
Combining Resolution Decision Procedures

Yevgeny Kazakov

MPI für Informatik, D-66123 Saarbrücken, Germany
ykazakov@mpi-sb.mpg.de

Abstract. We present resolution-based decision procedures for the guar-
ded, two-variable and monadic fragments without equality in a uniform
way and show how they can be combined. In this way, new decidable
fragments are obtained. We make use of a novel technique for describing
resolution decision procedures by means of clause schemes. The scheme
notation provides a convenient way of specifying decision procedures,
proving their correctness and analyzing complexity of associated deci-
sion problems. We also show that many decidability results obtained in
the paper cannot be extended to the case with equality.

Keywords: automated deduction, decision procedures, combination.

1 Introduction and Motivation

First-order logic has always been the language for specifications of problems in
mathematics and computer science. Since Church and Turing in 1930’s proved
that the classical decision problem: “Given a first-order sentence, decide its va-
lidity”, is algorithmically unsolvable, logicians shifted their effort in trying to
identify decidable fragments of first-order logic. Many decidable fragments of
first-order logic have been found by imposing certain syntactical restrictions
on quantifier pattern, number of variables, or arities of predicate and functional
symbols that can be used (for an overview of these and related results see Börger,
Grädel & Gurevich 1997). Among them, monadic, two-variable and guarded frag-
ments have attracted considerable attention due to potential applications in arti-
ficial intelligence and program analysis (Grädel & Otto 1999, Grädel 1999, Lutz,
Sattler & Wolter 2001, Bachmair, Ganzinger & Waldmann 1993). The restric-
tions yielding decidability of these fragments are of quite orthogonal nature: the
two-variable fragment allows only for formulas that are constructed using at
most two variable names; in the guarded fragment every quantification should
have the bounded form: ∀x.(G→F) or ∃x.(G∧F), where G is an atom-“guard”,
containing all free variables of F ; in the monadic fragment formulas can be
constructed without restrictions but from unary predicate symbols only.

As the number of applications for first-order theorem proving grows, more de-
cidable fragments with broad expressive power and clear complexity are required
for developing practical decision algorithms. One way of providing new decidable
fragments could be in combining the known decidable fragments. For example, if
the axioms of a theory fall into different decidable fragments, it is appropriate to
consider a new fragment obtained by taking conjunctions of formulas in the old

fragments. In this paper we investigate decidability and complexity for combi-
nations of guarded, two-variable and monadic fragments that we call a recursive
composition. The idea of the combination is to allow exchanging the formulae
between fragments as new atoms. For example, the formula:

∀x.[Nat(x)→Nat(s(x))] ∧ ∀xy.[Nat(x) ∧ Nat(y)→

Summable(x,y)
︷ ︸︸ ︷

∃z.(Sum(x, y, z) ∧ Nat(z))]

that represents a partial specification for natural numbers, is a conjunct of the
monadic formula and the formula having a subformula from the guarded frag-
ment. If we treat this subformula as a new atom Summable(x, y), then the second
conjunct becomes a two-variable formula. Thus, the whole formula belongs in
some sense to a combination of the full monadic fragment, two-variable frag-
ment and the guarded fragment, but to none of the components. We show that
recursive composition of any of these fragments yields a decidable fragment of
first-order logic as long as the equality is not allowed.

We obtain decidability and sharp complexity results for the fragments and
their combinations using the ordered resolution calculus. Saturation strategies
based on ordered resolution have been successfully applied for obtaining deci-
sion procedures for the monadic fragment (Joyner Jr. 1976), the two-variable
fragment (de Nivelle 2000) and the guarded fragment (de Nivelle & de Rijke
2003). Our combinational approach is closely related to (Armando, Ranise &
Rusinowitch 2001), where the superposition calculus was used for deciding ex-
istential fragments of certain equational theories and their combinations. A de-
cision procedure for a combination has been obtained there by inspecting all
possible cross-inferences between clause classes for each individual theory.

The contributions of the paper can be summarized as follows. First, we
present resolution decision procedures for the guarded, two-variable and monadic
fragments without equality in a uniform way, as a sequence of several basic op-
erations. Second, we obtain new theoretical results about combination of these
fragments: (i) the recursive composition of any of these three fragments is a
decidable fragment and (ii) the complexity of the satisfiability problem for com-
bined fragments is the “maximal complexity” of the fragments it is composed
from. And finally, we show that many of these decidability results cannot be
carried out to the case with equality. For our decision procedures we make use of
a special scheme notation for clauses, that allows to express clause classes and
its saturations in a very concise form. This may provide a formal foundation for
specifying decision procedures and proving their correctness.

2 Preliminaries

We shall use a standard notation for first-order logic. An expression is either
a term or a literal. A literal symbol l is either a or ¬a, where a is a predicate
symbol. An expression symbol e is either a functional symbol f or a literal symbol
l. We write literals and expressions using literal symbols and expression symbols
as follows: L = l(t1,..., tn), E = e(t1,..., tn). As usual, a clause is a disjunction of
literals C = L1 ∨· · ·∨Ln. We use the shortcuts ∨∧ for conjunction or disjunction

2

and Qx.F for either ∃x.F or ∀x.F , where x is some vector of variables. F (x)
denotes a formula whose free variables are among x: free[F (x)] ⊆ x. F [t] is a
formula with an indicated occurrence of some subterm t and F [s/t] is the result
of the replacement of this occurrence by the term s. We denote by dp(E) the
term depth of the expression E. The width wd(F) of a formula F is the maximal
number of free variables in subformulas of F . The width of a clause C is the
number of variables in C.

2.1 The Framework of Resolution Theorem Proving

For describing the decision procedures we use the well-known ordered resolution
calculus with selection ORÂ

Sel enhanced with additional simplification rules. Our
presentation of the calculus is very close to (Bachmair & Ganzinger 2001). The
ordered resolution calculus ORÂ

Sel is parametrized by an admissible ordering Â
and a selection function Sel . A partial ordering Â on atoms is admissible (for
ORÂ

Sel) if (i) Â is liftable: A1 Â A2 implies A1σ Â A2σ for any substitution σ
and (ii) Â is a total reduction ordering on ground atoms. Although resolution
remains complete for a much wider class of orderings, admissible orderings are
better understood and widely used in existing theorem provers. The examples
of admissible orderings are the lexicographic path ordering LPO and the Knuth-
Bendix ordering KBO.

The ordering Â is extended on literals by comparing L = A as the multiset
{A} and L = ¬A as the multiset {A,A}. The ordering on clauses is the multiset
extension of the ordering on literals. Given a clause C, we say that a literal
L ∈ C, is maximal in C if there is no L′ in C, with L′ Â L. A selection function
Sel assigns a set of negative literal to every clause, which we call selected literals.
A literal L is eligible in a clause C if it is either selected: L ∈ Sel(C), or otherwise
nothing is selected and L is maximal in C.

The ordered resolution calculus ORÂ

Sel consists of two inference rules below.
We mark eligible literals with “star” and underline the expressions to be unified:

Ordered Resolution

OR :
C ∨ A∗ D ∨ ¬B∗

Cσ ∨ Dσ

where (i) σ = mgu(A, B), (ii) A
and ¬B are eligible.

Ordered Factoring

OF :
C ∨ A∗ ∨ B

Cσ ∨ Aσ

where (i) σ = mgu(A, B), (ii) A
is eligible.

The calculus ORÂ

Sel is refutationally complete for any choice of an admissible
ordering Â and a selection function Sel . Moreover, the calculus is compatible
with a general notion of redundancy which allows to make use of additional
simplification rules. A clause C is called redundant w.r.t. a clause set N if every
ground instance of C follows from smaller ground instances of clauses from N .
A clause set N is saturated up to redundancy if the conclusion of every inference
from N is either contained in N or else is redundant w.r.t. N .

