each experiment consists of 10 simulation runs each
of which comprises 200 time units. Please note, that the
simulator processes are event based, and deliberation time
and execution time over a continuous time base are taken
into account.

In our first experiment we let one agent ponder two goals
simultaneously, whereas the other agent considers only one
goal at each time point. Both agents use Graphplan as
the underlying planning system.

At first glance surprisingly, the “one goal agent” (OGA)
proves in most cases to be more efficient than the “two goal
agent” (TGA) (Figure 9). This seems non-intuitive, be-
cause the environment’s dynamics are comparatively low,
i.e. in most scenarios things change slower in the environ-
ment than it takes the agents to plan and execute. Thus,
both agents should have a decent chance to generate and
execute their plans in a still valid environment. Further-
more, the running time of Graphplan-style planners is
mostly influenced by the size of the domain and not by the
length of the produced plan. The time to generate a plan
should variate only slightly between both agents.

The time consumption for the agents’ action-execution
is relatively high: with a real time factor of 0.1 an agent
can e.g. do only one or two move actions while the other
one is occupied by planning. Therefore, one would assume,
that the agents’ scores should converge much faster. More-
over, an agent satisfying two goals at once should do its job
more “efficiently” than one with a more local view on its
task. Actually, the number of actions required to fill two
holes is typically less than filling two holes subsequently
and independently. This effect is also shown in the energy
consumption.

Concerning energy consumption per achieved point,
planning for two goals outperforms planning for a single
goal by about 10-25%. But when it comes to the overall
performance in points, the smarter TGA apparently can-
not compensate for the (slight) time advantage of OGA
for generating a plan. Due to the used time model, which
multiplies the real time used by 1/1000, OGA has only a
small time advance left, even if the TGA needs hours to
complete its plan whereas OGA is usually finished after a
few seconds.

A remark on the used heuristics: The agents in Fig-
ure 9 use the same utility function for selecting their op-
tions (holes). The utility is defined by the distance of the
agent to the target, its value and complexity (depth). In

Agents rtf: 1.000 rtf: 0.100 rtf: 0.010 rtf:0.001

OGA 67 % 54 % 51 % 46 %
TGA* 33 % 46 % 49 % 54 %

Fig. 10. Percentage of scores gained by the agents OGA and a socially
aware TGA*

the experiments of Figure 10 TGA uses a modified func-
tion, that has different weights on the factors, and that
also takes into account the distance of an option to other
agents. When looking at the raw data, we can find that
TGA’s absolute score is increased by 33%, while on the
other hand its variance is reduced by 35% and its fuel con-
sumption by 10-25%. This still cannot compensate OGA’s
success. We can isolate several reasons for this behavior.

Since both agents are living in a “small” world, it is likely
that both will head for the same tiles to fill the same holes
with, independently of the used heuristics; in fact, vari-
ance in the scores decreases significantly when increasing
the board size. Whereas one agent is still thinking, the
other agent is already putting its plan into action. Typi-
cally, OGA changes the preconditions TGA bases its plan
upon and not vice versa. The moment TGA notices that
the plan is no longer executable as intended (an action
fails), it starts to reconsider its options, i.e. to re-plan.
Thus, TGA seems always slightly behind the development
of its environment – as long as the experiment’s duration is
short enough for both competitors to stay on fuel. TGA’s
situation slowly improves when we decrease the impact of
thinking time (Figure 9) or when we equip it with the capa-
bility to roughly assess the intentions of OGA and consider
those in selecting goals (new heuristic in TGA*, Figure 10).
Otherwise the dynamics in Tileworld are unpredictable.
A grid might turn each moment into a hole, a gas sta-
tion, or an obstacle, it might start growing tiles, totally
unimpressed by the current situation. There are no causal
structures about the behaviors of grids to be learned or to
be taken into consideration. Deliberation about how the
world evolves might seem not worth the effort. This is
one reason why Hanks doubts the value of the Tileworld
scenario in testing single deliberative agents [26]. However,
since the environment evolves sufficiently slow, most of the
deliberation efforts of an agent are not in vain. Also this ar-
gument of Hanks does not take into account that the causal
structures underlying the behavior of the real environment
are often neither known in advance nor deducible by the
agent. Thus, the randomness in Tileworld might reflect
even aspects of the agent’s later application domain.

In a third experiment we test Graphplan against a
planner which has demonstrated its supremacy in a series
of benchmark tests [46]. In the chosen scenario however,
it unexpectedly fails to meet the high expectations. The
agent that uses Graphplan for deliberation outperforms
the other agent in the above problem domain by far.

One of the reasons might be that Graphplan records
all search paths (even the non successful), a control strat-
egy which also proved beneficial in the “Tower of Hanoi”
benchmark test. However, further experiments are neces-

10

sary to explain the poor performance of the second plan-
ner. Graphplan runs regularly into problems, as well. At
a certain constellation of the scenario, e.g. planning for two
holes with a certain depth, Graphplan is no longer able
to generate a plan within a reasonable amount of time. We
see that the variance of the score can be decreased by more
than 30% when beginning with structured environment set-
tings, i.e. “corridors” and “rooms”. This phenomenon is
puzzling, since the problem structure of this situations ex-
hibits no obviously different quality.
We think, the explanation lies in the separation of ac-

cessible spaces: To get into a room, the agent has to follow
some corridor. Every other path to the final destination
is (in most cases) significant longer or even leading not at
all to the goal position and therefore it is easier to iden-
tify shorter paths. In a totally randomized setting, many
comparably good paths exist in parallel, they share inter-
mediate steps and then split again. In addition, randomly
distributed obstacles happen to be placed more often on the
bord of the grid compared to the structured scenario. In
the peripheral position they reduce the freedom of decision,
i.e. planning complexity, less than obstacles in other po-
sitions. These are the properties which make search much
more expensive.
The sensitivity with which the agents reacted to the

slight changes in their deliberation strategies, motivated
us to explore more systematically the behavior of a cou-
ple of different agents by variating a few easily scalable
parameters which characterize the agent’s interaction with
its environment.

