
Project Planning Under Temporal
Uncertainty

Susanne Biundo Roland Holzer
Bernd Schattenberg

Department of Artificial Intelligence, University of Ulm, 89069 Ulm, Germany
phone: +49 731 50 24121 fax: +49 731 50 24199
mail: firstName.lastName@informatik.uni-ulm.de

Abstract. This paper presents an approach towards probabilistic planning with con-
tinuous time. It adopts stochastic concepts for continuous probabilities and integrates
them into an HTN-based planning framework. Based on uncertain time durations as-
sociated with primitive tasks the time consumption probabilities of non-linear plans
can be accumulated and thus an overall probability for a successful execution of com-
plex plans can be computed. Furthermore, heuristics for the decomposition of abstract
tasks can be derived that guide the search towards plans with a minimized average
value/variance of their overall time consumption. An example from software project
planning is used to demonstrate our approach.

1 Introduction and Motivation

The process of software development has to deal with a variety of unpredictable events, which
make it particularly hard to calculate costs, to provide adequate buffer times, and finally to
meet project deadlines. Keeping to the project’s time schedule is obviously critical for every
software company, and consequently there is a growing market for supporting tools helping
to keep such projects manageable. This work is motivated by the observation that present-day
tools mostly offer limited management support by basically highlighting already off-schedule
project threads. AI planning techniques offer a notably more intelligent support in the project
definition phase, especially if they are able to deal with uncertain information about actual
implementation times and the like.

In this paper, we introduce an approach to handle uncertain time consumption of actions
in planning. We adopt the concepts for continuous probabilities and their computations from
stochastics and integrate them into a standard HTN-based planning framework. The result-
ing probabilistic planning approach allows for an adequate representation of (a continuous
model of) uncertain time consumption. The duration probabilities of single actions and ac-
tion sequences can be efficiently computed during planning. This enables the construction
of plans that are guaranteed to meet certain probability thresholds w.r.t. given time limits.
Furthermore, the approach can be generalized to handle parallel threads of execution and to
accumulate alternative task decompositions. Not only does this enable a qualified decision
if various alternative solutions are at hand, it even suggests a useful pruning of the search
space. Furthermore, we show how heuristics for HTN-planning can be generated that lead to

the synthesis of plans with a minimized average duration and/or variance of time consump-
tion.

The rest of the paper is organized as follows. Section 2 introduces the foundations of HTN
planning and the basic concepts of our probabilistic approach. In Section 3 the techniques are
generalized to partially ordered plans, while Section 4 shows how the uncertain duration
of primitive operations can be propagated along the task hierarchy into abstract tasks. An
example taken from software project planning illustrates our approach in Section 5 and its
implementation is sketched in Section 6. We conclude with a review of related work and
some final remarks.

2 Basic Definitions

Our HTN-based planning formalism relies on the usual STRIPS representations of states and
operators for the primitive action level. Astate is a finite set of ground atoms. Anoperator
instanceo = (prec(o), add(o), del(o)) consists of three such sets: thepreconditions and the
positive andnegative effects, respectively. It appears to be a ground instance of a respective
operator schema. Such an operator instanceo is applicable in a states iff prec(o) ⊆ s. The
result of applying operatoro = (prec(o), add(o), del(o)) in states is a state result(s, o) =
(s ∪ add(o)) \ del(o). Operators are also calledprimitive tasks.

A plan p = 〈o0 . . . on〉 is a sequence of operator instances such that for every statesi,
in which oi is applicable, we have thatoi+1 is applicable in result(si, oi), wheresi+1 =
result(si, oi) for 0 ≤ i ≤ n. A plan p is then applicable in s0, and the resulting state
result(result(. . . result(s0, o0), o1) . . . , on) of p is denoted by result(s0, p).