Theorem 1. (Bachmair & Ganzinger 2001) Let N be a clause set that
is saturated up to redundancy in ORÂ

Sel . Then N is satisfiable iff N does not
contain the empty clause.

3

For our decision procedures we do not need the full power of redundancy
but rather additional simplification rules. A (non-deterministic) inference rule
S ` S1 || S2 · · · || Sk producing one of the clause sets Si from the clause set S is
called sound if every model of S can be extended to a model for some Si with
1 ≤ i ≤ k. Additionally, if every set Si makes some clause from S redundant,
the rule is called a simplification rule.

Given a set of clauses N , a theorem prover based on ordered resolution non-
deterministically computes a saturation of N by adding conclusions of inference
rules to N and marking1 redundant clauses as deleted so that they do not partic-
ipate in further inferences. If the process terminates without deriving the empty
clause, then a set of the clauses ORÂ

Sel(N) is computed that is saturated in
ORÂ

Sel up to redundancy. Theorem 1 then implies that the clause set N is satis-
fiable, since only satisfiability preserving transformations N ⇒ · · · ⇒ ORÂ

Sel(N)
were applied to N . Note that termination of a saturation process is a key issue
of using resolution as a decision procedure. If any application of inference rules
is a priori guaranteed to terminate for a clause set N , then satisfiability of N
can be decided in finite time by exploring the finite saturation tree for N .

In our paper we use the following simplification rules:

Elimination of
Duplicate Literals ED :

[[C ∨ D ∨ D]]

C ∨ D

Splitting

SP :
[[C ∨ D]]

C || D

where C and D are nonempty and
variable disjoint clauses.

An additional simplification rule will be introduced later, when a certain class
of orderings is considered. We indicate redundant premises of rules by enclosing
them in double brackets. The simplification rules are applied eagerly, that is
before any resolution or factoring inference is made. In particular, in the sequel
we assume that no clause contain several occurrences of the same literal.

2.2 Schemes of Expressions and Clauses

To describe resolution-based decision procedures we have to reason about sets
of clauses. We introduce a special notation using which sets of clauses can be
represented in a compact form. We extend our vocabulary with additional sym-
bols called signature groups that represent sets of functional symbols: function
groups, predicate symbols: predicate groups or literal symbols: literal groups.
We allow to use these symbols in expressions as usual functional and literal
symbols and to distinguish them, we use small letters with the “hat” ĝ. For in-
stance, if f̂all denotes the set of all functional symbols, we write f̂all(t) meaning

a term of the form f(t) where f ∈ f̂all (the formal definition follows below).
We adopt the following notation for referring to arguments of expressions. By
writing e〈!t1, ..., !tn, s1, ..., sm〉 we mean an expression starting with the expres-
sion symbol e, having all arguments t1, ..., tn and optional arguments s1, ..., sm

1 Clauses are not removed from the set to avoid repetition of generation/deletion of
the same redundant clauses.

4

(arranged in some way). Formally, the set of term schemes, literal schemes and
clause schemes are defined respectively as follows:

T̂m ::= x | f̂(t̂1,..., t̂n) | f̂〈!t̂1,..., !t̂n, ŝ1,..., ŝm〉, n ≥ 0,m ≥ 0.

L̂t ::= l̂(t̂1,..., t̂n) | l̂〈!t̂1,..., !t̂n, ŝ1,..., ŝm〉, n ≥ 0,m ≥ 0.

Ĉl ::= L̂ | !L̂ | Ĉ1 ∨ Ĉ2.

where f̂ is a functional group, l̂ is a literal group, t̂i, ŝj with 1 ≤ i ≤ n, 1 ≤ j ≤ m

are term schemes, L̂ is a literal scheme and Ĉ1, Ĉ2 are clause schemes. For con-
venience, we assume that every functional and literal symbol acts as a singleton
group consisting of itself, so usual terms and clauses are term schemes and clause
schemes as well.

Each term scheme t̂, literal scheme L̂ and clause scheme Ĉ represents a set
〈t̂〉, 〈L̂〉 and 〈Ĉ〉 of terms, literals and clauses respectively, as defined below:

〈T̂m〉, 〈L̂t〉 : = 〈x〉: {x} |

〈ĝ(t̂1,..., t̂n)〉: {g(t1,..., tn) | g ∈ ĝ, ti ∈ 〈t̂i〉, 1≤ i≤n} |

〈ĝ〈!t̂1,..., !t̂n, ŝ1,..., ŝm〉〉: {g(h1,..., hk) | g ∈ ĝ, {h1,..., hk} ∩ 〈t̂i〉 6= ∅, 1≤ i≤n,

{h1,..., hk} ⊆ ∪n
i=1〈t̂i〉 ∪

m
j=1 〈ŝj〉}.

〈Ĉl〉 = 〈L̂〉: {L1 ∨ · · · ∨ Lk | k ≥ 0, Li ∈ 〈L̂〉, 1 ≤ i ≤ k} |

〈!L̂〉: {L1 ∨ · · · ∨ Lk | k ≥ 1, Li ∈ 〈L̂〉, 1 ≤ i ≤ k} |

〈Ĉ1 ∨ Ĉ2〉: {C1 ∨ C2 | C1 ∈ 〈Ĉ1〉, C2 ∈ 〈Ĉ2〉}.

We use the shortcuts ê(., x,.), ê〈., x,.〉 and ê〈., !x,.〉 where x is a vector x1,..., xn,
to stand for ê(., x1,..., xn,.), ê〈., x1,..., xn,.〉 and ê〈., !x1,..., !xn,.〉 respectively. We
write ..∨ ¬!Â ∨.. in clause schemes instead of ..∨ !¬Â ∨.., where Â is either of
the form â(...) or â〈...〉. In fact we use variable vectors x and functional symbols
without “hat” f as parameters of clause schemes. A clause scheme Ĉ(x, f, ...)
with parameters x, f,... represents the union 〈Ĉ〉 := ∪η〈Cη〉 for all substitutions
η of vectors x1,..., xn for x, function symbols for f , etc..

Example 1. Suppose â is a predicate group consisting of all predicate sym-
bols and α̂ := {â,¬â} is a literal group consisting of all literal symbols. Then
the clause scheme Ĉ = ¬!â〈!x〉 ∨ α̂〈!f(x), x〉 has two parameters: x and f .
Any clause C ∈ 〈Ĉ〉 corresponds to some choice of these parameters x ⇒
x1, ..., xn, f ⇒ f ′. The clause C should have a nonempty subset of negative
literals containing all variables x1, ..., xn and no other arguments. Other lit-
erals of C should contain the subterm f ′(x1, ..., xn) as an argument and pos-
sibly some variables from x1, ..., xn. In particular, 〈Ĉ〉 contains the clauses
¬a(x, y, x)∨b(y, f ′(x, y)), ¬b(x, y)∨¬b(y, x) and ¬p∨¬q(c, c), but not the clauses
¬a(x, y, x) ∨ b(f ′(x, y), f ′(y, x)) or ¬b(y, f ′(x, y)).

3 Resolution-Based Decision Procedures

Decision procedures based on the resolution principle have been around since
(Joyner Jr. 1976), who used A-ordering refinements of resolution for deciding

5

some prefix-vocabulary classes. His method has been extended later to capture
a variety of other decidable classes. (For an overview of the methods and results
along this line see Fermüller, Leitsch, Hustadt & Tammet 2001). Resolution-
based decision procedures usually comprise a smart clause normal form trans-
formation with an appropriate choice of an ordering and a selection function.
These parameters must be set in such a way that prevents growth of clause depth
and width in inferences. Fermüller, Leitsch, Tammet & Zamov (1993) have in-
troduced the notion of covering expressions using which, bounds on clause depth
and width can be easily established for different saturation strategies. An ex-
pression E is called covering if all functional subterms of E contain all variables
of E. For example, the atom p(f(x, y), y) is covering, whereas, say p(x, g(y)) is
not. The essential property of covering expressions is that a unification of two
covering expression results in a covering expression whose depth is bounded by
the maximal depth of the expressions that are unified.

