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Abstract. We propose an fiective and complete method for verifying safety
and liveness properties of timed systems, which is basededigate abstrac-
tion for computing finite abstractions of timed automata &@rL formulas,
finite-state CTL model checking, and successive refinemefinite-state ab-
stractions. Starting with some coarse abstraction of thiengiimed automaton
and the TCTL formula we define a finite sequence of refined att#dns that
converges to the region graph of the real-time system. Ih stp, new abstrac-
tion predicates are selected nondeterministically fromigefi predetermined ba-
sis. Symbolic counterexamples from failed model-checkitigmpts are used to
heuristically choose a small set of new abstraction préeléctor incrementally
refining the current abstraction. Without sacrificing coetghess, this algorithm
usually does not require computing the complete regionigtalecide model-
checking problems. Abstraction refinement terminateskiias a multitude of
spurious counterexamples is eliminated in every refinersiemt through the use
of symbolic counterexamples for TCTL.

1 Introduction

Timed Automatf?] are state-transition graphs augmented with a finite fetad-valued
clocks. The clocks proceed at a uniform rate and constraitirtiies at which transitions
may occur. Given a timed automaton and a property expressadtimed) temporal
logic, model checking answers the question whether thedtimuomaton satisfies the
given formula. The fundamental graph-theoretic model kimecalgorithm by Alur,
Courcoubetis and Dill [1] constructs a finite quotient, thecslledregion graph of the
infinite state graph corresponding to the timed automattgorthms directly based on
the explicit construction of such a partition of states aefficient since the number of
equivalence classes of states of the region graph growsexgially with the largest
time constant and the number of clocks that are used to ggéunihg constraints.

In [18,17] we propose a novel method for verifying safety émehess properties
of timed systems based on predicate abstraction [13] foedimutomata, finite-state
model checking, and counterexample-guided abstractforeraent. We define a set of
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Fig. 1. Lazy approximation.

so-calledbasis predicatesvhich are expressive enough for distinguishing betwegn an
two clock regions. This set of predicates determines a glygoreserving abstraction
in the sense that a timed automaton validatescalculus formulaff the corresponding
finite abstraction validates this formula. The control staue of the timed automaton is
preserved in the abstract system. The abstracted systelmsgeo refer to the real-time
nature of computations, and finite-state model checkerdearsed to establish safety
and liveness properties in the abstracted system.

In many cases it is not necessary to compute the exact atistrasing the en-
tire basis of predicates, since a coarser approximatiohisfi$ suficient for proving
or refuting the desired property. Since we consider safetylaeness properties we
maintain both under- and over-approximations of the givered system. These ap-
proximations are computed via an iterative abstractidimeenent process that starts
with some coarse approximations of the timed system and atea@ sequence of ap-
proximations until the one necessary for proving or refytime property is obtained. In
each refinement step new abstraction predicates are skfemte the finite set of basis
predicates and new, more detailed approximations are ctadpidereby, the choice of
predicates is guided by counterexamples from failing mathelcking attempts. We call
this methodazy approximationThis process of abstracting and refining approxima-
tions is illustrated in Figure 1. When using the entire basigredicates for computing
the approximations, the under- and over-approximatioicknatical, yielding therefore
a strongly property preserving abstraction of the timedesys Since the sequence of
approximations converges toward the region graph of thetiraa systems, the method
of lazy approximation is complete [18,17]. The main advgataf this approach is
that finite time-abstractions are computed lazily. Thisultssin substantial savings in
computation whenever coarse abstractions affecgnt to prove the property at hand.
Standard benchmark examples for timed automata such asga#e controller and a



version of Fischer’s mutual exclusion protocol can be pdavging only a few abstrac-
tion predicates.

In this paper we extend our previous results [18,17] in sewdirections. First, we
consider TCTL [1] for expressing qualitative and quanitiaproperties of timed sys-
tems, instead of the untimed logic considered in [18,17]défne an abstraction func-
tion for TCTL that maps a TCTL formula to a CTL formula, togettwith the inverse
operation of concretization. The predicates necessarthéoabstraction are extracted
from the timed-bounded modalities of the TCTL formula. Feiracting the predicates
we introduce for every timed-bounded modality of a given Tddrmula ¢ a new
clock variablez. Now, the set of abstraction predicat&swith respect tap consists of
all the formulasz~c with free variables;, where~c denotes the timed bound of the
modalities occurring ip. For examples, the abstraction predicates corresponalihgt
TCTL formulay = EG.2p A A[qU<4r], with p, g, r atomic propositions, are given
asy1 =z < 2,y = 2 < 4. The resulting abstract CTL formula is now obtained using
these predicates @8 = EG(p A1) AA[QU (r Ayo)].

Second, in contrast to the previous version of our algorith®y17], where refined
approximations are recomputed from scratch, we computieaation refinements in
an incremental fashion, following the approach outlineddas and Dill [8] for the
untimed case.

Third, we introduce a symbolic form of counterexamples fa tull TCTL logic,
as sequences over sets of states. These symbolic struataréised extensions of the
symbolic counterexamples for (untimed) CTL [20]. We use bglit counterexam-
ples in the abstraction-refinement algorithm as a heufistiselecting new abstraction
predicates from the given set of basis predicates. Symboliaterexamples make the
refinement process converge more quickly compared to thefugear counterexam-
ples, as a multitude of spurious counterexamples are disdan every refinement step.
Moreover, since we define symbolic counterexamples fordd@ €TL, the method of
lazy approximation is applicable for full TCTL, and not oifity a fragment of universal
formulas as it is the case when using linear counterexamples

The main contributions of our paper are

1. A definition of abstraction functions for timed automatal 8 CTL based on pred-
icate abstraction.

2. A definition of symbolic counterexamples for full TCTL.

3. An incremental abstraction refinement algorithm for catimg finite approxima-
tions of timed automata and TCTL formulas.