Abstract actions are represented bycomplex tasks t. For each complex taskt, there exists
at least onemethod m = (t, d), relatingt and atask network d which implementst. Task
networks are structuresd = (T,≺, V) , whereT is the set of complex and/or primitive tasks
into which t is decomposed,≺ is a partial order onT , andV is a set of codesignation and
non-codesignation constraints on the variables occuring inT ∪ {t}. Plans are generated by
expanding abstract tasks, i.e. by subsequently applying methods in the following way: given
a task network(T,≺, V), an abstract taskt ∈ T , and a methodm = (t, (Tt,≺t, Vt)). Let
furthermore≺δ be the subset of≺ in which t occurs. The network resulting from applyingm
is d′ = (T ′,≺′, V ′) with

T ′ = (T \ t) ∪ Tt

≺′ = (≺ \ ≺δ)∪ ≺t ∪{(ta, tt) | (ta, t) ∈≺, tt ∈ Tt} ∪ {(tt, ta) | (t, ta) ∈≺, tt ∈ Tt}
V ′ = V ∪ Vt

A planning problem is a quadruple(d, Init, T ,M), whered is a task network,Init a
set of ground atoms, theinitial state, T a set of complex and primitive task schemas, andM
a set of methods for the complex tasks inT . Given a task networkd′ = (T ′,≺′,V ′) which
results fromd by subsequently expanding all abstract tasks ind. Thend′ is asolution to such
a planning problem iffT ′ only contains primitive tasks fromT and all operator sequences
which can be built from the ground instances represented byT ′ andV ′ and which are in
consistency with≺′ represent a planp which is applicable inInit.

In order to represent uncertain durations of operators, we make use of continuous random
variables which are used in stochastics to model continuous events. Arandom variable X :
Ω → IR is a measurable function that maps the event spaceΩ onto the real numbers IR.

The distribution of X is described by aprobability density D : IR → IR, denoted byXD

or X ∼ D. The mean value µ = E(XD) of a random variable with densityD is defined
as
∫ +∞
−∞ xD(x)dx, and thevariance Var(XD) of a random variable is given asE((XD)2) −

E(XD)2, also denoted byσ2.
For this presentation we focus on random variables with the normal-distribution density,

denoted byXN (µ,σ2). We will see below, that this choice does not imply any loss of generality.
The probability that the value of a such random variable is lower than a given valuea is
computed as follows:

Pr[XN (µ,σ2) < a] :=

a∫
−∞

N (µ, σ2)dx =

a∫
−∞

1√
2σ2π

e−
(x−µ)2

σ2 dx

Note, that there is no antiderivative for the normal distribution, so we have to use a standard
approximation to compute the probabilities (the error introduced by this approximation is
however less than10−8).

Our operator description is extended by an annotationrv(o), which is the random vari-
able that describes the uncertain duration of the operatoro. The mean value of such a random
variable represents the average amount of time consumed by the operator, while the variance
describes the uncertainty of its duration. The mean value of the density of a random vari-
ablerv(o) is negative or zero. A mean value of zero means that the operator takes no time
for execution. Variance is zero for absolutely certain operator durations. In addition, the de-
scription of a planning problem is extended by a random variableI , that represents a limit
to the maximum duration of the plan.I has a positive mean value and may have a variance
of zero. Furthermore, a threshold is added to the problem description. A plan that has been
generated in the HTN fashion described above is now considered valid only if the probability
of exceeding the given duration limit is less than the user-defined threshold.

3 Computing the Uncertain Duration of Plans

The random variable that describes the duration of a plan is obviously the sum of all the ran-
dom variables of the single operators. The density of a sum of random variables is computed
by theconvolution of the single densities. Given two random variablesX 1

D1
andX 2

D2
where

D1 andD2 are the density functions, the density of their sum is defined by:

DX 1
D1

+X 2
D2

(t) :=
+∞∫
−∞

D1(τ)D2(t− τ)dτ =
+∞∫
−∞

D1(t− τ)D2(τ)dτ

Computing the convolution of densities is analytically hard in the general case and for some
cases even impossible (depending on the kind of the random variables densities). Another
difficulty is that simulation techniques like Monte Carlo Simulation are not applicable in this
case, because the simulation converges to the value of the real integral only for finite inter-
vals. To compute the probability for a plan to exceed a given duration, we need to compute
the integral value over intervals like(−∞, . . . , 0]. Stochastics literature shows, that when
dealing with continuous random variables, most of the stochastic processes can be approx-
imated using the normal-distribution. This property can be utilized effectively because the
distribution of the sum of two normal distributed random variables is also normal-distributed.
Furthermore the convolution of normal-distributed random variables can be computed quite

efficiently. However, there exists no formula for the antiderivative of the normal-density, but
at least there exists a good approximation for it.