Theorem 2. (Fermüller et al. 1993) Let E1 and E2 be two covering expres-
sions with dp(E1) ≥ dp(E2) and let σ := mgu(E1, E2). Then σ : x→ u, where
x = free(E1) and u is some vector of variables.

3.1 Deciding the Guarded Fragment

Our decision procedure for the guarded fragment is very close to the one given
in (de Nivelle & de Rijke 2003, Ganzinger & de Nivelle 1999) however the clause
class that we obtain allows to show a sharper complexity bound. The procedure
is easier to describe using a recursive definition for the guarded formulas:

GF ::= A | F1 ∨ F2 | F1 ∧ F2 | ¬F1 | ∀x.(G→F1) | ∃x.(G ∧ F1).

where A is an atom, Fi, i = 1, 2 are guarded formulas, and G is an atom called
the guard containing all free variables of F1. For example, the seriality axiom
S := ∀x.(V(x)→∃y.[E(x, y) ∧ V(y)]) is a guarded formula, whereas the transitiv-
ity axiom: ∀xyz.(T(x, y) ∧ T(y, z)→T(x, z)) is not.

Clause normal form translation. The translation of a guarded formula into a
clause normal form (CNF) is done in two steps. First, the formula is transformed
into the negation normal form (NNF) which falls into the following fragment:

[GF]nnf ::= (¬)A | F1 ∨ F2 | F1 ∧ F2 | ∀y.(G→F1) | ∃y.(G ∧ F1).

we extend this fragment by dropping the restrictions of for existential part:

[GF]nnf
w ::= (¬)A | F1 ∨ F2 | F1 ∧ F2 | ∀y.(G→F1) | ∃y.F1.

After that we apply a so-called structural transformation for a sentence F of this
form (we took the existential closure of a formula from [GF]nnf

w) by introducing
definitions for its subformulas. We assume that to every subformula F

′ of F, cor-
responding to a case in the recursive definition, a unique predicate PF′ = p

F′
(x)

is assigned, where x = free[F′]. The result of the structural transformation is the
formula PF ∧ [F]st

g , where [F]st
g is recursively defined for F ∈ [GF]nnf

w as follows:

6

[F]st
g :=[(¬)A]st

g :∀x.(PF→(¬)A) | ¬pF(x) ∨ (¬)a〈x〉

[F1∨∧F2]
st
g :∀x.(PF→ [PF1

∨∧PF2
])∧[F1]

st
g ∧[F2]

st
g | ¬pF(x) ∨ pFi

〈x〉 [∨ pFj
〈x〉]

[∀y.(G→F1)]
st
g :∀x.(PF→∀y.[G→PF1

]) ∧ [F1]
st
g | ¬g〈!x, !y〉 ∨ ¬pF(x) ∨ pF1

〈x, y〉

[∃y.F1]
st
g :∀x.(PF→∃y.PF1

) ∧ [F1]
st
g . ¬pF(x) ∨ pF1

〈f(x), !x〉

The transformation unfolds a formula by its definition and replaces its subfor-
mulas with fresh predicates. These predicates are defined in separate conjuncts
by means of the subformulas that they replace, and the process is iterated recur-
sively. Every transformation step preserves (un)satisfiability of formulas, there-
fore, F is satisfiable whenever PF ∧ [F]st

g is.

Example 2. The structural transformation for the seriality axiom given above
produce the sentence: p0 ∧ [S]st

g = p0 ∧ [p0→∀x.(V(x)→p1(x))]∧
∧∀x.[p1(x)→∃y.(p2(x, y) ∧ p3(y))] ∧ ∀xy.[p2(x, y)→E(x, y)] ∧ ∀y.[p3(y)→V(y)].

Every recursion call of the transformation contributes in a result with a
conjunct describing a definition for an introduced predicate. Performing the usual
skolemization and writing the result in a clause form, we obtain the clauses given
to the right of the definition for [F]st

g . It is easy to see that the clauses for PF∧[F]st
g

fall into the set of clauses described by the following clause schemes:

1. β̂;

2. ¬!ĝ〈!x〉 ∨ β̂〈f(x), x〉.

where β̂ := {b̂,¬b̂},

b̂ := {â, p̂g}, ĝ := {â, p̂g}
(G)

We set the predicate groups â and p̂g to consist from the initial predicates, and
introduced definitional predicates respectively. From these groups, the auxiliary
predicate groups p̂g , ĝ and the literal group β̂ are constructed as shown above.2

The clauses given by the first scheme consist of propositional literals only. The
second scheme represents the clauses with a guard: a special negative literal con-
taining all variables x1,..., xn of the clause and no functional terms. Other literals
of such a clause may contain a functional term only of the form f ′(x1,..., xn) (a
constant when n = 0) that should be unique for the clause.

Saturation of the clause set. For proving decidability of the guarded frag-
ment, we show that the clause set (G) is closed under ORÂ

Sel based on a quite
general class of orderings. We say that the ordering Â is argument-monotone for
predicates if p(t1,..., tn) Â q(s1,..., sm) whenever max{t1,..., tn} Â max{s1,..., sm}.

For such orderings, in particular, L Â K for any L ∈ 〈β̂〈!f(x), x〉〉 and K ∈

〈β̂〈x〉〉. For example, any LPO-ordering based on precedence >P in which f >P a
for any functional symbol (or constant) f and predicate symbol a, has the
above property. From now on, assume that the resolution calculus ORÂ

Sel is
parametrized with some ordering Â that is argument-monotone for predicates.
We chose a selection function Sel that selects a guard literal in every non-
functional clause of the form 2 from (G). The complete case analysis of possible
inferences between the clauses from (G) is given below:

2 The predicate group ĝ does not differ (yet) from the group b̂. The rôle of this group
will be revealed when we combine fragments and their resolution decision procedures.

7

1 β̂∗

1.1 β̂ ∨ b̂
∗

:OR.1

1.2 β̂ ∨ ¬b̂
∗

:OR.2

1.3 β̂ ∨ b̂
∗
∨ b̂ :OF

OR[1.1; 1.2]: β̂ :1

OF[1.3] : β̂ ∨ b̂:1

2 ¬!ĝ〈!x〉 ∨ β̂〈f(x), x〉

2.1 ¬!ĝ〈!x〉 ∨ β̂〈f(x), x〉 ∨ β̂〈!f(x), x〉∗

2.1.1 ¬!ĝ〈!x〉 ∨ β̂〈f(x), x〉 ∨ b̂〈!f(x), x〉
∗

:OR.1

2.1.2 ¬!ĝ〈!x〉 ∨ β̂〈f(x), x〉 ∨ ¬b̂〈!f(x), x〉
∗

:OR.2

2.1.3 ¬!ĝ〈!x〉 ∨ β̂〈f(x), x〉 ∨ b̂〈!f(x), x〉
∗
∨ b̂〈f(x), x〉 :OF

OR[2.1.1; 2.1.2]:¬!ĝ〈!x〉 ∨ β̂〈f(x), x〉 :2

OF[2.1.3] :¬!ĝ〈!x〉 ∨ β̂〈f(x), x〉 ∨ b̂〈!f(x), x〉:2

2.2 ¬ĝ〈!x〉∗ ∨ ¬ĝ〈!x〉 ∨ β̂〈x〉 :OR.2

OR[1.1; 2.2] : β̂ :1

OR[2.1.1; 2.2]:¬!ĝ〈!x〉 ∨ β̂〈f(x), x〉 ∨ β̂〈f(x), x〉:2

The table is organized as follows. The clause schemes from (G) are spread in
the table on different levels of precision. On the first level the schemes are given
themselves. On the second level, different possibilities for eligible literals (marked
by the asterisk) are considered. On the last level, possible inference rules that
can be applied for a clause are identified and the expressions to be unified are
underlined. For example, OR.1 marked to the right of the clause scheme 1.1
means that a clause represented by this scheme may act as the first premise
of the ordered resolution rule. We may omit intermediate levels if there is only
one case to consider, like for the clause schemes 1 and 2.2. Below the last level,
inferences between preceding clauses are drawn and their conclusions are identi-
fied as instances of clause schemes. In all our decision procedures only covering
expressions are unified. Therefore, the conclusion of an inference could be eas-
ily determined using Lemma 2. For example, in the inference OR[2.1.1; 2.2] the