4. A proof for termination, soundness and completenesseaditistraction refinement
algorithm.

Related Work. The abstract interpretation framework [7] has been usdikbear the
context of real-time systems for formalizing approximatof safety properties [23,11,9].
In contrast, the techniques proposed in [18,17] and extkid#his paper, also allow
for verifying liveness. Whereas verification techniquesifdinite-state systems based
on predicate abstraction [13,5,19,14] are usually used imeomplete way for prov-
ing safety properties, our verification method for timedtsgss is even complete for
liveness properties.



Counterexample-guided refinement has been studied by neaegnchers, and re-
centworkincludes [6,8,15,14]. In contrast to these apgtesa, we use counterexamples
only as a heuristic for selecting good pivot predicates feofixed, predetermined pool
of abstraction predicates to speed convergence of the @ppation processes.

Dill and Wong-Toi [11] also use an iteration of both over- amader-approxi-
mations of the reachable state set of timed automata, binttdodniques are limited
to proving invariants. Daws and Tripakis [9] propose selvabstractions that reduce
the state space of a timed system, while preserving redikgiroperties. Tripakis
and Yovine [22] show how to abstract dense real time to olitaie-abstracting, finite
bisimulations. Behrmann, Bouyer, Larsen and Pelanek [@@se zone based abstrac-
tions with respect to the minimal and maximal constants t@kvblocks are compared,
obtaining a sound and complete verification method for rahitity. Whenever it suf-
fices to compute rather coarse abstractions, we expect &nattuch smaller transi-
tion systems by means of lazy approximation. Alur, Itai, $han, and Yannakakis [3]
present a technique based on over-approximations: theoghetnsists in attempting to
prove a property on an abstract system, where some clockgreme=d; if this attempt
fails, clocks are reintroduced progressively until eitter property is proved on the ab-
stract system, or all the clocks have been reintroducednidtaod still requires exact
computation of the region graph for each abstracted system.

Henzinger, Jhala, Majumdar, and Sutre [14] present anadigin-refinement al-
gorithm for model checking safety properties that integgahe construction of the
abstract model with the verification process. The abstraatehis constructed on de-
mand during verification, by refining only parts of the cutrabstract model. However,
this method allows for checking only reachability propestiwhereas our approach can
be used to verify or refute any kind of TCTL properties.

All the above-described approaches use linear countergrarduring the refine-
ment process. In contrast, symbolic counterexamples n@kefinement process con-
verge more quickly compared to the use of linear counterpksnsince several spuri-
ous counterexamples are discarded in one refinement step.

Organization. The remainder of this paper is organized as follows. Se@imviews

the basic notions of timed automata and TCTL. Finite oved @mder-approximations
of timed automata are defined in the first part of Section 3leathie second part con-
tains definitions of abstraction and concretization fumtifor TCTL. Symbolic coun-
terexamples for TCTL as sequences over sets of states avduned in Section 4. In
Section 5, we define the iterative abstraction refinemewt#lgn and show termination
and completeness thereof. Finally, Section 6 contains smneluding remarks. For
lack of space we omit some of the proofs, but detailed proarfishe found in [18,21].

2 Preliminaries

Given a set of clock€, the set oftiming (or clock) constraints Constomprisestt,
X b d, andx —y »< d, wherex,y € C,d € N, =€ {<,<,=,>,2>}. The setinv is the
subset ofConstr, where= is chosen from<, <}. For a positive integey, Consti(y) is
the finite subset of all clock constraints- v, x—y ~ v, wherex,y € C.

A timed automatof?] is a tupleS = (L, P,C, E, Lo, |), where



L is a nonempty finite set of locations.

— P: L — P(AP) maps each location to a set of propositional symidts

C is afinite set of clocks. ;

E C LxP(Const)xP(C)xL is a transition relation; we write251” for d,g,1,1"y €
E.

Lo C L is the set of initial locations.

— I : L — #(Inv) assigns a set of downward closed clock constraints to @aetibn
[; the elements off(l) are theinvariantsfor locationl.

Afunctiony : C — R is aclock valuationand the set of clock valuations is collected
in Vc. Vo denotes the set of initial clock valuations that assignséoyeclock the value
0. The clock valuation(+ 6) is obtained by addingto the value of each clock in For

X ¢ C, v[X := 0] denotes the clock valuation that updates every choekX to zero,
and leaves all the other clock values unchanged. The wplwé a clock constraing
with respect to the clock valuationis obtained by substituting the clocksn g with
the corresponding valué€x). If gv simplifies to the true value,satisfiegy and we write
vk g. AsetX C V¢ of clock valuations satisfieg € Constr, written asX kg, if and
only if vikgforall v € Ve. A pair (I,v) € L x V¢ is called atimed configurationif

it satisfies the invariantgl); formally, vk (1) iff v g for every invarianig € 1(I). A
clock region[2] is a setX C V¢ of clock valuations, such that for all timing constraints
g € Consti(y) and for any twovy, v» € X it is the case that; k g if and only if vo & g.

In this case we write; = v,.

A timed stepis either adelay step where time advances by some positive real-
valuedd, or an instantaneoustate transition stepFors > 0, we say that the timed
configuration [, v + ¢) is obtained fromI(v) by adelay Step(l,v)g(l,v + 6), if the
invariant constrain + 6 k I(l) holds. Astate transition Stepil,v)g(l’,v') occurs if
there exists &5l e E, andv k g,V :=v[r:= 0], andv’ k I(I).