B. The Second Experimental Series

One problem agents are faced with is their uncertain and
incomplete knowledge about their environment. One pos-
sibility to handle this problem is to frequently scan the
environment. Since such an update of its knowledge is
not a cost-free operation, the agent has to balance costs
and benefits. Another central design decision refers to the
agent being more reactive or rather goal-driven, or, putting
it differently, being opportunistic or strongly committed.
Whereas the first parameter determines how fast the agent
becomes aware of changes in its environment, the second
one determines whether it takes those changes into consid-
eration. Thus, the second parameter determines whether
those changes will have an effect on the agent. The first
parameter, we call trust, the second its boldness.
We define the trust of an agent by the number of plan

steps, the agent executes blindly. If it does not get a failure
notification by the environment, e.g. when trying to move
onto an obstacle, the agents checks its options after as many
steps as indicated by its trust. New target holes are only
taken into consideration if they are evaluated at least bold-
ness% better than the ones the agent already committed
to. For example, an agent with trust 5 and boldness 10,
committed to an option with an estimated value of 20, will
check every 5 steps if its plan is still executable. If this is
not the case it looks for a hole, rated at least 22 – if none
is found it tries to find a new plan for the committed goals.

In our experiments, trust ranges from 2 to 10 and boldness
from 0 to 50.
The strategy responsible for selecting the goals had a

significant influence in the last setup, so we tried to im-
prove the heuristics of our agents by making more sophis-
ticated estimations of the number of steps necessary to ful-
fill a commitment. The first agent uses the heuristic of the
old TGA*, the second one (TGA**) introduces adapted
weights and takes into account the average distance of the
nearest usable tiles. Whereas the first two agents wait for
new options to arise when no plan could be found, a more
explorative behavior would doubtlessly improve the per-
formance, we guessed. Thus, we designed a new “explo-
rative” TGAe** that walks randomly around if Graph-
plan fails. It happens quite often that the planner does
not have enough space to build up the planning graph. In
this case the agent starts to stroll around, “looking” for new
options – it has no commitment. On a non-empty grid, a
random movement might resemble a wall-following behav-
ior as not all directions are equally probable or possible to
pursue.
Each of these three different agents we equipped with

a different visibility. Each series is started with a sensor
range of 5, letting the agent always see the entire world.
We reduce this range to 4 and 3, giving the agent a global
view only in the center.

Strategy Scan range 5 Range 4 Range 3

TGA*
trust 2 – 10
boldness 0% – 50%
10 runs / combination

.

TGA**
TGAe**

Fig. 11. Overview over the second experimental setup.

In the second experimental series we use basically the
same kind of environment as in the first one. This time
we experiment with a single agent on a 6 × 6 plane. Dif-
ferent agents’ strategies and sensor ranges are tested for
each combination of which we vary the two parameters –
trust and boldness – and conduct with each setting 10 ex-
perimental runs. The abscissa denotes the boldness and
the ordinate the trust. The darker the shades the higher
the scores which the agent has received on average in this
particular setting. Please note that the experiments where
executed with settings that represent subsets of the over-
all range, i.e. we choose boldness out of [10, 20, . . . 50] and
trust out of [1, 2, . . . 10]. The regions in the figures repre-
sent interpolated versions of our results.
Figures 12 and 13 show some results of the experi-

ments with the TGA* agent. The five colors represent the
five value classes, darker shaded areas are associated with
higher values. Depending on the experiment the values
differ between 0-45 (Figure 12), 40-210 (Figure 13), 45-150
(Figure 14), and 120-235 (Figure 15).
The overall average score was 30 points for the TGA*

agent with scan range of five, rising up to 104 for the agent
with a scan range of three. The results of average score
depending on boldness and trust are depicted in Figure 12

11

0% 10% 20% 30% 40% 50%

2

4

6

8

10

Boldness

Trust

Fig. 12. Average scores for TGA* with scan ranges 5.

0% 10% 20% 30% 40% 50%

2

4

6

8

10

Boldness

Trust

Fig. 13. Average scores for TGA* with scan ranges 3.

and Figure 13 respectively. The minimum in the diagram
(Fig. 12) at 40%/6 demonstrates the difficulties for the
TGA* agent with high boldness and medium trust. The
smaller scan range (Fig. 13) stabilizes the agent’s perfor-
mance by reducing the standard deviation by 12%. Within
the TGA* experiments the standard deviation and scores
received seemed hardly correlated. Some areas of darker
shade (e.g. boldness 40% and trust 10 in Fig. 12) are
characterized by a low variance.

What we find is that the agent seems to perform best
with a small scan range and that large trust and small
boldness values do pay off. But the variance is still unac-
ceptable high.