expressions of the form b̂〈!f(x), x〉 and ĝ〈y〉 are unified (we have renamed the
variables apart). By Lemma 2 the unifier σ maps all variables from x to some
variables u. Therefore, the variable vector y is mapped to 〈!f(u), u〉. After the
inference is made, all u-variables are renamed back to x-variables.

Complexity. The table above provides a very concise specification of the de-
cision procedure for GF . Yet, the procedure has an optimal complexity, namely
2EXPTIME. More precisely, given a guarded formula F of width w and size n,

we show that the size of a saturation for F is bounded by cg = 2n·2O(w log w)

.
This bound is obtained by estimating the number of clauses from (G) that are
relevant for F . The calculations can be found in Appendix A. A saturation of
the size c can be computed in time O(c2): all possible unary and binary infer-

ences have to be enumerated.Therefore, the procedure runs in time 2n·2O(w log w)

.
Similar estimation has been obtained by Grädel (1999) using model-theoretic
arguments. This bound is slightly better than the one obtained by Ganzinger &

de Nivelle (1999) (roughly 22O(w2 log n)

) and by de Nivelle & de Rijke (2003) since
we are using a much smaller clause class. Moreover, note, that for the bounded-
variable guarded fragment GFk

® {F ∈ GF | wd(F) ≤ k} (which is relevant for
knowledge representation formalisms) the procedure runs in time 2O(n).

Theorem 3. The resolution decision procedure for GF can be implemented in
2EXPTIME. For GFk the procedure runs in EXPTIME.

8

3.2 Deciding the Two-Variable Fragment

The two-variable fragment FO2 is the set of first-order formulas over a relational
signature that are constructed using at most two variable names (say x and y):

FO2 ::= A(x, y) | [T1∨∧T2](x, y) | ¬T1 | ∃x.T1(x, y) | ∀x.T1(x, y).

where A is an atom and Ti, i = 1, 2 are two-variable formulas. de Nivelle (2000)
gave a decision procedure for FO2 using lock resolution and non-liftable orders
which was extended in (de Nivelle & Pratt-Hartmann 2001) for the case with
equality. The last paper employs liftable orders, but uses the lock resolution as
well. In this section we present a resolution decision procedure for FO2 without
using lock indexes. We enhance ORÂ

Sel with an additional simplification rule,
with help of which the effect of the lock resolution can be simulated.

Clause normal form translation. The definition for two-variable formulas
in the negation normal form is easily obtained from the definition for FO2:

[FO2]nnf ::= (¬)A(x, y) | [T1∨∧T2](x, y) | ∃x.T1(x, y) | ∀x.T1(x, y).

The structural transformation T =⇒ PT ∧ [T]st
t for T ∈ [FO2]nnf is given by:

[T]st
t :=[(¬)A]st

t :∀x.(PT→(¬)A) |

[T1∨∧T2]
st
t :∀x.(PT→ [PT1

∨∧PT2
])∧[T1]

st
t ∧[T2]

st
t |

[Qy.T1]
st
t :∀x.(PT→Qy.PT1

) ∧ [T1]
st
t .

1. β̂〈x〉; |x| ≤ 2;

2. β̂〈f(x), x〉. |x| ≤ 1;

β̂ := {b̂,¬b̂}, b̂ := {â, p̂t}.

(T)

where x = free[T], so |x| ≤ 2 and in the last case |x| ≤ 1. Applying skolemization
to the result of the transformation, we obtain a set of clauses of the form (T),
that is, non-functional clauses with at most two different variables, and clauses
with at most one variable whose functional subterms are identical and contain
all variables of a clause. Here â and p̂t are again the predicate groups for the
initial and introduced predicates respectively.

Saturation of the clause set. The important difference between the clauses
from (T) and from (G) is that former are no longer guaranteed to have a guard.
Therefore, the selection function Sel is of no particular use, for example, for
the clauses (a) ¬a(x) ∨ b(x, y) and (b) ¬b(x, x) ∨ b(x, y) of the form1 as the
last literal should be eligible. For the clause (a), we can make the last literal
maximal by using orderings Â that respects arities of predicates. We say that
an ordering Â, that is argument-monotone for predicates, is compatible with
arities of predicates if p(t1, ..., tn) Â q(s1, ..., sm) whenever max{t1, ..., tn} =
max{s1,..., sm}, but n > m. The class of LPO-orderings given as an example for
argument-monotone orderings, can be easily restricted to fulfill this property by
requiring the predicates with greater arity to be greater in precedence: p >P q
if ar(p) > ar(q). From now on, we assume that the ORÂ

Sel is parametrized with
an ordering Â that is compatible with arities of predicates.

Unfortunately the first literal in the clause (b) is maximal for any admissible
ordering Â. To deal with this problem, we introduce a new simplification rule:

Literal Projection

LP :
[[C ∨ l〈x〉∗]]

pl〈·〉(x) ∨ C
¬pl〈·〉(x) ∨ l〈x〉

where (i) l〈x〉 is a non-unary
literal and (ii) C has a non-unary
predicate containing x.

9

This rule is an instance of a general splitting rule, which allows to split a clause
on two by introducing a new predicate symbol over shared variables of its parts.
Applying the rule for the clause (b), we obtain two clauses: pb(·,·)(x) ∨ b(x, y)∗

and ¬pb(·,·)(x) ∨ ¬b(x, x)∗ in which maximal literals now contain all variables.
The literal projection rule (as well as the general splitting rule) is sound. It is a
simplification rule for our class of orderings, as is guaranteed by the conditions
of the rule. The literal projection rule extends the signature “on-the-fly”, that is
during a saturation process. Note, however, that this extension is always finite
since the rule cannot be applied to introduced unary predicates. The possible
inferences between the clauses (T) for FO2 are shown below:

1 β̂〈x〉 |x| ≤ 2

1.1 β̂〈x〉 ∨ β̂〈x〉∗

1.1.1 β̂〈x〉 ∨ b̂〈x〉
∗

:OR.1

1.1.2 β̂〈x〉 ∨ ¬b̂〈x〉
∗

:OR.2

1.1.3 β̂〈x〉 ∨ b̂〈x〉
∗
∨ b̂〈x〉 :OF

OR[1.1.1; 1.1.2]: β̂〈x〉 :1

OF[1.1.3] : β̂〈x〉 ∨ b̂〈x〉:1

1.2 [[β̂〈x, y〉 ∨ !β̂〈!x, !y〉 ∨ β̂〈x〉∗]] :LP

LP[1.2]: pβ̂〈·〉(x) ∨ β̂〈x, y〉 ∨ !β̂〈!x, !y〉:1

:¬pβ̂〈·〉(x) ∨ β̂〈x〉 :1

1.3 [[!β̂〈x〉 ∨ !β̂〈y〉]] :SP

SP[1.3]: !β̂〈x〉 : 1 || !β̂〈y〉 : 1

2 β̂〈f(x), x〉 |x| ≤ 1

2.1 β̂〈f(x), x〉 ∨ β̂〈!f(x), x〉∗

2.1.1 β̂〈f(x), x〉 ∨ b̂〈!f(x), x〉
∗

:OR.1

2.1.2 β̂〈f(x), x〉 ∨ ¬b̂〈!f(x), x〉
∗
:OR.2

OR[1.1.1; 2.1.2]: β̂〈f(x), x〉 ∨ β̂〈f(x), x〉:2

OR[2.1.1; 1.1.2]: β̂〈f(x), x〉 ∨ β̂〈f(x), x〉:2

OR[2.1.1; 2.1.2]: β̂〈f(x), x〉 :2

2.2 β̂〈x〉 |x| ≤ 1 :1

Complexity. We show that our decision procedure for the two-variable frag-
ment has a theoretically optimal complexity, namely NEXPTIME. The satura-
tion procedure is non-deterministic because of the splitting rule. In each branch,
a saturated set of the clauses is computed that is a subset of (T). For a formula F
of the size n and width w, the number of relevant clauses from (T) is bounded by
ct = 2O(n·2w): see the calculations in Appendix A. Therefore, for a two-variable
formula (of the width w = 2) the saturation is (non-deterministically) computed
in the time 2O(n). This is the same bound as has been given by Grädel, Kolaitis
& Vardi (1997) who establish the small model property for FO2.

Theorem 4. There is a nondeterministic resolution-based procedure that de-
cides satisfiability of FO2-formulas in exponential time.

4 Combinations of Decidable Fragments

Combinations of decidable fragments of FO have not been thoroughly studied
in literature. Some (un)decidability results about boolean combination of prefix-
vocabulary classes are mentioned in (Börger et al. 1997). We introduce the notion
of recursive composition of decidable fragments. This notion has been inspired
by the fact that decidable logical formalisms, such as description logics, CTL,
PDL, etc., are usually defined recursively. They can be viewed as collection of
“safe constructors” for formulas of the interest. The natural idea is, therefore,
to combine these constructors to obtain more expressive formalisms.

10

4.1 Combining the Guarded and Two-Variable Fragments

We define a recursive composition GF|FO2 of the guarded and two-variable frag-
ments by joining their recursive definitions in the following way:

GF|FO2 ::= A | F1 | T1;

GF ::= H | F1∨∧F2 | ¬F1 | ∀x.(G→F1) | ∃x.(G ∧ F1);

FO2 ::= H(x, y) | [T1∨∧T2](x, y) | ¬T1 | Qx.T1(x, y).

where A, G are atoms,

H ∈ GF|FO2, Fi ∈ GF

and Ti ∈ FO2, i = 1, 2.

One could see that this definition can be simplified in the following way:

GF|FO2 ::= A | H1∨∧H2 | ¬H1 | ∀x.(G→H1) | ∃x.(G ∧ H1) | Qx.H1(x, y).

where Hi ∈ GF|FO2, i = 1, 2; however, we shell address to the first definition
to demonstrate the general approach. The definition extends GF and FO2 by
essentially allowing to use guarded formulas with at most two free variables as
two-variable atoms as well as two-variable formulas as atoms in guarded formu-
las. For example, the following formula belongs to GF|FO2 but to none of its
subfragment: TG(y) := ∀x.(a(x) ∨ {∀z.(c(x, y, z)→ [∀u.b(y, u)]:FO2)}:GF):FO2 .

Deciding the combined fragment. For deciding a recursive combination of
fragments, it is possible to reuse resolution decision procedures for its compo-
nents. The negation normal form and structural transformations fir GF|FO2 are
obtained by joining the respective transformations for GF and FO2:3

[GF|FO2]nnf :=(¬)A | F1 | T1.

[GF]nnf
w ::=H | F1∨∧F2 |

∀x.(G→F1) | ∃x.F1.

[FO2]nnf::=H(x, y) |

[T1∨∧T2](x, y) | Qx.T(x, y).

[H]st
gt := [F1]

st
gt: [F1]

st
g | [T1]

st
gt: [T1]

st
t |

[(¬)A]st
gt: ∀x.(PH→(¬)A).

[F]st
g :=[F1∨∧F2]

st
g : ∀x.(PF→ [PF1∨∧PF2])∧[F1]

st
g ∧[F2]

st
g |

[∀y.(G→F1)]
st
g : ∀x.(PF→∀y.[G→PF1]) ∧ [F1]

st
g |

[∃y.F1]
st
g : ∀x.(PF→∃y.PF1) ∧ [F1]

st
g |

[H]st
g : ∀x.(PF→PH) ∧ [H]st

gt.

[T]st
t :=[T1∨∧T2]

st
t : ∀x.(PT→ [PT1∨∧PT2])∧[T1]

st
t ∧[T2]

st
t |

[Qy.T1]
st
t : ∀x.(PT→Qy.PT1) ∧ [T1]

st
t |

[H]st
t : ∀x.(PT→PH) ∧ [H]st

gt.

where A is an atom, H∈ [GF|FO2]nnf, Fi∈ [GF]nnf
w , Ti∈ [FO2]nnf, i = 1, 2.

Example 3. The structural transformation for TG(y) yields: pt
0(y)∧∀x.[pt

0(y)→
∀x.(a(x)∨pt

1(x, y))]∧∀xy.[pt
1
(x, y)→p

g

1
(x, y)]∧∀xy.[pg

1(x, y)→∀z.(c(x, y, z)→
pg
2(y))]∧∀y.[pg

2
(y)→pt

2
(y)]∧∀y.[pt

2(y)→∀u.pt
3(y, u)]∧∀yu.[pt

3(y, u)→b(y, u)].

The transformations are connected in base cases, where interaction between
fragments occurs. The clause class for the combined fragment GF|FO2 is the
union of clause classes (G) and (T) with additional “linking” clauses of the form
¬!p̂g(x) ∨ p̂t(x) and ¬!p̂t(x) ∨ p̂g(x). Linking clauses can be captured if we unite

b̂ and β̂-groups for both clause classes (G) and (T) (but keeping the ĝ-group as
it was!). This extension does not produce new inferences inside each individual
clause class. On the other hand, inferences between (G) and (T) can be shown
to fall into either (G) or (T). This proofs decidability of GF|FO2:

3 The definition for GF|FO2 is given “bottom-up”, i.e. started from the base cases;
for transformations we need to apply definitions “top-down”, i.e. ending with base
cases, to ensure that recursion terminates.

11

OR[T.1.1.1; G.2.1.2]:¬!ĝ〈!x〉 ∨ β̂〈f(x), x〉:G.2

OR[G.2.1.1; T.1.1.2]:¬!ĝ〈!x〉 ∨ β̂〈f(x), x〉:G.2

OR[T.1.1.1; G.2.2] : β̂〈x〉 |x̂| ≤ 2:T.1

OR[T.2.1.1; G.2.1.2]:¬!ĝ〈!x〉 ∨ β̂〈f(x), x〉:G.2

OR[G.2.1.1; T.2.1.2]:¬!ĝ〈!x〉 ∨ β̂〈f(x), x〉:G.2

OR[T.2.1.1; G.2.2] : β̂〈f(x), x〉 |x| ≤ 1:T.2

Complexity. The fragment GF|FO2 is decided by the non-deterministic pro-
cedure computing a saturation that is a subset of (G)+(T). Thus, the size of
any saturation and (non-deterministic) time to compute it, are bounded by

cgt :=cg+ ct = 2n·2O(w log w)

for n being the size of a formula and w its width (see
the calculations before). From this, we immediately obtain that our procedure is
in 2NEXPTIME. However, more careful analysis shows that it could be imple-
mented in 2EXPTIME. Indeed, on every saturation branch at most cSP = 2O(n)

choices are maid, since we split only clauses of the from T.1.3. Therefore, the size

of the computation tree is bounded by 2cSP ·cgt = 22O(n)

. Thus, saturation with
backtracking decides GF|FO2 in 2EXPTIME. Note also, that when the width
w is bounded, the procedure runs in NTIME(2O(n)).