The lazy approximation method, we present here, allows é&sifying not only
safety properties, but also liveness properties. Liveimedsnse real time is complicated
by the possible sequences of infinitesimally decreasingydaéps; they constitute a de-
generated behavior of a system, a behavior that has to Hiodied. As in [18,17], we
eliminate this undesired behavior by restricting the maddelmed automata to delay
steps that force a clock to step beyond integer bounds whémaetional clock values
are not zero. We have shown [18,17] that such a restricties dot change the possible
observations of the model with respecjt@alculus formulas. The proof can easily be
adapted to TCTL formulas.

A restricted delay stefil8,17] is a delay step,(v)é(l, v + ¢6) for all positive, real-
valueds, such that

AxeC.aKe{0,...,y} v(X) = kv (M(X) < KAV(X) +6 > K).

In this paper we consider timed systems with restrictedydsteps. The union of
restricted delay and state transition steps defines thaltina@sition relation> of a
timed systens.

The semantics of a timed systetn= (L, Lo, C, I, P, E) is given by associated with
it a transition systermM = (S, Sp, P,N), whereS = L X V¢, S = Lo x Vo C Sare



the initial statesP = P, andN is the timed transition relatios> introduced above.
For (s, s) € N, we also writes' € N(s), and if S C S, thenN(S) is UssN(s). The
converse transition relatioN is defined byN(s, s') & N(S, 5). We assume that the
transition relatiorN is total, that is, every state has a successqrathr is a finite or
infinite sequence of configurations= (s, S1,...) such thats,; € N(s) for alli > 0.
We sometimes denote a path®p= 5= . . ..

Given a sefS ¢ S and the transition relatioN, we define thregredicate trans-
formersfrom 25 to 25; pos(N)(S) = N(S), pre(N)(S) = N(S), andpre(N)(S) = {s e
S| N(s) ¢ S}. The postconditionfunction pos{N)(S) computes for a given s& of
states, the set of states that can be reached in one stepdnoenstate irs. Thepreim-
agefunction pre(N)(S) returns the set of states that can re&cim a single step. The
preconditionfunction pre(N)(S) returns the set of those states that have no successors
outside ofS.

The logic TCTL [1] is a dense real-time extension of CTL wittné bounded
modalities and is defined by the grammprg AP)

e=pl-@ler A2 | E[p1Ucpo] | AlprUcgo] .

The semantics of TCTL formulas is given in the usual way, wétbpect to a transition
system. The notions ad-path and TCTL-structure are as in [1], and are reviewed in
Appendix A.

3 Abstraction Functions

3.1 Abstracting Timed Systems

Definition 1 (Abstraction Predicates [18,17]). Given a set of clock€, anabstrac-
tion predicatewith respect toC is any formula with the set of free variables th
Similarly to timing constraints, the value of an abstractiwedicate) with respect to a
clock valuationv, where both free and bound variables are interpreted indh@athC,
is denoted by the juxtapositianv. Wheneverv evaluates to true, we writek .

A set of abstraction predicat&s= {yo, - - -, -1} determines aabstraction functiom,
which maps clock valuationsto abitvector bof lengthn, such that théth component
of b is set if and only ify; holds forv. Here, we assume that bitvectors of lengtare
elements of the s, which are functions of domai@, - - -, n—1} and codomairO, 1}.
The inverse image af, that is, theconcretization functiory, maps a bitvector to the
set of clock valuations that satisfy @ll whenever thé-th component of the bitvector is
set. Thus, a set of concrete states)(is transformed by the abstraction functieinto
the abstract state(l, v), and an abstract statelf) is mapped by to a set of concrete
statesy(l, b).

Definition 2 (Abstraction/Concretization [18,17]). Let C be a set of clocks an®¢c
the corresponding set of clock valuations. Given a finit@sptedicate?’ = {yo, - - -, ¥n-1},
theabstraction functionr : L x V¢ — L x By is defined by

a(l,v)() := (Lyiv)



and theconcretization functiory : L x B, — L x P(‘V¢) is defined by

n-1
y(,b) :={(,v) e Lx Ve | 1(1) A /\W = b(i)}.
i=0

We also use the notationgS) := {a(l,v) | (I,v) € S} andy(S?) := {y(l,b) | (I, b) € S&}.
Now, the abstractigioncretization paird, y) forms a Galois connection.

Definition 3 (Feasible State). An abstract statel,(b) is feasibleif and only if its
concretization is not empty, that ig(l, b) # 0.

A set of predicates is feasible, if the conjunction of thedizates is satisfiable.

Definition 4 (Over-/Under-approximation[18,17]). Given a (concrete) transition sys-
temM = (S, S}, P, =), whereS® = L x Ve, S = Lo x Vo, and a set?” of abstraction
predicates, we construct two (abstract) transition syst#fy = (S%, S, P,="), and
My =(S,S,P,=").

- S :=LxBy,
— (I,b)=>*(I',b) iff
Av,v e Vest. (,v)ey(,b) A (I,v) ey(l', D). (I,v)=(",")
— (I,b)=>~(I",b) iff (I,b)feasible, and
Vv e Vst (,v) ey(l,b). I € Ve st (7,v) ey(l',0). (ILv)=(",v)
— § :={(lo,bo) | lo € Lo, andbq(i) = L iff vo = ¢i}.

» is called arover-approximationand M;, anunder-approximatiof M.

Obviously, we have that~C=". If the set¥ of abstraction predicates is understood
from the context, we omit it in the notation for under-, ané@oeapproximation, and we
write M~ respectivelyM™.