In the next series we tested the agent with the advanced
heuristic function, i.e. TGA**. For the wide scan range
this lead to an average score of 96. But what looked like

0% 10% 20% 30% 40% 50%

2

4

6

8

10

Boldness

Trust

Fig. 14. Average scores for exploring TGAe** with scan ranges 5.

an improvement in the first runs turned out to get some-
what contra-productive for the reduced scan ranges: The
heuristic is easier mislead if its calculation involves less ob-
jects of a smaller area. If the agent sees just a 3 × 3 field
in the corners, the estimation for a committed hole typi-
cally changes rapidly after nearly every movement and the
heuristic puts emphasize on the options towards the center
where the agent can see more tiles. Thus, as a side effect
the agent will automatically move from wherever it initially
started to the central region of Tileworld where its vision
improves – and its performance degrades. In the midth of
Tileworld the agent overlooks the entire field and it is
more likely that the agent will not find a plan due to the
domain size. Without plans which can be generated the
agent is again waiting for new option to arise. This time
of inactivity reduces the scores that could potentially be
gained. But at least the overall stability improves, mostly
for the larger scan ranges.

Figure 14 and Figure 15 show the last experiments with
the explorative version of the TGA** architecture.

For the completely visible field we find a distribution of
scores for TGAe** which equals those of TGA**, and the
overall average score is nearly the same (102). That result
was expected, since the exploration starts when no plan
can be found. That in turn is in the “omniscience” set-
ting only happening if Graphplan fails due to memory
overflow – but this can only be avoided if the exploration
leads to choosing simpler goals (shallower holes). For few
runs, the agent found those simpler goals by chance, but
not in the majority, which explains the slightly better per-
formance. In the cases with limited visibility however, the
agent’s performance significantly improves up to an average
score of 188 points and with an overall standard deviation
reduced by about 10% (relative to score).

If an agent sees its complete environment the introduced
heuristic signs responsible for the good performance of the
TGAe** agent since exploration in the face of unrestricted

12

0% 10% 20% 30% 40% 50%

2

4

6

8

10

Boldness

Trust

Fig. 15. Average scores for exploring TGAe** with scan ranges 3.

0% 10% 20% 30% 40% 50%

2

4

6

8

10

Boldness

Trust

Fig. 16. Score variance of the exploring TGAe** with scan range 3.

visibility does not offer new opportunities. As it can be
seen in Figure 14, it does not pay to take new options
too willingly into account – the heuristic already selects
the “best options” for the complete world at a given time
point and considering new options is expensive. In the
case of restricted visibility, the introduced heuristics and
the capability of exploration together increase the scores.
If the sensory input is restricted the effect of the first

series of experiments with the TGA* agent reappears, i.e.
planning gets more tractable and new opportunities can be
more easily adopted, planned for.
If we compare the variances in Figure 16 with the scores

in Figure 15, again the local maxima of the variances and
the scores do not overlap. Thus, in our experiments a bet-
ter score coincides with a more stable behavior.
To summarize our results, it seems the most promising

strategy to combine limited sensory capabilities with ex-
plorative strategies, or to speak in terms of the planning
system renunciation of a better logistics in favor of find-
ing a solution in more problem instances. The exploration
phases replace the phases where the agent typically waits
for new options to arise. Since no memory capabilities are
implemented, exploration changes the view of the agent
rather than extending it and the domain size is directly
correlated to the range of vision.
In the case of unrestricted sensory capabilities the agent

has an extended view of its environment. In contrast to
a restricted view with memory, this view contains the cur-
rent state of the world. However, since planning based on a
6× 6 world for two holes proves unexpectedly expensive in
some cases, an opportunistic behavior is no longer recom-
mendable. The costs outrun the benefits. The agent will
often be unable to generate a plan. If the agent had been
equipped with a memory and means for belief revision it
had been reasonable to equip it with some means to focus
its knowledge for plan generation, as well. Thus, our exper-
iments confirm other experiments conducted with agents in
complex environments [27]. Obviously, Tileworld offers
a complexity where planning systems react very sensitive
to an increase of domain size.
Trust in the environment pays in most experimental set-

tings. One should note, that with a restricted view the
length of most plans will be less than 10. With a trust of
10 an agent is likely to execute its entire plan. The effect of
trust on the scores might be an indicator that the costs of
scanning (in terms of time used) are chosen comparatively
high and a punishment of failure should be introduced for
a more balanced view on the effects of trust. According to
the current experimental results, it seems overall better to
willfully follow a plan than to scan and check every once
and again the validity of its intentions and the availabil-
ity of better options which seems, in general not a sensible
procedure.
Throughout the experiments some properties of James

proved to be of particular importance, among those were
the modular, compositional design of models, the reflective
time triggered automata perspective in modeling agents
and environment likewise. In this way, we could plug the
different kinds of grid elements together step by step. De-
bugging the model was facilitated by the automata perspec-
tive, because every entity could be described separately
without having to take execution control into considera-
tion. The ability to include different explicit time models
helped us to guide the experiments by having means to
emphasize actions of interest, and the execution within a
distributed environment enabled us to perform test runs
even on small machines. In the following, we will conclude
with comparing James to some other approaches that sup-
port testing agents in dynamic environments.