Theorem 5. The resolution-based decision procedure for GF|FO2 can be im-
plemented in 2EXPTIME. GFk|FO2 can be decided in NEXPTIME.

4.2 Combinations With the Monadic Fragment

We demonstrate how our method can be extended to obtain decidability results
for combinations with the full monadic fragment. The monadic fragment of FO
(also called Löwenheim class) is defined as the set of FO-formulas constructed
from one-variable atoms:

M ::= A(x) | M1∨∧M2 | ¬M1 | Qx.M1. where A is an atom, Mi ∈ M, i = 1, 2.

The full monadic fragment (also known as Löb-Gurevich class) is an extension
of M where in addition unary functional symbols are allowed in formulas:

Mf ::= A(x) | M1(x)[f(x)/x] | M1∨∧M2 | ¬M1 | Qx.M1.

For example, the following formula ∃y.(b(y) ∧ ∀z.[a(z) ∨ b(f(y))]) ∈ Mf

Joyner Jr. (1976) presented the first resolution-based decision for the monadic
class. We give a resolution decision procedure for the full monadic class and we
show that our procedure has the theoretically optimal complexity.

Clause normal form translation. The negation normal form for monadic
formulas and their structural transformation are defined below:

[Mf]nnf ::= (¬)A(x) | M1(x)[f(x)/x] | M1∨∧M2 | Qx.M.

[M]st
m: =

[(¬)A(x)]st
m: ∀x.(PM→(¬)A(x)) |

[M1[f(x)/x]]st
m: ∀x.(PM→PM1 [f(x)/x])∧[M1]

st
m |

[M1∨∧M2]
st
m: ∀x.(PM→ [PM1∨∧PM2])∧[M1]

st
m∧[M2]

st
m|

[Qy.M1]
st
m: ∀x.(PM→Qy.PM1) ∧ [M1]

st
m.

1. β̂〈f(x)〉 ∨ β̂〈x〉; |x| ≤ 1

2. ρ̂m(x, y) ∨ ρ̂m(x) ∨ ρ̂1
m〈x, y〉;

3. ρ̂m(x, f(x)) ∨ ρ̂m(x) ∨ ρ̂1
m〈x, f(x)〉;

4. ρ̂m(x) ∨ β̂〈f(x)〉 ∨ ρ̂1
m〈x〉;

(M)

β̂ := {b̂,¬b̂}, ρ̂m := {p̂m ,¬p̂m}, b̂ := {â, p̂m}

Besides introducing definitional predicates, the structural transformation also

12

flattens atoms with nested functional terms using additional predicate names. A
definitional predicate PM′ is either unary, when M

′ corresponds two the first two
cases of the definitions, or, for the other cases, variables of PM′ are all variables
in the scope of which M

′ occurs in a monadic formula and arranged according
to their first appearance.4 The order of variables in definitional predicates is
crucial for showing decidability of Mf by resolution. Therefore, it is taken into
account in the definition of the clause class (M), which captures the result of
the transformation. Here p̂m is again the group of the definitional predicates
and ρ̂1

m is the subgroup of ρ̂m consisting of unary literal symbols. The complete
case analysis of possible inferences between the clauses from (M) is given below.
Note, that the ordered factoring rule is never applied because of the fixed or-
der of variables in arguments (if two literals can be factored then they are equal):

1 β̂〈f(x)〉 ∨ β̂〈x〉 |x| ≤ 1

1.1 β̂〈f(x)〉 ∨ β̂〈x〉 ∨ β̂〈!f(x)〉
∗
:OR

1.2 β̂〈x〉 ∨ β̂〈!x〉
∗

:OR

OR[1.∗; 1.∗]: 1

2 ρ̂m(x, y) ∨ ρ̂m(x) ∨ ρ̂1
m〈x, y〉

2.1 ρ̂m(x, y)∗ ∨ ρ̂m(x) ∨ ρ̂1
m〈x, y〉 :OR

2.2 ρ̂m(x)∗ ∨ ρ̂1
m〈x〉 :OR

2.3 [[ρ̂m(x) ∨ ρ̂1
m〈x〉 ∨ !ρ̂1

m〈y〉]] :SP
OR[1.∗, 2.∗]: 1 OR[2.∗, 2.∗]: 2
SP[2.3]: ρ̂m〈x〉 ∨ ρ̂1

m〈x〉 :2 || !ρ̂1
m〈y〉 :1

3 ρ̂m(x, f(x)) ∨ ρ̂m(x) ∨ ρ̂1
m〈x, f(x)〉

3.1 ρ̂m(x, f(x))∗ ∨ ρ̂m(x) ∨ ρ̂1
m〈x, f(x)〉 :OR

3.2 ρ̂m(x) ∨ ρ̂1
m〈x, f(x)〉 :4

OR[1.∗, 3.1]: 1 OR[2.∗, 3.1]: 3 OR[3.1, 3.1]: 3

4 ρ̂m(x) ∨ β̂〈f(x)〉 ∨ ρ̂1
m〈x〉

4.1 ρ̂m(x) ∨ β̂〈f(x)〉 ∨ ρ̂1
m〈x〉 ∨ β̂〈!f(x)〉

∗
:OR

4.2 ρ̂m(x) ∨ ρ̂1
m〈x〉 :2

OR[1.1, 4.1]: 1 OR[1.2, 4.1]: 4 OR[2.1, 4.1]: 4
OR[2.2, 4.1]: 4 OR[3.1, 4.1]: 1 OR[4.1, 4.1]: 4

Complexity. By estimating the size of (M) one can immediately obtain that

the complexity of our decision procedure is NTIME (2O(n2)). With more careful
analysis it is possible to obtain the best known bound NTIME (2O(n)) (see Börger
et al. 1997). The calculations are given in Appendix A.

Theorem 6. There is a nondeterministic saturation-based procedure that de-
cides satisfiability of Mf in exponential time.

Combining the monadic, two-variable and guarded fragments. The
general scheme for combining fragments looks as follows. First, the base cases
in recursive definitions of fragments are modified. Then a new fragment F is
defined by linking them as follows:

GF::=H | F1∨∧F2 | ¬F1 | ∀x.(G→F1) | ∃x.(G ∧ F1).

FO2::=H(x, y) | [T1∨∧T2](x, y) | ¬T1 | Qx.T(x, y).

Mf::=H(x) | M1(x)[f(x)/x] | M1∨∧M2 | ¬M1 | Qx.M.

F : GF|Mf ::=A | F | M.

FO2|Mf ::=A | T | M.

GF|FO2|Mf ::=A | F | T | M.

where H ∈ F , Fi ∈ GF , Ti ∈ FO2 and Mi ∈ Mf .