For the transition relations>—, =*, and= we definey(="), y(=7), respectively
a(=) as follows:

y(=7) = (L), (V) € 1 3b, b (I,b) =~ (I, 1) A (I,v) € y(,b) A
(I",v) e y(I',b')}

y(=) = {((Lv), (1, V) € 1 Ab, B (I,b) =+ (I, 1) A (,v) € ¥(l,b) A
(I",v) e (I, )}

a(=) = {(a(l,v), 2", V) 1 (I,v) = (",V)}

The next statement follows directly from Definition 4.

Lemma 1 ([18,17]). For a (concrete) transition systei with the transition relation
= and the corresponding over- and under-approximatibfis M with respective
transition relations=*, and=": (1) y(=")c=Ccy(=") and 2)=" Ca(=)c=".



Definition 4 does not allow the incremental computation afreand under-approxi-
mations. When adding new predicate#tpnew approximations have to be constructed
from scratch starting from the initial transition systene Wodify Definition 4 such that
successive approximations can be computed incrementalty previously obtained
approximations by adding new predicates from the basis.

We introduce the following notations. A bitvector of lendtlis denoted byb[O :

k — 1], and corresponds to the S&t = {yo, ...,k 1} of abstraction predicates. The
abstraction and concretization functions determined?pyre denoted b, v, re-
spectively. The finite over-approximation 8fl with respect to?y is denoted by\/l;k
and is the tuplgS], Sgk, P,=). Similarly, the finite under-approximation a¥{ with
respect to? is denoted byM;, = (S}, ;. P, =,). Note that the mapping functidn
does not depend on the abstraction predicates, merely dimitieecontrol structure..

Definition 5 (Incremental Over-/Under-approximation). For atimed systers, with
corresponding transition systeirl, and a TCTL formula, let ¥ be the corresponding
basis of abstraction predicate\st},k =(S, Sgk P,=5) and My, = (S, Sgk, P,=,) the
over-approximation and under-approximation/af obtained in step with respect to
a set¥c c ¥ of abstraction predicates, respectively. %t be the set of predicates
obtained from the failed model-checking attempt in stefphe over-approximation
v = (Sh S5, P =1 respectively under-approximatiobty, = (S}, S ,P.=p)

obtained in step + 1 with respect to the set of predicat¥s = ¥« U ¥, is derived
from M*k, respectivelyMy, , as follows:

- S, ={(,b[0:m-1]) [ (I,b[0: k- 1]) € S} and
Yi=k,...,k+K =1 b[i]=11if % ny;#0, elseb[i] = 0}
— (ILb[0O: M=1])=/(",b’[0 : m—1])iff
e (Lb[0: k—1])=;(I",b’[0: k-1])and
o vy v e Ve st (,vm) € ym(l, B[O : m—1]) and (', v;,)) € ym(l, [0 : m—1])
with vy = vk N {v € Ve | v = 1 andvy, = vy n ' € Ve | Pev = 1) such
that (, vm)=(I", vi).
— (I,b[0: m=1])=,(",b’[0 : m—1]) iff
e (IL,b[0: k—-1])= (I",b[0:k-1])and
o VYvmvime Ve st (,vm) € ym(l, B[O : m—1]) and (', v;,) € ym(l’, 0[O0 : m—1])
with vy = vk N {v € Ve | Pev = 1} andvy, = vp n ' € Ve | Pev = 1) such
that (, vm)=(", v},,)-

The setS;, can also be defined as in Definition 4 as the produtt ahd By, where
Bn is the set of all bitvectors of lengtm. However, the above definition is more re-
strictive, in the sense that a smaller set of abstract stiaged_ x By, is obtained, since
infeasible states are discarded.

3.2 TCTL Abstraction

We define abstractions and concretizations functions foflT€@rmulas based on a
set of abstraction predicat&s. The predicates are extracted from the timed-bounded
modalities of the formulas. For every timed-bounded mayali a given formulap we



introduce a new clock variablg Now, the set of abstraction predicat&swith respect

to ¢ consists of all the formulag~c with free variableg;, where~c denotes the timed
bound of the modalities occurring in For example, the abstraction predicates corre-
sponding to the formule = EG.o,p A A[qU<4r], with p, g, r atomic propositions,
are given a¥, = {z1 < 2,2, < 4}.

Definition 6 (TCTL Abstraction Predicates). Given a TCTL formulap. A TCTL
abstraction predicatés a formulaz ~c;, with z a free variable andc; the time bound

of thei-th modality ing. The TCTL abstraction predicates corresponding to a foamul
¢ are collected in the sé¥,. If ¢ does not contain any timed-bounded modalities, then
7, is empty.

Definition 7 (TCTL Abstraction /Concretization). Given a TCTL formulay, and
a set?, of abstraction predicates. Furthermore, yet= z~c be a predicate i,
corresponding to the bounded modalily.. Theabstraction functiony, : TCTL —
CT Lis defined inductively over the structuregaf

a¢(tt) =t a¢(p) =P a'cp(ﬂ‘P) = _‘a'cp(‘P)
ap(p1 A g2) = ag(p1) N ag(e2)

ap(E[p1 U~cp2] 1= E[ay(p1) U (au(g2) AY)]
ap(Alp1Uc ] = Alay(pr) U (ay(g2) AY)]

The concretization functiory, : CTL — TCTLmaps a CTL formula to a TCTL
formula, and is the inverse operationdg, that isy,(¢) = a, (¢).