VI. Unde Venis et Quo Vadis?

As the number of agent architectures increases so does
the desire to assess and contrast the results achieved by
quantitative experiments. “Although garnering many plau-

13

dits and continually increasing in popularity, the tech-
nology and research field remain relatively immature.
. . .Many conclusion drawn about the technology remain
qualitative and subjective. This dearth of quantitative re-
sults means as yet it has not been possible to evaluate the
potential of the technology and the paradigm” concludes
Papaioannou [42] for the area of mobility. Not only in the
area of “mobile” agents, increasing efforts are directed to
execute and also to support quantitative experiments with
agents: efforts of which we will give a short, necessarily
incomplete overview.

Desire (DEsign and Specification of Interacting REa-
soning components) represents a formal specification
framework for multi-agent system design, which is coined
by a hierarchical (de-)composition [10] and thus, exhibits
many similarities to the model design of James. As in
James, each component has its own input and output in-
terface specification. Components (composed or primitive)
can be (re)used as building blocks. The functionality of a
composed component is specified by the way in which it is
composed from its subcomponents. Desire distinguishes
between different types of links, each of which has a par-
ticular impact on the receiving components. The focus is
clearly on designing systems. It is aimed at verifying prop-
erties of systems, first steps to combine Desire and a proof
system have been made [18]. Jung and Fischer criticize the
lack of dynamic structures: only knowledge and goals are
subject of change and not strategies and operational ingre-
dients, nor does Desire support the dynamic creation of
components and a variable interaction pattern [31, p.41].

“An advanced, resource adapting perspective such as In-
teRRaP proposes is thus not straightforward to model”.
Recent developments in Desire take this criticism into ac-
count. They support the evolution of multi-agent systems
by specifying agents that reason about the properties and
structure of agents and thereby, are able to delete and cre-
ate other agents [12].

A few simple simulation experiments via time slicing doc-
ument the possibility of interpreting Desire models by
simulation [11]. However, a time model which would al-
low one to capture the time boundedness of agents or their
concurrent asynchronous behavior is not supported. The
same is true for other state based approaches which specify
agents based on states and execute this specification within
a simulated, e.g. grid based, environment [37]. These ef-
forts appear more focused on the specification of agents and
their interaction rather than on experimenting with agents
or supporting the construction of experimental frames.

Other test beds are originated in a certain type of knowl-
edge representation or reasoning mechanism around which
the simulation system evolved. E.g. Sim Agent [51] is
based on the forward chaining mechanism of the Poprule-
base interpreter. The behavior is described as a set of
rules. It has originally been built to design single ex-
pert systems rather than to experiment with concurrent
active autonomous agents. The system is embedded in the
Poplog programming environment, which supports the
definition of agents by predefined libraries, e.g. neural nets,

theorem provers, planning algorithms, and relational data
bases. The simulation algorithm proceeds by time slicing.
In each iteration all objects can sense their environments,
run processes that interpret inputs, and produce actions.
The external actions are executed after all internal changes
are completed [51]. Its major strength, as is that of other
approaches, e.g.AGenDA [19], Desire [11] or Taems [58],
is its being a toolkit for constructing agents which has been
equipped with a simulation engine. Issues in modeling and
simulation, e.g. questions of re-usable experimental frames
and efficient and sophisticated simulation algorithms have
hitherto not found the required attention. However, this
is about to change. The developers of Taems announced
a distributed version of the simulator which currently pro-
ceeds by time slicing [58]. Another time slicing multi-agent
simulator, i.e. GenSim, is prepared for running in a dis-
tributed setting concurrently as well [1]. Theodoropoulos
and Logan have started developing a distributed simulation
approach for Sim Agent [52] which shall allow an efficient
simulation of multiple deliberative agents with explicit time
models.

Other test beds for multi-agent systems, e.g. the
RoboCup simulator, do not employ an explicit time model
at all. The simulation engine and the agents communicate
with each other asynchronously [41], [28]. E.g. the sim-
ulator checks frequently whether the agents have decided
on an action that the simulation engine has to take into
account, otherwise it proceeds with its own calculation. If
the agents are the only source of dynamics, this strategy
equals calculating the virtual deliberation time based on
the wall-clock time. However, if the simulation has its own
dynamics, the execution time of agents and the virtual time
of the simulation system have to be put into relation: In
this case this is done by controlling the execution time of
the simulation system. In distributed environments ad-
ditional noise will be introduced due to varying loads on
the network. As a consequence, the controlling element
within the experiment is reduced and experimental results
are hardly reproducible. An aspect which is of minor in-
terest in executing contests.

In contrast, James’s parallel distributed execution mech-
anisms are based on explicit time models that represent the
time used as a monotonous increasing function of the execu-
tion process. The gain in performance is closely correlated
to the effort the agents need for deliberation. According to
the tests, the algorithm simulates several extensively plan-
ning agents close to the cost of a single agent, given that a
sufficient number of machines are available [54].

Similar to the soccer simulator other virtual environ-
ments exist to which agents can be coupled. One such
fictional environment for testing planning agents has been
developed, based on the ideas of Truckworld, by Reece
and Tate for the RL/ARPA planning initiative [45], [21].
It is part of the PRECiS environment, which is equipped
with a discrete event simulation system. The test scenario
refers to the development of plans for non-combatant evac-
uation operations relative to the virtual island Pacifica.