For deciding F using our approach, the sequence of transformations is applied
that can be obtained by “joining” the transformations for the components of F .
In particular it can be shown similarly as for GF|FO2 that the clause class for
a combined fragment is the union of the clause classes for its parts. Decidability

4 Without loss of generality we assume that the input monadic formula is a sentence.

13

of GF|Mf , FO|Mf and GF|FO2|Mf is proven by examining all possible infer-
ences between clause classes (G), (T) and (M):

OR[M.1.1, G.2.1]: G.2
OR[M.1.1; G.2.2]: M.1
OR[M.1.2; G.2.1]: G.2
OR[M.1.2; G.2.2]: M.1
OR[M.2.1; G.2.1]: G.2

OR[M.2.2; G.2.1]: G.2
OR[M.3.1; G.2.1]: G.2
OR[M.4.1; G.2.1]: G.2
OR[M.4.1; G.2.2]: M.4

OR[M.2.1, T.1.1]: T.1
OR[M.2.1, T.2.1]: T.2
OR[M.2.2, T.1.1]: T.1
OR[M.2.2, T.2.1]: T.2

OR[M.3.1, T.1.1]: T.2
OR[M.3.1, T.2.1]: T.2
OR[M.4.1, T.1.1]: M.4
OR[M.4.1, T.2.1]: T.2

Example 4. The formula MG2(x) := ∀y.(b(x, y)→ [a(y)∨{a(s(x))∧¬b(x, x)}]) ∈
GF2|M. The structural transformation for MG2(x) produce: pg

0(x)∧∀x.(pg
0(x)→

∀y.[b(x, y)→pg
1(x, y)])∧ ∀xy.[pg

1
(x, y)→pm

1
(x, y)]∧ ∀xy.[pm

1 (x, y)→(pm
2 (y)∨

pm
3 (x,y))] ∧ ∀y.[pm

2 (y)→a(y)] ∧ ∀x.[pm
3 (x, y)→ p4(x)] ∧ ∀x.[pm

3 (x, y)→ p5(x)] ∧
∀x.[p4(x)→p6(s(x))] ∧ ∀x.[p6(x)→a(x)] ∧ ∀x.[p5(x)→¬b(x, x)].

Theorem 7. There are resolution-based decision procedures for the following
fragments of the listed complexity:

GF|Mf : 2EXPTIME;

GFk|Mf : NEXPTIME;

FO2|Mf : NEXPTIME; GF|FO2|Mf : 2EXPTIME;

GFk|FO2|Mf : NEXPTIME.

Proof. The details of the proof can be found in Appendix B. ut

5 Undecidability Results

In this section we show that many of the decidability results given in the paper
cannot be carried out to the case with equality. More precisely, we show that al-
ready the fragments GF3

'
|FO2, GF3|FO2

'
and GF3|FO2|M' are undecidable.

We prove that by a reduction from the satisfiability problem for the Goldfarb
class. The Goldfarb class is the set of first-order formulas with equality having
the quantifier-prefix ∀2∃ (see Börger et al. 1997). It forms a conservative reduc-
tion class, so, in particular it is undecidable. For any sentence F ′ = ∀xy.∃z.F
from the Goldfarb class (where F is quantifier-free), consider the sentence:

FGT := ∀xy.p1(x, y) ∧ ∀xy.[p1(x, y)→∃z.p2(x, y, z)] ∧ ∀xyz.[p2(x, y, z)→F]

Let F−

GT is obtained from FGT by replacing every occurrence of equality with a
fresh binary predicate E(x, y) and let FE := ∀xy.[E(x, y) ↔ x ' y] be the “def-
inition” for E(x, y). Then (i) F ′ is (finitely) satisfiable iff (ii) FGT is (finitely)
satisfiable iff (iii) F−

GT ∧ FE is (finitely) satisfiable. Note, that F−

GT is a con-
junction of the two-variable formula and the three-variable guarded formulas
(without equality!). Finally, observe that FE is expressible in every of the frag-
ments GF2

'
, FO2

'
and FO2|M'. Therefore, the formula F−

GT ∧FE is expressible
in all fragments GF3

'
|FO2, GF3|FO2

'
and GF3|FO2|M'. This construction

F ′ ⇒ F−

GT ∧ FE provides us a reduction from the Goldfarb class.

Theorem 8. The fragments GF3
'
|FO2, GF3|FO2

'
and GF3|FO2|M' form

conservative reduction classes.

14

6 Conclusions

We have shown how ordered resolution enhanced with the schematic notation can
be used to specify decision procedures for many interesting fragments and their
combinations, almost directly from the recursive definitions of fragments. The
limitations of our combinational approach are yet to be explored, in particular,
the decidability statuses for the fragments GF'|M' and FO2

'
|M'.

References

Armando, A., Ranise, S. & Rusinowitch, M. (2001), ‘Uniform derivation of decision
procedures by superposition’, Lecture Notes in Computer Science 2142, 513+.

Bachmair, L. & Ganzinger, H. (2001), Resolution theorem proving, in A. Robinson &
A. Voronkov, eds, ‘Handbook of Automated Reasoning’, Vol. I, Elsevier Science,
chapter 2, pp. 19–99.

Bachmair, L., Ganzinger, H. & Waldmann, U. (1993), Set constraints are the monadic
class, in ‘Eighth Annual IEEE Symposium on Logic in Computer Science’, IEEE,
Montreal, Canada, pp. 75–83.

Börger, E., Grädel, E. & Gurevich, Y. (1997), The Classical Decision Problem, Per-
spectives of Mathematical Logic, Springer-Verlag. Second printing (Universitext)
2001.

de Nivelle, H. (2000), An overview of resolution decision procedures, in M. Faller,
S. Kaufmann & M. Pauly, eds, ‘Formalizing the Dynamics of Information’, Vol. 91
of CSLI Publications, Center for the Study of Language and Information, Stanford
University, Palo Alto, USA, pp. 115–130.

de Nivelle, H. & de Rijke, M. (2003), ‘Deciding the guarded fragments by resolution’,
Journal of Symbolic Computation 35, 21–58.

de Nivelle, H. & Pratt-Hartmann, I. (2001), A resolution-based decision procedure for
the two-variable fragment with equality., in T. N. R. Goré, A. Leitsch, ed., ‘In:
Proc. 1st Int. Joint Conf. on Automated Reasoning (IJCAR-2001)’, Vol. 2083 of
Lect. Notes Artif. Intell., Springer, Berlin, pp. 211–225.

Fermüller, C., Leitsch, A., Hustadt, U. & Tammet, T. (2001), Resolution decision proce-
dures, in A. Robinson & A. Voronkov, eds, ‘Handbook of Automated Reasoning’,
Vol. II, Elsevier Science, chapter 25, pp. 1791–1849.

Fermüller, C., Leitsch, A., Tammet, T. & Zamov, N. (1993), Resolution Methods for
the Decision Problem, Vol. 679 of LNAI, Springer, Berlin, Heidelberg.

Ganzinger, H. & de Nivelle, H. (1999), A superposition decision procedure for the
guarded fragment with equality, in ‘Proc. 14th IEEE Symposium on Logic in
Computer Science’, IEEE Computer Society Press, pp. 295–305.

Grädel, E. (1999), ‘On the restraining power of guards’, Journal of Symbolic Logic
64(4), 1719–1742.

Grädel, E. & Otto, M. (1999), ‘On logics with two variables’, Theoretical Computer
Science 224, 73–113.

Grädel, E., Kolaitis, P. & Vardi, M. (1997), ‘On the Decision Problem for Two-Variable
First-Order Logic’, Bulletin of Symbolic Logic 3, 53–69.

Joyner Jr., W. H. (1976), ‘Resolution strategies as decision procedures’, Journal of the
ACM 23(3), 398–417.

Lutz, C., Sattler, U. & Wolter, F. (2001), Modal logics and the two-variable fragment,
in ‘Annual Conference of the European Association for Computer Science Logic
CSL’01’, LNCS, Springer Verlag, Paris, France.

15

Appendix A

Complexity Calculations

In this appendix we give a detailed estimation for the complexity bounds for the
guarded fragment, two-variable fragment and the monadic fragment that were
sketched in the main part of the paper.