Now, given a timed automata$ with a set of clocksC, and a TCTL formulap,
we add the clockg corresponding to the bounded modalitiesedb C, and define the
abstraction predicates with respect to the new set of clothks initial values of the
clocksz equal zero, and the largest constants, which these cloeksvan compared
to are given by the constants appearing in the bounded modalitiesfLet ¥ be
the set of abstraction predicates corresponding tmde. If ¢ does not contain any
timed-bounded modalities, the# consists only of the predicates with respect to the
automaton clocks, as in Definition 1.

Definition 8 (Predicate Abstracted Semantics of CTL). Let¢® be a TCTL formula,
M= (S, S, P, =) atransition system, an#l a set of abstraction predicates. Consider,
as given in Definition 4, the over-approximatigy, = (S*, §, P, ="), and the under-
approximationM,, = (S*, S5, P, =) of M. Furthermore, lep = a,(¢°) be the CTL
formula obtained by abstracting using the predicates corresponding to the bounded
modalities ing. Then, thepredicate abstractedemantics §]*'», whereo is either+

or —, of the CTL formulagy with respect to the finite-state transition systeMs, is
defined in a mutually inductive way. The notatieris used to toggle the sign.

[t] = S*
[P :={(I,b) € S| p € P(1))
[l = S\ [l ™



10

[V @ad ™ = [l ™ U [ M
[E[¢1U @a]] M7 := {se S*| for some pathr = (55=75=7 .. )with g = S,
for somei > 0,5 € [¢2] ™" ands; € [¢:] M for0 < j < i}
[Alo1U@o]] M := {se S?| for every pathr = (55=2751=7 .. )with g = S,
for somei > 0, 5 € [¢2] M ands; € [p1] M for0 < j < i}
We also writeM7, (I, b) 2 ¢, to denote thatl(b) € [¢] M.

Theorem 1 (Soundness of Abstraction)Let M = (S°, S, P, =) be a transition sys-
tem, ¥ a set of abstraction predicates, awti, M~ the over-approximation and under-
approximation ofM with respect to. Then for any TCTL formula the following
holds.

YLap@I™) € [el™ < Y([ap(@]™)
Here,«, is the abstraction function for TCTL formulas from Definiti@, andy the
concretization function from Definition 2.

We now give a criterion, based on the notion of regions, f@t@tabstraction predi-
cates that is dficient for guaranteeing convergence of the over- and ungig@reaimations
in general.

3.3 Set of Basis Predicates

A basisis a set of abstraction predicates that is expressive ertoutistinguish between
two clock regions. If a basis is used for predicate abswacthen the approximation is
exact with respect to the TCTL logic, that is, the approxiorats property-preserving.

Definition 9 (Basis [18,17]). Let S be a timed automaton with clock setand let?
be a set of abstraction predicates. THéis abasiswith respect taS iff for all clock
valuationsvy, vo € Ve [(Yy e Poviky © vaky) = vi=yy].

For example, for a timed automatdhwith clock setC and largest constant the
(infinite) set of clock constrainSonstr, the (infinite) set of invariant constraintsy, the
(finite) set of clock constraintSonsti(y), and the (finite) set of membership predicates
for the quotientVc modulo = are all basis sets. Since the set of predic@mssti(y) is
finite, there is a finite basis for every timed automaton. &&gthowever, that this basis
is not necessarily minimal.

Theorem 2. LetS be atimed automatork the corresponding transition system, and
¢ a TCTL formula. Furthermore, l&€ be the set of clocks corresponding®cande,
andvy the largest constant, which these clocks are compared td? lbe a basis with
respect tcC, and My, M;, the under- and over-approximation8fwith respect ta?.
Then, for any TCTL formula,

[ex(p] My = [eu(p] M

Corollary 1 (Basis Completeness)LetS = (L, Lo,C, I, P, E), be a timed automaton,
and M the corresponding transition system. Then for any TCTL fdawp, and initial
statelg € Lo the following holds: @ is a basis fotS andy)

(lo.bo) € [a, (@1 & (lo.vo) € []M & (lo. bo) € [ag(@)] ™ .
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4 Symbolic Counterexamples for TCTL

Given a Kripke structuré, with S initial states, and a TCTL formulka, a symbolic
counterexamplearries a justification thatl, Sy = ¢. When we writeX, we mean a list
of elements of the formXo, .. ], andXm implies that the lisK is of lengthm+1, that is,
of the form [Xo, . .., Xm]. We writec M, C | ¢ to denote that is a counterexample,
which demonstrates that for every state C, M, s |- ¢.

For a transition systemM = (S, Sy, P,N), and a seC C S, let Qp denote the set
of all s-paths starting in any state @ N Sy, defined ag2y = {p € f(s) | s€ CN S}t
andQ(t) be those states that can be reached from any st&enity, at time pointt,
Qo(t) = {se S| s= p(t) andp € Qo}. For a bounded modality with time boumnd- c,
letZ € AP be an atomic proposition that holds in a statéand only if s € Qq(t).

Definition 10 (Symbolic Counterexamples)? Let M = (S, S, P,N) be a transition
system, wher& = Lx V¢, S € S, andN is the transition relation. For a TCTL formula
¢, and a set of states C Sy, a symbolic counterexamptgustifying M, C | ¢ has the
form XM, and is defined as follow.