The Pacifica scenario has been re-used to set up the

14

test bed Dipart: Here agents and simulator are modeled
as autonomous units which interact via event queues [44].
The simulator runs as a separate process and represents
the actual state of the world. The models kept by agents
may be limited or may become out-of-date, they represent
the view the agents currently have as they do in James.
As in many other approaches the simulator entails the de-
scription of the environment. Modeling and execution of
the test domain are not separated.

The popular simulation game SimCity is used by Ham-
mond and his colleagues to test the real time properties of
a case-based planning system [25]. The case-based planner
has the role of the major of a city, who has to combine
reactive and deliberative capabilities. The major has to
attend quickly to fires in the city since otherwise they will
spread. Long-term activities, e.g. the layout of an indus-
trial park, require planning. The planning system runs in
real time against the simulation system, as does the soccer
simulator.

Phoenix tests planning agents and their capability to
fight fires in a virtual forest. The underlying discrete event
simulation engine [2] is responsible for synchronizing the
processes of the agent’s environment, e.g. fire propagation
and the agents. Agents are just another type of processes
which produce time stamped events which have to be syn-
chronized with the events produced by the environment.
The tool box for constructing test beds is complemented by
two statistical tools which help setting up experiments and
interpreting the produced results [4]. Objects and agents
have to be defined as event streams, i.e. processes, which
are executed by the simulation engine. A hierarchical, com-
posite, modular modeling of an agent’s environment is not
supported.

To facilitate the construction of test scenarios, the simu-
latorAFS (Abstract Force Simulator) has been introduced.
It supports the modeling of domains that can be described
as agents moving in a two-dimensional space and apply-
ing force to one another [5]. The model units are called
“blobs”, circular objects with a set of predefined physical
attributes, e.g. mass, velocity, and basic actions, e.g. move
and apply-force. Higher levels provide goals and context for
the lower levels of an agent. The hierarchical agent con-
trol unit serves as a frame to design agents and schedules
actions to be executed on an internal queue; at each time
step all agent actions are executed that are due. Thereby,
users are well supported in constructing and testing agents
and agent modules, however they are restricted to a certain
type of agent and environment.

Many test beds, e.g. Pacifica, Phoenix, RoboCup,
and SimCity, confront agents with a complex dynamic
environment which exhibits causal structures. Deliberation
about the effects of their own activities and anticipation
of the dynamics of the environment by its own does pay
in these scenarios. Most of the test beds for agents are
not designed as general simulation system, though. They
support the construction of a certain type of test scenario,
i.e. two dimensional grid worlds, where agents dwell in, e.g.
[38], [39], [37] and emphasize the view of agents as abstract

robots moving around in physical world.
Their purpose is not the construction of test scenarios

for testing agents of different types, e.g. planning robots
as well as mobile agents that inter-operate and move on
the Internet as it is possible in James [55], nor is it their
intention to support the testing of multi-agent systems in
the large. They provide dynamic often complex “one-way”
test scenarios with a clearly defined interface which agents
can be easily coupled to.
If we compare James to more general systems like De-

sire, Sim Agent, or Teams it becomes apparent that
those are primarily systems for constructing agents rather
than systems for modeling complex dynamic systems, em-
bedding agents and the efficient execution of models.
Whereas the model design to describe the experimental
frame, the distributed execution, and the firm rooting in
a formal discrete event approach constitute the strength
of James, little support is offered to develop agents. Its
time-triggered reflective automata perspective provides de-
liberatively only a coarse frame which becomes also obvi-
ous in testing mobile agents of theMole system in James
[55]. Currently James constitutes a prototype, therefore
many features one expects from a simulation system are
still missing, e.g. tools for input sampling, output analy-
sis, and graphical user interface. As the libraries of models
and system features are growing the development of exper-
iments will be facilitated by re-using components.

VII. Conclusion

As Jennings and Wooldridge observe, most groups work-
ing on agents and multi-agent systems construct their own
test environment from scratch, “clearly an undesirable
state of affairs” [30]. Thus, simulation systems are needed
which are sufficiently expressive, flexible, and easy to use,
to provide researchers and students alike with access to
experimenting with multi-agent systems designs.

James integrates agents within discrete event simula-
tion. It is aimed at providing an environment for exper-
imentally testing agent architectures, single modules, and
interaction strategies. Its main objective is to facilitate
testing in the small and testing in the large, equally. The
latter of these we associate with the construction of valid
models of the agent’s environment. Therefore James pro-
vides “a clear conceptual framework that enables the com-
plexity of the system to be managed by decomposition and
abstraction” [32].

James is not a specification tool for agents presenting yet
another agent architecture. Instead, reflective time trig-
gered state automaton are the frame to describe and embed
agent architectures in James. Thereby, James supports
an abstract but common perception of agents which per-
meates diverse agent architectures. It provides a general,
flexible, modular, and theoretically founded simulation ap-
proach with a clear separation between a declarative model
design and its efficient concurrent execution. Experiments
have demonstrated the suitability of the state automaton
metaphor, the ease of integrating different planning sys-
tems, and the value of variable structure models to capture

