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Abstract. We propose an effective and complete method for verifying safety
and liveness properties of timed systems, which is based on predicate abstrac-
tion for computing finite abstractions of timed automata andTCTL formulas,
finite-state CTL model checking, and successive refinement of finite-state ab-
stractions. Starting with some coarse abstraction of the given timed automaton
and the TCTL formula we define a finite sequence of refined abstractions that
converges to the region graph of the real-time system. In each step, new abstrac-
tion predicates are selected nondeterministically from a finite, predetermined ba-
sis. Symbolic counterexamples from failed model-checkingattempts are used to
heuristically choose a small set of new abstraction predicates for incrementally
refining the current abstraction. Without sacrificing completeness, this algorithm
usually does not require computing the complete region graph to decide model-
checking problems. Abstraction refinement terminates quickly, as a multitude of
spurious counterexamples is eliminated in every refinementstep through the use
of symbolic counterexamples for TCTL.

1 Introduction

Timed Automata[2] are state-transition graphs augmented with a finite set of real-valued
clocks. The clocks proceed at a uniform rate and constrain the times at which transitions
may occur. Given a timed automaton and a property expressed in a (timed) temporal
logic, model checking answers the question whether the timed automaton satisfies the
given formula. The fundamental graph-theoretic model checking algorithm by Alur,
Courcoubetis and Dill [1] constructs a finite quotient, the so-calledregion graph, of the
infinite state graph corresponding to the timed automaton. Algorithms directly based on
the explicit construction of such a partition of states are inefficient since the number of
equivalence classes of states of the region graph grows exponentially with the largest
time constant and the number of clocks that are used to specify timing constraints.

In [18,17] we propose a novel method for verifying safety andliveness properties
of timed systems based on predicate abstraction [13] for timed automata, finite-state
model checking, and counterexample-guided abstraction refinement. We define a set of
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so-calledbasis predicates, which are expressive enough for distinguishing between any
two clock regions. This set of predicates determines a strongly preserving abstraction
in the sense that a timed automaton validates aµ-calculus formula iff the corresponding
finite abstraction validates this formula. The control structure of the timed automaton is
preserved in the abstract system. The abstracted systems nolonger refer to the real-time
nature of computations, and finite-state model checkers canbe used to establish safety
and liveness properties in the abstracted system.

In many cases it is not necessary to compute the exact abstraction using the en-
tire basis of predicates, since a coarser approximation of this is sufficient for proving
or refuting the desired property. Since we consider safety and liveness properties we
maintain both under- and over-approximations of the given timed system. These ap-
proximations are computed via an iterative abstraction-refinement process that starts
with some coarse approximations of the timed system and computes a sequence of ap-
proximations until the one necessary for proving or refuting the property is obtained. In
each refinement step new abstraction predicates are selected from the finite set of basis
predicates and new, more detailed approximations are computed. Hereby, the choice of
predicates is guided by counterexamples from failing model-checking attempts. We call
this methodlazy approximation. This process of abstracting and refining approxima-
tions is illustrated in Figure 1. When using the entire basisof predicates for computing
the approximations, the under- and over-approximation areidentical, yielding therefore
a strongly property preserving abstraction of the timed system. Since the sequence of
approximations converges toward the region graph of the real-time systems, the method
of lazy approximation is complete [18,17]. The main advantage of this approach is
that finite time-abstractions are computed lazily. This results in substantial savings in
computation whenever coarse abstractions are sufficient to prove the property at hand.
Standard benchmark examples for timed automata such as train gate controller and a
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version of Fischer’s mutual exclusion protocol can be proved using only a few abstrac-
tion predicates.

In this paper we extend our previous results [18,17] in several directions. First, we
consider TCTL [1] for expressing qualitative and quantitative properties of timed sys-
tems, instead of the untimed logic considered in [18,17]. Wedefine an abstraction func-
tion for TCTL that maps a TCTL formula to a CTL formula, together with the inverse
operation of concretization. The predicates necessary forthe abstraction are extracted
from the timed-bounded modalities of the TCTL formula. For extracting the predicates
we introduce for every timed-bounded modality of a given TCTL formula ϕ a new
clock variablezi . Now, the set of abstraction predicatesΨϕ with respect toϕ consists of
all the formulaszi∼c with free variableszi , where∼c denotes the timed bound of the
modalities occurring inϕ. For examples, the abstraction predicates corresponding to the
TCTL formulaϕ = EG<2 p ∧ A[qU≤4 r], with p, q, r atomic propositions, are given
asψ1 ≡ z1 < 2,ψ2 ≡ z2 ≤ 4. The resulting abstract CTL formula is now obtained using
these predicates asϕA = EG(p∧ψ1)∧A[qU (r ∧ψ2)].

Second, in contrast to the previous version of our algorithm[18,17], where refined
approximations are recomputed from scratch, we compute abstraction refinements in
an incremental fashion, following the approach outlined byDas and Dill [8] for the
untimed case.