Givenn normal-distributed random variablesX i, the density of the sum of these variables
can be computed by:

X i ∼ N (µi, σ
2
i) :

∑
i

X i ∼ N

(∑
i

µi,
∑

i

σ2
i

)

The overall duration of a planp =< o1, . . . , on > is represented by a new single random
variableY . Given operator durationsrv(oi) = XN (µi,σ2

i)
, the density ofY is calculated by

convoluting the densitiesN (µi, σ
2
i) of all operators. Using the formula above, we get the

following density forY :

N

(
n∑

i=0

µi,

n∑
i=0

σ2
i

)
In order to compute the density of the duration of a partially ordered plan or a task net-

work, it is necessary to find a sequence of operators or tasks that leads from a “start” task to
an “end” task and has a maximum duration. We call such a sequence thecritical path. Calcu-
lating random variablesZ i for every pathpi in a partially ordered task network or plan can
be done efficiently. The complex part is to figure out which path is the critical one, as there
exists no comparison-metric on random variables. The critical path must be defined over the
probability for each sequence to over-run the given maximum durationI .

Our approach to solve this problem extends previous work on resource consumption for
linear plans [1]: We extract every possible pathpi in the partially ordered task network and
compute the random variableZ i for the total duration of the respective sequence. The density
of Z i is calculated analogous to the duration of a totally ordered plan. After that, we add the
initial time-boundI (i.e. the maximum duration allowed for the plan) to eachZ i. The critical
path can now be determined: it is the pathpi with maximum probabilityPr[I + Z i ≤ 0].

a1 a5a2

a4a3

Figure 1: A partially ordered plan.

A short example illustrates the computation of the critical path. Given the operators
a1, . . . , a5 with rv(a3) = XN (−1,0.8), rv(a4) = XN (−1.5,0.8), and rv(a5) = XN (−2,0) or-
dered like shown in Figure 1. The duration random variableY1 for the first patha1, a3, a4, a5

has the densityN (−8.5, 2.1) while that ofY2 for the second patha1, a2, a5 has the den-
sity N (−9, 1.5). Let IN (12,0) be the random variable that describes the allowed maximum
duration of the plan. We compute the probabilities forZ1 andZ2 by:

Pr[Z1
N (3.5,2.1) < 0] = Pr[IN (12,0) + Y1

N (−8.5,2.1) < 0] ≈ 0.00786

Pr[Z2
N (3,1.5) < 0] = Pr[IN (12,0) + Y2

N (−9,1.5) < 0] ≈ 0.00715

The resulting probabilities show, that the patha1, a3, a4, a5 is the critical one, because it is
more likely to exceed the total duration time.

4 Propagation

As described above, duration random variables are annotated to primitive tasks only. This
means an HTN planner has to arrive at a primitive task network before it is able to rea-
son about durations at all. However, it would perform much better if it were able to reason
about the duration of abstract tasks and their possible refinements as well. One possibility
to enable this would be to integrate the required information into the domain model, i.e.
the domain modeler declares the abstract “duration” by hand. This alternative may be very
time-consuming and may often lead to flawed models. We propose to propagate the abstract
duration automatically, instead. Our approach guarantees that the propagated values are al-
ways under-estimations and can therefore be used to compute heuristic values for abstract
plans. We will describe how the propagation works, and will show how this information is
used to prune the search space during the planning process.

Note that, we can compute the duration of a given task network if all tasks in the network
are assigned a random variable describing their duration. To compute an underestimation for
an abstract task, we need to know the durationsXN (µi,σi)

of all task networks the abstract task
can be decomposed into. Given these durations, the underestimation for the abstract task is
defined by themin function:

min
(
XN (µi,σ2

i)

)
:= Y

N
„

min
i

(|µi|),min
i

(σ2
i)

«

It can easily be shown that the random variableY which describes the duration of the abstract
task is always an underestimation of the real duration. This is because the density ofY has
the minimal mean value and variance of all possible decompositions. This means, the real
duration will be equal or greater than the duration described byY .