15

the dynamics of multi-agent systems.
The latter of which are often hard to predict. Even to

analyze a single agent’s interaction with its dynamic envi-
ronment might necessitate an experimental approach. Con-
cerning general planning techniques we are still at the be-
ginning of an experimentally founded “big picture” on plan-
ning problems and their interaction with the algorithms.
The commonly used benchmarks do not cover the problems
agents encounter when dwelling in a dynamic world. Fur-
thermore, most (if not all) classical planning systems have
so far only been examined in isolation, so it is impossible to
predict the performance of an agent architecture that uses
them for deliberation. Our experiments gave first hints
towards an experimental methodology that tries to find
architectural parameters for the use of built-in planning
systems. We could show that a first and superficial look on
the results of a single test setting (a dynamic benchmark)
would have mislead a designer to reduce the planning capa-
bility – if not even remove it – for the sake of performance.
Only further runs proved such a strategic kind of delibera-
tion to perform better, in terms of score as well as in terms
of stability and resource consumption, by finding out how
to foster the planner’s strengths. Of course our analysis is
neither exhaustive nor finished yet. Different planners have
to be examined in the same way, in order to find similari-
ties between them. On the other hand we had to discover
that even a very abstract and simple domain like the Tile-
world has many properties, we would not have thought
of without experimentation.

References

[1] J. Anderson. A generic distributed simulaton system for intel-
ligent agent design and evaluation. In H.S. Sarjoughian, F.E.
Cellier, M.M. Marefat, and J.W. Rozenblit, editors, Artificial
Intelligence, Simulation, and Planning In High Autonomy Sys-
tems, pages 36–44, San Diego, CA, 2000. SCS.

[2] S.D. Anderson. MESS User’s Manual. Computer Science De-
partment, University of Armherst, MA, 1995.

[3] S.D. Anderson. Simulation of Multiple Time-Pressured Agents.
In Proc. of the Wintersimulation Conference, WSC’97, Atlanta,
1997.

[4] S.D. Anderson, D.M. Hart, D.L. Westbrook, and P.R. Cohen.
A Toolbox for Empirically Analyzing Artificial Intelligence Pro-
grams. International Journal of Artificial Intelligence Tools,
4(1):257–279, 1995.

[5] M.S. Atkin, D.L. Westbrook, and G.D. Cohen, P.R. ad Jorstad.
AFS and HAC Domain-General Agent Simulation and Control.
In AAAI’98 Workshop Software Tools for Developing Agents,
1998.

[6] J. Baumann, F. Hohl, K. Rothermel, and M. Strasser. Mole-
Concepts of a Mobile Agent System. WWW Journal - Special
Issue on Applications and Techniques of Web Agents, 1(3):133–
137, 1997.

[7] A. Blum and M. Furst. Fast Planning Through Planning Graph
Analysis. Artificial Intelligence, 90:281–300, 1997.

[8] M. E. Bratman, D.J. Israel, and M. E. Pollack. Plans and
Resource-Bounded Practical Reasoning. Computational Intel-
ligence, (4):349–355, 1988.

[9] M.E. Bratman. Intentions, Plans, and Practical Reasoning.
Harvard University Press, Cambridge, MA, 1987.

[10] F.M.T. Brazier, B. Dunin-Keplitcz, N.R. Jennings, and J. Treur.
DESIRE Modelling Multi-Agent Systems in a Compositional
Formal Framework. International Journal of Cooperative In-
formation Systems, 6(1), 1998.

[11] F.M.T. Brazier, P.A.T. von Eck, and J. Treur. Modelling a
Society of Simple Agents: From Conceptual Specification to Ex-
perimentation. In Poster Proc. of the MAAMAW-97, Ronneby,
1997.

[12] Jonathan Bredin, David Kotz, and Daniela Rus. Trading risk
in mobile-agent computational markets. In Proceedings of the
Sixth International Conference on Computing in Economics and
Finance, Barcelona, Spain, July 2000. No proceedings available.

[13] D. Carmel and S. Markovitch. Learning Models of Intelligent
Agents. In International Joint Conference on Artificial Intelli-
gence - IJCAI’97, 1997.

[14] P. R. Cohen, M. L. Greenberg, D. M. Hart, and A. E. Howe. Trial
by Fire: Understanding the Design Requirements for Agents in
Complex Environments. AI Magazine, 10(3):32–48, 1989.

[15] K.S. Decker and V.R. Lesser. Designing a Family of Coordina-
tion Algorithms. In Eleventh National Conference on Artificial
Intelligence, pages 217–224, 1993.

[16] M. d’Inverno, D. Kinny, and M. Luck. Interaction Protocols in
Agentis. In International Conference on Multi-Agent Systems
ICMAS, 1998.

[17] E. H. Durfee. Coordination of Distributed Problem Solvers.
Kluwer Academic Publishers, Boston, 1988.

[18] J. Engelfriet, C.M. Jonger, and J. Treur. Compositional Ver-
ification of Mulit-Agent Systems in Temporal Multi-Epistemic
Logic. In J.P. Müller, A.S. Rao, and M.P. Singh, editors, Fifth
International Workshop on Agent Theories, Architectures and
Languages ATAL’98, Lecture Notes on Artificial Intelligence,
London, 1998. Springer.

[19] K. Fischer, J.P. Müller, and M. Pischel. AGenDA - A General
Testbed for Distributed Artificial Intelligence Applications. In
G.M.P. O’Hare and N.R. Jennings, editors, Foundations of Dis-
tributed Artificial Intelligence, pages 401–427. John Wiley and
Sons, 1996.

[20] E. Gelenbe, E. Seref, and X. Zhiguang. Simulation with learning
agents. Proceedings of the IEEE, page current issue, 2001.