1. A counterexample+ M,C [FEG_ ¢ is alistc = XM such thafl C’ ¢ Swith
(@ M,C" Epng,
(b) X c C,
(€) X1 € X U pre(N)(X), fori <m,
(d) C = Xn.
2. A counterexample+ M,C EAG c¢is alistc = X™ such thal C’ ¢ Swith
(@ M,C" EpAg,
(b) Xgc C,
(¢) Xir1 € Xi U pre(N)(X), fori <m,
(d) C = X

5 Incremental Abstraction-Refinement Algorithm

Definition 11 (Set Inclusion w.r.t. Clock Valuations). For two sets of stateS =
{(I1,v1), ... (Im,vm)} @and S” = {(I1,v)), ..., (I5, vp)}, the set inclusion with respect to
clock valuationsgelationS c, S’ is defined as:

S¢, & iff [n=m |j =1, andy; Cv], forall0 <i <m).

The abstraction-refinement algorithm is displayed in Fég@r The variable¥,
and ¥, store the currently unused (new) and used (actual) abistnagtedicates, re-
spectively. Initially, ¥, contains those predicates from the basis that correspond to
the bounded modalities @f, and possibly some predicates derived from the timing
constraints of the automaton, at#§ contains the remaining predicates (lines (1)-(2)).
First, it is checked ifsy € y([a,(9)] Mys) by calling a finite-state CTL model checker

L A s-path througIBSis a mago from Ry to S, satisfyingo(0) = s, for s€ S. f is a map, which
assigns to everg € S a set ofs-paths througt® [1]. See also Appendix A.

2 For lack of space we define here only counterexample€€@r. ¢ andAG .. ¢, but the full
definition can be found in Appendix B.
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Algorithm: abstract_and_refine
Input: M, S s, N, ¢, ¥
Output: answer to model checking quenM, s = ¢ ?”

choose?’ = {y,..., ¢} from ¥, )
Y, = VP\Y; Pa=¥; 2)
loop ?3)
if s € y([a,(¢)]"") then return true (4)
else ifsy ¢ y([ e (9] Mf”a) then return false (5)
else let[Xo, X1, ..., Xy] be a counterexample v, (6)

if there exists X§, X{,..., Xf]1 s.t. X7 €, y(X) forall0<i<n @)

and [X§, X5, ..., XF] is counterexample i 8)

then return false 9)

else letk s.t. X, € X U pre(N)(XE); S = pre(N)(X¢ ;) €S (10)
choosefeasible?” = {y1,...,¢i} € Prs.t.A(,v) € S. vk y; (12)

Vo= P U ¥i= P\ (12)

endif (13)

endif (14)
endloop (15)

Fig. 2. Iterative abstraction-refinement algorithm.

that generates symbolic evidence, as for example the WMGshubetcker [10,20]. If
indeed the under-approximation satisfies the abstractesllaa,(¢), then, by Corol-
lary 1, M also satisfieg and the algorithm returrisue (line (4)). As next, we check
if o ¢ y([au(e)] Mis). If the over-approximation does not satisty(p), then, also
by Corollary 1, M does not satisfyy and the algorithm return@lse (line (5)). Oth-
erwise (line (6)), that is, iy ¢ y([a.(¢)]"") and sy € y([a,(¢)]**), the CTL
model checker returns a counterexample in the form of anmaatidist of sets of states
[Xo, X1, ..., Xn], where the initial state oJ\/I;:,a is contained inX,. If for the abstract
list of sets of states there exists a corresponding list o€ete sets of states, which is
indeed a counterexample for the concrete transition syatehgiven (TCTL) formula,
then we obtain a counterexample for the concrete modelkaingproblem (lines (7)-
(9)). This requires checking the satisfiability of a Booléamula with linear arithmetic
constraints, which in turns requires quantifier eliminatiand can be performed using,
for example, DDDs [16], or the satisfiability checker ICS]18 case the abstract coun-
terexample is spurious, there exists a smallest ikdgich thalX?, ; ¢ X7 U pre(N)(X;)
(line (10)).k is the index of the list of states that can reach in one step statexfn,,
but which can no longer be reached from the statexgin. Now, we have to choose
those predicates from the basis that are satisfied by thatiahsy of some states
(I,v) € S (lines (10)-(11)). We add the selected predicateégtand compute a new ab-
straction. Notice that the concretization functipactually depends on the current set
¥, of abstraction predicates. The iterative abstractiomeafient algorithm terminates
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@ @’ 4’( Qo :lo,o A AP H Os @ 3,0 A A-p )
1 1
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1
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1

( Qs * o, o A1 A—p )

Fig. 3. Timed automaton (left) and over-approximation with= (z< 2),¢1 = (x< 1)
(right) for Example 1.

after a finite number of refinements, yielding a sound and det@jplecision procedure
for checking whether or not a timed automaton satisfies angiveTL formula.

Theorem 3 (Termination, Soundness, and Completeness).et M be a transition
system with a corresponding finite ba%isandy a TCTL formula. Then the algorithm
in Figure 2 always terminates. Moreover, if it terminatetwiue, thenM E ¢, and if
the result ialse thenM = ¢.

Proof. Let n be the cardinality of the basi¥. Every execution of the loop (line
(3)) adds at least one new predicate from the basis to th#¥séine (12)). After at
mostn iterations, according to Theorem 2y J(¢)]1* = [a,(¥)]*¥. By Theorem 1,
Y[ (@)IM) = [e]™ = ¥([a,(¢)1*¥), and by Corollary 1M;, satisfies the formula
a,(p) it and only if M satisfiesp. Thus, the algorithm terminates, since eitheran be
established or a concrete counterexample can be derived. O

Example 1.Consider the timed automaton from Figure 3, left side, foiclwlwe want

to establish the propertgG., p. A given basis for this system and this property is
V={x=0,z=0x=21z=1,Xx=22z2=2Xx>1,Xx<1z>1z<1x>2X<