The propagation algorithm terminates if all tasks in the domain model are non-recursive,
because the propagation can be done bottom-up starting with the task networks containing
only primitive tasks. In the case of recursive tasks definitions, we cannot reason about all
possible decompositions of the abstract recursive task. Nevertheless, to get an underestima-
tion for recursive tasks we compute the minimum of the termination cases for the recursion.
The result of this computation is a legal underestimation, because the termination case has to
appear at least once in the recursion.

propagation: a.1 process_task-nets: b.1 process_tasks:
1 process_primitive_tasks a.2 ∀ task-nets tn do b.2 ∀ tasks t do
2 mark_recursion_cycles a.3 if not processed(tn) b.3 if not processed(t)
3 while not finished() do a.4 if (∀t ∈tn: processed(t)) b.4 if (∀methods m(t,tn_i):
4 process_task-nets a.5 underestimation(tn) = processed(tn_i))
5 process_tasks sum_critical_path(tn) b.5 underestimation(t) =
6 done a.6 done min(underestimation(tn_i))

b.6 done

Figure 2: The three core procedures of the propagation algorithm.

Figure 2 shows the propagation algorithm. In line 1 the primitive tasks get their underes-
timations, which is the random variable of the corresponding operator. This procedure also
setsprocessed true for every primitive task. The recursion cycles are marked in line 2,
with a standard depth-first-search. The main loop (lines 3 to 6) of the algorithm terminates
if finished becomes true. This is the case if all tasks and task networks are processed (i.e.

if all of them have their underestimation). Theprocess task-nets procedure called in
line 4 is one of the main procedure of the algorithm. It is shown in Figure 2. It iterates over
all task networks (a.2–a.6) and searches for not yet processed task networks (a.3). If such a
task network is found, the procedure tries to compute an underestimation for it. To do so, all
tasks in the network have to have a proper random variable for their duration (a.4). If all these
conditions are met the underestimation for the task network is processed by the critical-path
algorithm described in the section above.

The second core procedure isprocess task (also shown in Figure 2). The main-loop
(b.2–b.6) of this procedure is similar to that inprocess task-nets . The loop iterates
over all tasks in the domain model which are not already processed (b.3). To compute the
underestimation for the current task, all task networks into which the task can be decomposed
in have to be processed (b.4). The underestimation is then computed by themin function
described above.

As it is not easy to see that the algorithm always terminates, we will give a sketch of a
proof. Suppose we are given a legal domain model, i.e. one which among other properties
includes at least one task network which contains only primitive tasks. After processing the
primitive tasks, all such task networks get assigned an underestimation. I.e. that exists at least
one abstract task which can be decomposed into a task network containing only primitives
(recursive methods have been “eliminated” during pre-processing). In every run of the main
loop there is therefore at least one abstract task for which the duration can be propagated. The
complexity of this procedures is discussed in [1].

5 Project Planning for Software Development

Our example domain is taken from the daily work of a fictitious small software company
which develops end-user tailored business software. In this domain we find much procedu-
ral knowledge capturing well proven “best practice”. However, these routines offer certain
degrees of freedom which are hard to overview even for relatively simple applications.

Figure 3 shows what the planning domain for such projects can look like if we follow a
(somewhat simplified) waterfall-based development approach: Each project is basically di-
vided into 4 consecutive phases in which the requirements for the application are specified
and refined, a software design is chosen and implemented, the resulting system is thoroughly
tested, and finally installed on the customer’s hardware.

As one example for the variation in the procedure, we can identify 4 different ways to

RequirementsDefinition Deployment/InstallationSystemTestingSoftwareDesign/Implementation

CodeFromScratch Migrate Adapt ReUse

Implementation
UnitTesting

Documentation

OSCoding
RerunUnitTests

CodeModification
RerunUnitTests

Documentation

DeployModule
WriteGlue

ProjectPlan

−15/3

−2/0.5

−2/0.2

−9/2

−2/0.1

−7/2

−2/0.1

−2/0.2

−2/0.5

−0.7/0.3

−1/0 −3/1.5 −1/0.5

Figure 3: The decomposition hierarchy for the software project domain (numbers denote mean value and vari-
ance for the duration of primitive tasks).