[21] Y. Gil, M. Hoffman, and A. Tate. Domain Specific Criteria to
Direct and Evaluate Planning Systems. Technical Report ISI-
93-365, Information Sciences Institute, University of Southern
California, Marina del Rey, CA, 1994.

[22] Keith Golden. Leap before You Look: Information Gathering in
the PUCCINI Planner. In Proceedings of the 4th International
Conference on Artificial Intelligence Planning Systems (AIPS-
98), pages ??–?? AAAI Press, 1998.

[23] G.C. Goldman and J.S. Rosenschein. Emergent Coordination
through the Use of Cooperative State-Changing Rules. In Na-
tional Conference on Artificial Intelligence, pages 432–437, Seat-
tle, WA, 1994.

[24] M.L. Greenberg and D.L. Westbrook. The phoenix testbed.
Technical Report UM-CS-1990-019, Computer and Information
Science, University of Massachusetts at Amherst, 1990.

[25] K.J. Hammond, M.J. Fasciano, D.D. Fu, and T. Converse. Ac-
tualized Intelligence: Case-Based Agency on Practice. Technical
Report TR-96-06, Computer Science Department, University of
Chicago, Chicagor, IL, 1996.

[26] S. Hanks, M. E. Pollack, and P. R. Cohen. Benchmarks, Test
Beds, Controlled Experimentation and the Design of Agent Ar-
chitectures. AAAI, (Winter):17–42, 1993.

[27] J. Horty and M.E. Pollack. Option Evaluation in Context. In 7th
Conference on Theoretical Aspects of Rationality and Knowl-
edge (TARK), Chicago, IL, 1998.

[28] International SRI. Saphira Software Manual, Saphira Version
5.2, January 1997.

[29] N. R. Jennings, K. Sycara, and M. Wooldridge. A Roadmap
of Agent Resarch and Development. Autonomous Agents and
Multi-Agent Systems, 1(1):275–306, 1998.

[30] N.R. Jennings and M. Wooldridge. Applications of Intelligent
Agents. In N.R. Jennings and M. Wooldridge, editors, Agent
Technology : Foundations, Applications, and Markets. Springer,
1998.

[31] C.G. Jung and K. Fischer. Methodological Comparison of Agents
Models. Technical Report D-98-1, DFKI, Saarbrücken, 1998.

[32] D. Kinny, M. Georgeff, and A. Rao. A Methodology and Mod-
elling Technique for Systems of BDI Agents. In W. Van de Velde
and J.W. Perram, editors, Agents Breaking Away, volume 1038
of LNAI, pages 56–71. Springer, 1996.

[33] H. Kitano, S. Tadokor, H. Noda, I Matsubara, T. Takhasi,
A. Shinjou, and S. Shimada. Robocup-rescue: Search and rescue
for large scale disasters as a domain for multi-agent research. In
Proc. of the IEEE Conference on Systems, Men, and Cybernet-
ics, 1999.

[34] H. Kitano, M. Tambe, P. Stone, M. Veloso, S. Coradeschi, E. Os-
awa, H. Matsubara, I. Noda, and M. Asada. The RoboCup Syn-

16

thetic Agent Challenge 1997. In International Joint Conference
on Artificial Intelligence IJCAI’97, 1997.

[35] P. Langley and M. Drummand. Towards an experimental science
of planning. In K. Sykara, editor, Proceedings of the Workshop
on Innovative Approaches to Planning, Scheduling, and Control,
pages 109–114, San Mateo, CA, 1990. Morgan Kaufmann.

[36] B. Logan and G. Theodoropoulos. The distributed simulation
of multi-agent systems. Proceedings of the IEEE, page current
issue, 2001.

[37] M. Luck, N. Griffiths, and M. d’Inverno. From Agent The-
ory to Agent Construction: A Case Study. In J. Mueller,
M. Wooldridge, and N.R. Jennings, editors, Third International
Workshop on Agent theoreies, Architectures, and Languages,
number 1193 in Lecture Notes on Artificial Intelligence, pages
49–63, London, 1997. Springer.

[38] T. A. Montgomery, J. Lee, D. J. Musliner, E. H. Durfee,
D. Damouth, Y. So, and the rest of the UM-DIAG. MICE Users
Guide. Dep. of Electrical Engineering and Computer Science,
University of Michigan, Ann Arbor, MI, January 1992.

[39] J. P. Müller. The Design of Intelligent Agents. Number 1177 in
LNAI. Springer, Berlin, 1996.

[40] Nicola Muscettola, P. Pandurang Nayak, Barney Pell, and
Brian C. Williams. Remote agent: to go boldly where no AI
system has gone before. Artificial Intelligence, 103(1–2):5–47,
1998.

[41] I. Noda. Soccer Server: A simulator for Robo Cup. In JSAI
AI-Symposium 95: Special Session on RoboCup, 1995.

[42] T. Papaioannou. On the Structuring of Distibuted Systems: The
Argument for Mobility. PhD thesis, Loughbourough University,
2000.

[43] M. E. Pollack and M. Ringuette. Introducing the Tileworld:
Experimentally Evaluating Agent Architectures. In AAAI-90,
pages 183–189, Boston, MA, 1990.

[44] M.E. Pollack. Planning in Dynamic Environments: The DI-
PART System. In A. Tate, editor, Advanced Planning Technol-
ogy. AAAI, 1996.