2,z > 2}. The transition system with the initial over-approximatiesing the abstraction
predicateg/ = (z < 2) andy; = (x < 1) is shown in the right side of Figure 3. Model
checking the abstract formufa= a,(EG<2 p) = EG(p A ¢0) on the transition system
M{+¢o,¢1} returnsfalse sincesy = (lo, x=2=0) ¢ y([¢] Mfwowﬂ). The finite-state model-
checking algorithm WMC [10,20] returns the symbolic couatample Ko, X1, Xz],
whereXo = {2, 0s}, X1 = {1, 02, 05}, and Xz = {do, g1, G2, gs}. Recall the meaning
of this counterexample list: the s¥p consists of those states that do not satisfy the
subformulap A yro, X; are the states iXp plus those states that can reach only states in
Xo in one step, and so forth. The concretization of this listatfaf states isXg, X{, X5]
whereX¢ ¢, y(X) foralli =0,1,23

y(Xo) = (l2, <2 A x<1) U (I3, z<2 A x< 1)

3 To simplify the notation we denote sets of concrete stated sis{(l,v) | | = lgAv(X) <
IAv(2) <2)by (lo,x<1AZ<2).
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Fig. 4. Timed automaton and over-approximations with= (x = 0) (lower left part)
and? = {x = 0, x>y} (lower right part) for Example 2.

y(X1) = y(Xo) U (I, z<2 A x< 1)
Y(X2) = y(X1) U (lo, z<2 A x< 1)

Now we have to check if the listf, X7, X5] is a counterexample on the concrete tran-
sition system, by checking the satisfiability of the coratis from Definition 2 (1). All
four conditions are satisfied in our example, thus, the abstm-refinement algorithm
terminates with the answéalse meaning that the timed system from Figure 3 does not
satisfies the propertgG.; p.

We now illustrate a situation in which the concretizationreff abstract counterexample
yields a spurious concrete counterexample, which ingiateefinement step.

Example 2.Consider the timed automaton from the upper part in Figund/@ want
to prove that locatiort, is never reached, specified @s= —=E[tt U at_|,], where the
atomic (boolean) propositioat | is true if the system is in locatiola. Note thaty is
actually a CTL formula, and need therefore not to be ab&tdagtcan be rewritten as
AG-at _l,. A given basis for this system 8 = {x = 0,y =0,x <1, x> 1y <
1,y >1 x>y, x <y} The transition system of the initial over-approximatioithw
the single abstraction predicate = (x = 0) is shown in the lower left part of Figure 4.
Model checkingy = AG(—at_I2) on the transition systen\,_, returnsfalse since
So = (lo.x =y = 0) ¢ y([¢ljq). The list Xo. Xa. Xo. Xa], with Xo = {aa), X1 =
{03, da}, X2 = {Q1, 02, O3, Aa}, X3 = {Qo, A1, 02, 3, G4} IS returned as a counterexample.
The concretization of this counterexample yields

¥(Xo) = (I, x>0 A y>0)

y(X1) = (1, x>0 A y>0) U (I, x>0 A y>0)

(%) =(lo, x>0 Ay>0) U (I, x>0 A y>0) U (I, x>0 A y>0)
y(X3) = (lo, x=0Ay=0) U (I, x=0Ay>0) U (I, x>0 A y>0)
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Now, we have to check if there is a corresponding symbolimtenexample on
the concrete system, that is, there exi§ K7, X5, X5], with X% C, y(X), for all i =
0,...,3. Thisis the case if the following formula is valid.

¢=3X5 S, y(Xo), ..., X5 S, ¥(X3),AC" C S,
MEC = —at_lp) A (X§=C) A A2y (X5, = (X°V pre(N)(X0)))
Here,¢ is not satisfiable, since on the concrete transition sy3tgg (X{Upre(N)(X?))
does not holdX7 U pre(N)(X{) = (I2, x> 0Ay > 0)U (I, x > y > 0) does not contain
a state with locatioty, but according to Definition 11 and the fact th&tc, y(Xz), X5
must contain a state withlalocation, and therefor¥ ¢ (X7 U pre(N)(X?)).

Now, k = 1 in our abstraction refinement algorithm, a®d {(I1,v) | v(X) > v(y)},
and the new abstraction predicate is chosen tgpe x > y. Figure 4 (lower right
part) shows the reachable fragment of the resulting appration of M with ¥ =
{0, ¥1}. Model checking the formula = AG(-at_l,) on M, ,,, succeeds, sinc® =

(lo, 00 A =) € y([ ] Mvom).

6 Conclusion

We have defined symbolic counterexamples for the full TCTgidpand used them
for developing a verification algorithm for timed automateséd on predicate abstrac-
tion, untimed model checking, and decision procedureshferBoolean combination
of linear arithmetic constraints. The main advantage & &pproach is that finite state
abstractions are computed lazily and incrementally. Ausiton refinement terminates
quickly, as a multitude of spurious counterexamples is ielated in every refinement
step through the use of symbolic counterexamples for TCTdingy symbolic coun-
terexamples makes it possible to apply the abstractionerefémt paradigm to the full
TCTL logic.

Dual to the notion of symbolic counterexamples, we can aéfind symbolic wit-
nesses for the full TCTL, as extensions of symbolic withedse CTL [20]. These
witnesses and counterexamples can be seen as proofs faidtpaént that the timed
automaton does or does not satisfy the given TCTL formuld,cam be independently
verified using a satisfiability checker that can decide tieeith of linear arithmetic with
reals. Moreover, explicit linear or tree-like witnesses @ounterexamples can be ex-
tracted from these symbolic evidence, following the apphoa [20] for the untimed
case.