perform the design and implementation task. The company can develop a completely new
piece of software “from scratch”, it can re-use an existing component unchanged, functionally
extended or adapted, or it can re-implement software written for another operating system
(migrate). All these alternatives imply different sub-tasks for documenting newly written
code, testing, etc. For the presentation in this paper we omit many of the possible details, so
the presented section of the decomposition hierarchy only shows the primitive tasks’ duration
annotations and no further preconditions or effects (e.g., only components can be installed
which have been implemented for the respective operating system, components have to match
requirement specifications, etc.). Concerning the precision of the distribution parameters, it
has to be noted, that in general there exist relatively good estimations about how much time
an action needs on average and typical fluctuations of it. Alternatively, the parameters can be
reliably determined from the companies project history by standard statistical methods, e.g.
the maximum-likelihood estimate.

OS(customBPL, Linux)
OS(UI−2705, Win)
OS(DBC−Orcl−5, Sol)
matches(func−req−A, DBC−Orcl−5)

OS(customUI, Linux)
in−Repository(RepGen−16004)

interfaces(customUI, customBPL) . . .

SoftwDesign/Imp(customUI)

SoftwDesign/Imp(customBPL)

SoftwDesign/Imp(customDBConn)
ReqDef

SystemTesting

Depl/InstSoftwDesign/Impl(customReportGen)

Figure 4: The initial state and the initial task network in the software project domain.

Planning problems in this domain specify which software components are ordered by the
customer: in our example it is a Linux application consisting of a user interface, a component
implementing the respective business process logic, a database connection interface, and a
report generator. The initial state specifies, among other things, the components present in
the developers’ repository, the operating system the component is specified for, for which
functional requirements a component is suitable, and how the components interface each
other (cf. Figure 4). Furthermore, the developers are given a total project deadline in 36 days
plus a heavy contractual penalty fee if this deadline is missed by more than 4 more days.
Given this situation, the project team is willing to accept an 85% probability of success for
the first deadline, but they want to be more than 99% sure to meet the penalty deadline. We
will start our analysis focusing on the first deadline.

SoftwDesign/Imp(customDBConn)

SystemTesting

Depl/Inst

Documenting(customBPL)
UnitTesting(customBPL)

Implementation(customBPL)

Documenting(customUI)
UnitTesting(customUI)

Implementation(customUI)

ReqDef

SoftwDesign/Impl(customReportGen)

Figure 5: The first expansions in the initial task network.

After the first expansions, the resulting task network depicted in Figure 5 is under analy-
sis. As no requirement matching modules for the user interface and business logic modules
are in the repository, the system develops this (partial) plan for implementing both from
scratch. Theinterfaces relation between the components enforces the business logic module

to be implemented and tested before the implementation of the user interface can be done.
Consequently, the critical path contains the two implementation tasks, resulting in a duration
distribution for the network ofN (−5, 9.2). This means, that the probability of meeting the
first deadline is onlyPr[XN (−5,9.2) ≥ 0] = 4.96%

At this stage the plan is already unacceptable for the team. Therefore, the search continues
with another expansion possibility, namely adapting an existing user interface instead. Fig-
ure 6 shows the task network after some more expansion steps: a suitable database interface
exists for a related operating system, and an existing report generator could be re-used in the
application.

SystemTesting

Depl/Inst

Documenting(customBPL)
UnitTesting(customBPL)

Implementation(customBPL)

Documenting(customUI)

ReqDef

CodeModification(customUI)
RerunUnitTests(customUI)

RerunUnitTests(customDBConn)

WriteGlue(RepGen−16004)
OSCoding(customDBConn)

DeployModule(RepGen−16004)

Figure 6: The final expansions in the initial task network.

The critical path includes the implementation and the adaptation with a distribution of
N (7, 7.8), so we can assume that the team finishes its task within the given time of 36 days
with a probability ofPr[XN (7,7.8) ≥ 0] = 85.86% Repeating the computation for the ex-
tended deadline of 40 days, the project leader can also be 99.39% sure that with the plan
found, the company will not be sued for the delay. We see, that in contrast to an interval
algebra based solution, the company’s risk becomes quantifiable.