[45] G.A. Reece, A. Tate, D.I. Brown, and M. Hoffman. The PRECiS
Environment. Technical Report ARPA-RL/CPE, Artificial In-
telligence Applications Institute, University of Edinburgh, Scot-
land, 1993.

[46] J. Rintanen. A Planning Algorithm not Based on Directional
Search. In A.G. Cohn, L.K. Schubert, and S.C. Shapiro, editors,
Principles of Knowledge Representation and Reasoning. Proc.
of the Sixth International Conference KR’98, pages 617–624,
San Francisco, CA, 1998. Morgan Kaufmann.

[47] J.S. Rosenschein and L.P. Kaelbling. A Situated View of Rep-
resentation and Control. Artificial Intelligence, 73, 1995.

[48] T. Sandholm and V. Lesser. Coalitions among Computationally
Bounded Agents. Artificial Intelligence, 94(1):99–137, 1997.

[49] H. Sarjoughian, B.P. Zeigler, and S.B. Hall. A layered model-
ing and simulation architecture for agent-based systems devel-
opment. Proceedings of the IEEE, page current issue, 2001.

[50] B. Schattenberg. Agentenmodellierung und -evaluierung im Rah-
men eines objekt-orientierten, verteilten Simulationssystems.
Master’s thesis, University of Ulm, Department of Computer
Science, 1998.

[51] A. Sloman and R. Poli. SIM Agent: A Toolkit for Exploring
Agent Designs. In Intelligent Agents Vol. II (ATLA-95), pages
392–407. Springer, 1996.

[52] G. Theodoropoulos and B. Logan. A Framework for the Dis-
tributed Simulation of Agent-Based Systems. In H. Szczerbicka,
editor, European Simulation Multi Conference - ESM’99, pages
58–65. SCS Europe, Ghent, 1999.

[53] A.M. Uhrmacher. A System Theoretic Approach to Constructing
Test Beds for Multi-Agent Systems. In F. Cellier and H. Sar-
joughian, editors, A Tapestry of Systems and AI-based Modeling
& Simulation Theories and Methodologies: A Tribute to the 60th
Birthday of Bernard P. Zeigler, Lecture Notes on Computer Sci-
ence. Springer, New York, (to appear 2000).

[54] A.M. Uhrmacher and K. Gugler. Distributed, Parallel Simula-
tion of Multiple, Deliberative Agents. In Parallel and Distributed
Simulation Conference PADS’2000, Bologna, 2000. IEEE Com-
puter Society Press.

[55] A.M. Uhrmacher and B. Kullick. Plug and Test Software Agents
in Virtual Environments. In Winter Simulation Conference -
WSC’2000, Orlando, FL, December 2000.

[56] A.M. Uhrmacher, P. Tyschler, and D. Tyschler. Modeling and

Simulation of Mobile Agents. Future Generation Computer Sys-
tems, (to appear 2000).

[57] M.M. Veloso, M.E. Pollack, and M.T. Cox. Rationale-Based
Monitoring for Planning in Dyanmic Environments. In Fourth
International Conference on Ai Planning Systems (AIPS’98),
Pittsburgh, PA, 1998.

[58] R. Vincent, B. Horling, and V. Lesser. Experiences in Simulating
Multi-Agent Systems. In Fourth International Conference on
MultiAgent Systems ICMAS, Boston, 2000. AAAI.

[59] D. Weld. Recent advances in AI planning. Technical Report TR-
98-10-01, University of Washington, Department of Computer
Science and Engineering, October 1998.

[60] Daniel S. Weld. An introduction to least commitment planning.
AI Magazine, 15(4):27–61, 1994.

[61] M.J. Wooldridge and N.R. Jennings. Pitfalls of Agent-Oriented
Development. In Proc. 2nd Internation Conference on Au-
tonomous Agents (Agents-98), Minneapolis, 1998.

[62] B.P. Zeigler, H. Praehofer, and Kim T.G. Theory of Modeling
and Simulation. Academic Press, London, 2000.

Biographies

Bernd Schattenberg finished his M.Sc. in Computer
Science at the University of Ulm in October 1998. He
has been working since 1996 on the design, development,
and application of test beds for reactive and deliberative
single- and multi-agent systems. He is currently a mem-
ber of the Artificial Intelligence Department at the Uni-
versity of Ulm, and doing research for his Ph.D. on Hi-
erarchical Planning. His e-mail and web-page addresses
are <schatten@informatik.uni-ulm.de> and <www.

informatik.uni-ulm.de/ki/schattenberg.html>.

Adelinde M. Uhrmacher received her M.Sc. and
Ph.D. degrees in Computer Science from the University
of Koblenz, in 1987 and 1992, respectively. As a fel-
low of the Alexander von Humboldt foundation she did
research at the Department of Electrical and Computer
Engineering at the University of Arizona until 1994 when
she became an Assistant Professor in the Artificial Intelli-
gence Department at the University of Ulm. In 2000 she
joined the Department of Computer Science at the Uni-
versity of Rostock as an Associate Professor. Her research
interests are Artificial Intelligence, Modeling and Simula-
tion, particularly the development of agent-oriented mod-
eling and simulation methods. Her e-mail and web-page
addresses are <lin@informatik.uni-rostock.de\> and
<www.informatik.uni-rostock.de/~lin>.