A.1 A Complexity Bound for the Guarded Fragment

Given a guarded formula F of the size n and width w, we estimate the num-
ber of clauses from (G), that can appear in saturation inferences for F . We
call these clauses the relevant clauses for F . In particular, these clauses can
be constructed only from the predicate symbols occurring in F and additional
definitional predicates and Skolem functions that were introduced during the
CNF transformation. Assume that after the CNF transformation for F we have
c0 clauses over n1 predicate symbols and n2 Skolem functions. Let a1 and a2

be the maximal arities of predicate and functional symbols respectively. Note
that: (i) the number of initial clauses c0 = O(n) and each initial clause has at
most w variables and consists of at most three literals; (ii) max(n1, n2) = O(n),
max(a1, a2) ≤ n.

The number of relevant clauses from (G) can be estimated as follows. The
number of clauses given by the first scheme is bounded by c1 := 22n1 = 2O(n)

as there are at most 2n1 different propositional literals. Each clause C2 given by
the second scheme can be represented by a functional term f(x) and function-
free clause over at most w + 1 variables: we replace all occurrences of f(x) with
some new variable5. The number of different terms of the form f(x) having
at most w different variables is bounded by ct := n2 · wa2 . The number of
different functional-free literals over w + 1 variables, similarly, does not exceed
cl := 2n1 · (w + 1)a1 . Therefore, the number of relevant clauses represented
by the second scheme is bounded by c2 := ct · 2

cl = 2O(n·(w+1)n), since a1 ≤ n.
Unfortunately, this is not satisfactory result, as we obtain the double exponential
bound on the number of clauses even with the fixed width w.

The main source of the complexity is the maximal arity of predicate symbols,
which in principle can be linear in n. It is possible to translate the formula F
preserving satisfiability to a formula having predicates whose arity is at most w,
like it is done for the two-variable fragment in (Grädel et al. 1997). However,
the same complexity bounds can be achieved without using additional transfor-
mations. Note that every literal in the clause that can appear in the saturation
process, is an instance of some literal in an initial clause obtained after the CNF
transformation. There are at most nl := 3·c0 = O(n) different literals that can
occur in initial clauses and with at most w variables. Every literal in the clause
C2 is obtain from some of these literals by substituting variables from x or the
term f(x) for every variable of the literal. Therefore, the number of different

5 Remember, that the number of variables does not grow in the inferences, so every
relevant clause contains at most w variables.

16

literals that may occur C2 is bounded by c′l := nl ·(w + 1)w and the number of

relevant clauses for F is bounded by cg := 2n·2O(w log w)

.

A.2 A Complexity Bound for the Two-Variable Fragment

We estimate the maximal number ct of relevant clauses from (T) for a formula
F of the size n and width w, where F is not necessarily a two-variable formula.
We define ct to be the number of clauses of the form (T) that can be obtained
by saturating the initial clauses for F . As in the previous section, we assume
that (i) the number of the initial clauses for F is c0 ≤ n and they contain
at most w variables and at most three literals each; (ii) max(n1, n2) = O(n),
max(a1, a2) ≤ n for n1, n2 being the number of possible predicate and functional
symbols and a1 and a2 being their maximal arities respectively. In particular,
these assumptions hold for a two-variable formula since the CNF transformation
is linear in n and the literal projection rule may introduce at most np = O(n)
new unary predicates.

Let nl be the number of literals that occur in the initial clauses. It follows
from the conditions above that nl = O(n) and each initial literal contain at
most w variables. The number of the clauses given by the first scheme from
(T) is bounded by c1 := 2(nl+np)·2w

and the number of the clauses given by
the second scheme is bounded by c2 := 2n2 ·2(nl+np)·2w

(taking into account the
introduced predicates). So, the possible number of the relevant clauses for F is
bounded by ct := c1 + c2 = 2O(n·2w).

A.3 A Complexity Bound for the Full Monadic Fragment

To give a bound on the size of a saturation for a monadic formula, we estimate the
number of clauses from (M) that can be constructed using n1 predicate symbols
and n2 functional symbols with the maximal arities a1 and a2 respectively. As
usual, we may assume, that max(n1, n2) = O(n) and max(a1, a2) ≤ n, as can
be seen from the CNF transformation for monadic formulae.

The number of clauses given by the first scheme can be bounded by c1 := (2n2·
22n1)·22n1 = 2O(n). The number of irreducible clauses given by the second scheme
(that cannot be simplified, in particular by the splitting rule) can be bounded by

c2 := 2a1 ·22n1 ·(2(2n1))a1 = 2O(n2): for each of at most a1 variables there can be
at most 2n1 unary literals in the clause. The number of irreducible clauses given
by the third scheme is bounded by c3 := 2n2 ·c2 = 2O(n2). Similarly, the number
of irreducible clauses of the forth scheme c4 ≤ c3 = 2O(n2). So, the total number
of relevant clauses from (M) is bounded by cm = 2O(n2). A smaller complexity
bound cm = 2O(n) can be obtained if we reconsider the structural transformation
for monadic formulae. Note, that each unary definitional predicate can occur in a
clause with the unique variable (exactly, for which it was introduced). Therefore,
the maximal number of clauses given by the second scheme can be recomputed
as c2 = 2a1 ·22n1 ·(2(2n1)) = 2O(n). The bounds for the other cases can be lowered
to 2O(n) accordingly.

17

Appendix B

Proof of Theorem 7

In this appendix we give the details for the proof of Theorem 7.

GF|Mf : Given a formula F ∈ GF|Mf of the size n and width w, ordered
resolution nondeterministically produce a saturation that is a subset of (G)+(M).
So, the number of relevant clauses for F is bounded by cgm := cg + cm =

2n2
·2O(w log w)

. On every saturation branch, the number of applications of the
splitting rule is bounded by cSP = 2O(n2) that is the number of different clauses
of the form M.2.3. Therefore, the size of the saturation tree is bounded by 2cSP·cgm

and GF|Mf is decided by a 2EXPTIME procedure (with backtracking).

GFk|Mf : Let F ∈ GFk|Mf be of the size n and width w. Note that w can
be greater than k, since the width of monadic formulas is not bounded by a
constant. Therefore, the straightforward estimation of the number of relevant
clauses gives us the same complexity as for GF|Mf . To obtain a better complex-
ity, note that: (i) The arities of all definitional predicate symbols and functional
symbols in the initial guarded clauses are not greater than k. (ii) A resolution
inference between a guarded and a monadic clause is possible only if defini-
tional predicates or functional terms are unified, therefore the property (i) also
holds for the conclusion of the inference. (iii) All literals in monadic clause that
do not contain definitional predicates are the instances of one-variable literals.
Therefore, all relevant clauses from (G) contain only instances of initial liter-
als with at most k free variables and the number of such a clauses is bounded
by cgk := 2n·2O(k log k)

. Thus, the number of relevant clauses from (G)+(M) is

bounded by cgkm := cgk + cm = 2O(n2), yielding the intended NEXPTIME
upper bound for the procedure.

FO2|Mf : The arguments that allow to bound the number ct of relevant

clauses in (T) are the same as were given for GFk|Mf . So ct := 2O(n·2k) and the
total number of relevant clauses from (T)+(M) is bounded by ctm := ct + cm =

2O(n2). This shows that the decision procedure for FO2|Mf can be implemented
in NEXPTIME.

GF|FO2|Mf : The number of relevant clauses is estimated in the same way
as for GF|Mf , which gives the 2EXPTIME upper bound for the procedure.

GFk|FO2|Mf : The complexity is estimated in the same way as for GFk|Mf

and FO2|Mf , giving the intended NEXPTIME complexity bound.

18