6 Implementation

The mechanisms for handling uncertain durations of operations are integrated in a multi-agent
planning framework, originally developed for hybrid planning [2]. The basic architecture is
depicted in Figure 7. Briefly,detector agents encapsulate checking routines which announce
flaws in the shared blackboard data-structure, i.e. the current task network. Flaws consist
in the presence of abstract tasks and un-satisfied preconditions of operators, among others.
Modifier agents receive flaws and calculate solution proposals (e.g. task expansions, adding
ordering constraints, etc.) which in turn are sent to thestrategy agent. The strategy organizes
the search by choosing such a task network modification at each step and executes it. After
that the detectors are invoked again. Backtracking is initiated if no modification is issued for

Modifier 2Modifier1

A
C

B

3

2

Detector 3

Detector 1

Detector 2

1

?A.x = ?B.y ...

F1 x M1
(F1 u F2) x M2

Strategy

F2F1 F1

Blackboard

Figure 7: The components of the planning system architecture and their life-cycle.

at least one flaw. A deeper presentation of these mechanisms is beyond the scope of this paper,
but it has to be noted that the representation of modification proposals allows the strategy to
identify areas of interest in the plan (to guide its search), and that for our purposes it does not
have to be adapted to make use of information delivered by additional agents. The framework
has also been used to integrate scheduling capabilities in a similar way [11].

The integration of temporal uncertainty is done by utilizing the independence of the sin-
gle agents. We just add aduration-detector which reasons about the uncertain time needed
to execute the plan like it is described above. It roughly works as follows: After its invoca-
tion, the agent calculates the durationZ of the critical path for the (incomplete) plan on the
blackboard. The presented propagation procedure allows for this on every level of abstrac-
tion. Note, thatZ has a negative mean value, as it stands for usage of time. In the next step
the agent adds the maximum allowable duration for the plan from the problem description to
Z and determines the resulting random variableY . Y represents the time difference between
the time limit and the expected duration of the plan. The probability of failure of the plan
(w.r.t. the duration) is consequentlyPr[Y < 0]: the probability for exceeding the time limit.
If this probability is higher than the given threshold, the duration-agent generates aduration-
exceeded-flaw. As there is no modifier in the agent community to propose a modification step
to fix this kind of flaw, the planner has to initiate backtracking.

By propagating duration under-estimations up to the abstract task level, the detector is
able to compute a heuristic value for the duration on every level of abstraction during plan
generation. To prune the search space, an abstract plan that already exceeds the maximum
duration can be rejected at any stage, as the duration propagation always under-estimates.

7 Related Work

Related approaches in the literature mainly use intervals to represent temporal uncertainty.
β-robust scheduling for single machines is presented in [6], where the total flow time of all

scheduled jobs is minimized. In this context, information is gathered about the execution time
of single tasks and the duration of the abstract action is estimated by a maximum likelihood,
the result of which is a random variable. A fast heuristic function for scheduling performance
is compared with correct but slow computations, and it is shown how to select the schedule
which promises the best performance.

A lot of work is done in the field of handlingdiscrete probabilities in planning, of which
we address that about epsilon-safe planning here [8]. It deals with the feature of uncertain
sensing actions and introduces an approach to generate anε-safe plan, which means to gen-
erate a plan that has only a probability ofε to fail in execution.

O-Plan, e.g., performs an optimistic and a pessimistic estimation of each resource profile
[7]. If the optimistic profile gets below zero, i.e. if all consumption steps are performed as late
as possible allocating the minimal quantity possible and all production steps are performed
as early as possible producing as much as possible, and there is still a point in time in the plan
where the capacity is exceeded, then this plan cannot be repaired and search has to backtrack.
Furthermore, O-Plan can introduce constraints to evade potentially conflicting plans.

Simple Temporal Networks (STN) are constraint networks, in which nodes are time points
and edges represent constraints like upper and lower bounds. [9] introduces the Temporal
Constraint Satisfaction Problem (TCSP) in which a preference value is added to the temporal
constraints. As solving the TCSP is np-hard, a restriction on convex intervals is presented,

which can be solved in polynomial time. Another extension to STN is presented in [10],
which focuses on the execution of STN w.r.t. events of uncertain timing. It describes how
the STN has to be adapted if uncertain timing occurs during execution, and how the existing
procedures for this problem can be improved in this way.