The method of lazy approximation is also applicable for otteal-time logics.
Moreover, this technique can readily be extended to alstyappicher models than
timed automata, such as parameterized timed automatal aotemata with other in-
finite data types, or even to hybrid systems. The price to p#yat such extensions are
necessarily incomplete.

Work in progress investigates the combination of lazy apipnation with the ap-
proach to controller synthesis for finite-state systemseqated in [20], for synthesizing
real-time controllers.
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Note to the reviewer: the Appendices are not part of tieial submission.

A TCTL Syntax and Semantics

Definition 12 (TCTL Syntax). Let AP be a set of atomic propositions, apd AP.
The formulas of TCTL are inductively defined as follows:

e=pla@ler A @2 | E[p1 U cp2] | Alpr U-cg2]

Definition 13 (s-Path). For a sefS of states and € S, ans-path througtsis a mapo
from Rxo to S, satisfyingo(0) = s.

Definition 14 (TCTL-Structure). A structure for a TCTL formula is a tupld1 =
(S, So, 1, ), where

— Sis a set of states.

— & € Sis an initial state.

— u S — P(AP) is a labeling function, which assigns to each state a setoohia
propositions true in that state.

— f is a map, which assigns to eves\e S a set ofs-paths througls, and is closed
under stfix and fusiort:

Definition 15 (Semantics of TCTL). Given a TCTL-structureM = (S, So, u, f),
over a seB = L x V¢, of timed configurations, and a TCTL-formuathe set of states
[¢IM, which validates the formula is defined inductively over the structureqf

[pl™:={seS|peu(®s)
[-¢1™ =S\ [¢]
[ A @A™ = [ad ™ N [ed™
[E[¢1U-c o]l ™ := {se S| for somep € f(s), for somet ~ ¢, p(t) € [¢2] M and
o(t) € [a] ™, forall0<t <t
[Alg1U_c@a]]M:= {se S|forall p € f(s), for somet ~ ¢, p(t) € [¢2] ™ and
o) € [e ™, forall o<t <t)

Definition 16 (Other Temporal Operators). The following temporal operators can
be defined as usual.

EF.co = E[tt U.cy]
AF cp = Altt U cy]
EG.cy i= -AF ¢ -
AG cp = -EF .. —¢
Elp1 Rcg2] 1= =A[=¢p1 U c ~¢7]
Alp1r Rec p2] 1= ~E[-¢1 U.c ~¢7]

4 Details on s#ix and fusion closure can be found in [1].
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B Symbolic Counterexamples for TCTL

Definition 17 (TCTL Symbolic Counterexamples). Let M = (S, &, P, N) be a tran-
sition system, wher€ = L x V¢, S € S, andN is the transition relation. For a TCTL
formulag, and a set of stat&3 C Sy, a symbolic counterexampbgustifying M, C ¢
has the formX™, whereX is a sequence of states of length+ 1, which is defined
inductively over the structure @f. Note that(cy,...,c) F M,CL U ... U Cy I ¢ iff
MG Epforl<ic<k

1. A counterexample+ M,C EEG_ c¢pis alistc = XM, such thaBC’ ¢ Swith €)
M, C EpAL, (B)Xo € C, (C) Xiz1 € X U pre(N)(X), fori <m, (d) C = Xp.

2. A counterexample - M,C [ AG ¢ ¢ is a listc = X™, such thaHC’ € Swith (a)
M, C EpAL, (B)Xo € C, (C) Xiz1 € X U pre(N)(X), fori <m, (d) C = Xp.

3. A counterexample - M,C £ EF ¢ is a listc = X™, such thaHHC’ c Swith (a)
M, C EpAL, (B)Xo € C, (C) Xiz1 € X, fori <m, (d)C = Xy € pre(N)(Xm)-

4. A counterexample + M,C [EAF ¢ is alistc = XM, such thaBC’ ¢ Swith (a)
M, C EpAL, (b)Xo € C, (C) Xiz1 € X, fori <m, (d) C = Xy € pre(N)(Xm)-

5. A counterexample + M, C j=E[¢1 U_c 5] is alistc = X™, such thaBC’,C” € S
with () M,C” B @2A ¢, and M,C" B o1V (p2A0), (B)C € Xo € C”, (c)
Xir1 € (Pre(N)(Xi) N X)) U C’, (d) C = Xin € Pre(N)(Xm).

6. A counterexampler M,C EA[p1 U c o] isalistc = X™ such thaf c,c”cs
with (&) M,C” B ¢a2A¢, and M,C" H ¢1V(p2n ), (b)) C € X € C”, (€)
Xis1 € (Pre(N)(X) N X)) U C’, (d) C = Xm < pre(N)(Xm).

7. Acounterexampler M, C E[¢1 R_cgo] is alistc = X™, suchthafC’,C” C S
with (&) M,C” H ¢2V =, and M, C" F 1V (=2 A L), (B)C" € Xo € C”, (C)
Xir1 € (Pre(N)(X)) N C) U X;, (d) C = X,

8. A counterexampler M,C =A[p1 R.c ¢2] is a listc = X™, such thaHC’,C” ¢ S
with (&) M,C"” F ¢V =¢, and M,C’" H 1V (=2 A 0), (B) C € Xo € C”, (C)
Xis1 € (pre(N)(X) N C) U X, (d) C = Xn.

9. A counterexample - M,C 1V gy is alistc = X0, such thaBlC’,C” ¢ Swith
@M, C Epr, andM,C” Epy, (B)C =X, =C'NnC”.

10. A counterexampler M,C @1 Agpis alistc = X0, such thafl C’,C” c Swith
@M, C" e, andM,C” £y, (D)C=Xo=C' UC”.