Alternatively, duration uncertainty can be modeled qualitatively by using fuzzy temporal
nets. Approaches like [4] use them to obtain approximate solutions.

The presented idea on heuristic propagation of operator durations is loosely based on [5],
in which intervals on abstract tasks are used as a heuristic function for resource consumption
on the action layer. But uncertain resources consumption in operators is not discussed.

8 Conclusion

We have described an approach to handle uncertainty w.r.t. time consumption of operations
in HTN planning. Durations are represented by continuous normal-distributed random vari-
ables. By adopting appropriate stochastic concepts the duration probabilities of critical exe-
cution paths can be accumulated. With that, overall probabilities for the successful execution
of non-linear plans/task networks can be computed. We have shown how it can be embedded
into an multiagent-based planning framework, where it allows for the derivation and use of
heuristics to guide the decomposition-based planning process towards solutions that meet a
certain probability threshold.

References

[1] Susanne Biundo, Roland Holzer, and Bernd Schattenberg. Dealing with continuous resources in AI plan-
ning. InProc. of the 4th Intern. Workshop on Planning and Scheduling for Space, 2004. to appear.

[2] Susanne Biundo and Bernd Schattenberg. From abstract crisis to concrete relief – A preliminary report
on combining state abstraction and HTN planning. In A. Cesta and D. Borrajo, editors,Proc. of the 6th
European Conf. on Planning (ECP-01), LNCS, pages 157–168. Springer Verlag, 2001.

[3] J. Bresina, R. Dearden, N. Meuleau, S. Ramakrishnan, D. Smith, and R. Washington. Planning under
continuous time and resource uncertainty: A challenge for AI. In A. Darwiche and N. Friedman, editors,
Proc. of the 18th Conf. in Uncertainty in AI, pages 77–84. Morgan Kaufmann, 2002.

[4] L. Castillo and J. Fdez.-Olivares and A. Gonzalez. A flexible temporal planner InIberamia 2002, I
Workshop on Planning, Scheduling and Temporal Reasoning, pages 91–102, 2002.

[5] Bradley J. Clement, Anthony C. Barrett, Gregg R. Rabideau, and Edmund H. Durfee. Using abstraction in
planning and scheduling. In A. Cesta and D. Borrajo, editors,Proc. of the 6th European Conf. on Planning
(ECP-01), LNCS, pages 145–156. Springer Verlag, 2001.

[6] Richard Daniels and Janice Carrillo.β-robust scheduling for single-machine systems with uncertain pro-
cessing times.IIE Transactions, 29(11):977–985, 1997.

[7] Brian Drabble and Austin Tate. The use of optimistic and pessimistic resource profiles to inform search in
an activity based planner. In K. Hammond, editor,Proc. of the 2nd Intern. Conf. on AI Planning Systems
(AIPS-94), pages 243–248. AAAI Press, 1994.

[8] Robert P. Goldman and Mark S. Boddy. Epsilon-safe planning. In R. López de Ḿantaras and D. Poole,
editors,Proc. of the 10th Annual Conf. on Uncertainty in AI, pages 253–261. Morgan Kaufmann, 1994.

[9] Lina Khatib, Paul H. Morris, Robert A. Morris, and Francesca Rossi. Temporal constraint reasoning with
preferences. In B. Nebel, editor,Proc. of the 17th Intern. Joint Conf. on AI (IJCAI-01), pages 322–327,
Morgan Kaufmann, 2001.

[10] Paul Morris and Nicola Muscettola. Execution of temporal plans with uncertainty. InProc. of the 17th
National Conf. on AI (AAAI-2000). AAAI Press, July 2000.

[11] Bernd Schattenberg and Susanne Biundo. On the identification and use of hierarchical resources in plan-
ning and scheduling. In M. Ghallab, J. Hertzberg, and P. Traverso, editors,Proc. of the 6th Intern. Conf.
on AI Planning and Scheduling (AIPS’02), pages 263–272. AAAI Press, 2002.