Third, we introduce a symbolic form of counterexamples for the full TCTL logic,
as sequences over sets of states. These symbolic structuresare timed extensions of the
symbolic counterexamples for (untimed) CTL [20]. We use symbolic counterexam-
ples in the abstraction-refinement algorithm as a heuristicfor selecting new abstraction
predicates from the given set of basis predicates. Symboliccounterexamples make the
refinement process converge more quickly compared to the useof linear counterexam-
ples, as a multitude of spurious counterexamples are discarded in every refinement step.
Moreover, since we define symbolic counterexamples for the full TCTL, the method of
lazy approximation is applicable for full TCTL, and not onlyfor a fragment of universal
formulas as it is the case when using linear counterexamples.

The main contributions of our paper are

1. A definition of abstraction functions for timed automata and TCTL based on pred-
icate abstraction.

2. A definition of symbolic counterexamples for full TCTL.
3. An incremental abstraction refinement algorithm for computing finite approxima-

tions of timed automata and TCTL formulas.
4. A proof for termination, soundness and completeness of the abstraction refinement

algorithm.

Related Work. The abstract interpretation framework [7] has been used earlier in the
context of real-time systems for formalizing approximations of safety properties [23,11,9].
In contrast, the techniques proposed in [18,17] and extended in this paper, also allow
for verifying liveness. Whereas verification techniques for infinite-state systems based
on predicate abstraction [13,5,19,14] are usually used in an incomplete way for prov-
ing safety properties, our verification method for timed systems is even complete for
liveness properties.
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Counterexample-guided refinement has been studied by many researchers, and re-
cent work includes [6,8,15,14]. In contrast to these approaches, we use counterexamples
only as a heuristic for selecting good pivot predicates froma fixed, predetermined pool
of abstraction predicates to speed convergence of the approximation processes.

Dill and Wong-Toi [11] also use an iteration of both over- andunder-approxi-
mations of the reachable state set of timed automata, but their techniques are limited
to proving invariants. Daws and Tripakis [9] propose several abstractions that reduce
the state space of a timed system, while preserving reachability properties. Tripakis
and Yovine [22] show how to abstract dense real time to obtaintime-abstracting, finite
bisimulations. Behrmann, Bouyer, Larsen and Pelánek [4] propose zone based abstrac-
tions with respect to the minimal and maximal constants to which clocks are compared,
obtaining a sound and complete verification method for reachability. Whenever it suf-
fices to compute rather coarse abstractions, we expect to obtain much smaller transi-
tion systems by means of lazy approximation. Alur, Itai, Kurshan, and Yannakakis [3]
present a technique based on over-approximations: the method consists in attempting to
prove a property on an abstract system, where some clocks areignored; if this attempt
fails, clocks are reintroduced progressively until eitherthe property is proved on the ab-
stract system, or all the clocks have been reintroduced. Themethod still requires exact
computation of the region graph for each abstracted system.

Henzinger, Jhala, Majumdar, and Sutre [14] present an abstraction-refinement al-
gorithm for model checking safety properties that integrates the construction of the
abstract model with the verification process. The abstract model is constructed on de-
mand during verification, by refining only parts of the current abstract model. However,
this method allows for checking only reachability properties, whereas our approach can
be used to verify or refute any kind of TCTL properties.

All the above-described approaches use linear counterexamples during the refine-
ment process. In contrast, symbolic counterexamples make the refinement process con-
verge more quickly compared to the use of linear counterexamples, since several spuri-
ous counterexamples are discarded in one refinement step.

Organization. The remainder of this paper is organized as follows. Section2 reviews
the basic notions of timed automata and TCTL. Finite over- and under-approximations
of timed automata are defined in the first part of Section 3, while the second part con-
tains definitions of abstraction and concretization functions for TCTL. Symbolic coun-
terexamples for TCTL as sequences over sets of states are introduced in Section 4. In
Section 5, we define the iterative abstraction refinement algorithm and show termination
and completeness thereof. Finally, Section 6 contains someconcluding remarks. For
lack of space we omit some of the proofs, but detailed proofs can be found in [18,21].

2 Preliminaries

Given a set of clocksC, the set oftiming (or clock) constraints Constrcomprisestt,
x ⊲⊳ d, andx − y ⊲⊳ d, wherex, y ∈ C, d ∈ N, ⊲⊳ ∈ {≤, <,=, >,≥}. The setInv is the
subset ofConstr, where⊲⊳ is chosen from{≤, <}. For a positive integerγ, Constr(γ) is
the finite subset of all clock constraintsx ∼ γ, x− y ∼ γ, wherex, y ∈ C.

A timed automaton[2] is a tupleS = 〈L,P,C,E, L0, I〉, where
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– L is a nonempty finite set of locations.
– P : L→ P(AP) maps each location to a set of propositional symbolsAP.
– C is a finite set of clocks.
– E ⊆ L×P(Constr)×P(C)×L is a transition relation; we writel

g,r
−→l′ for 〈l, g, r, l′〉 ∈

E.
– L0⊆ L is the set of initial locations.
– I : L→ P(Inv) assigns a set of downward closed clock constraints to each location

l; the elements ofI (l) are theinvariantsfor locationl.

A functionν : C→ R≥0 is aclock valuation, and the set of clock valuations is collected
inVC.V0 denotes the set of initial clock valuations that assigns to every clock the value
0. The clock valuation (ν+δ) is obtained by addingδ to the value of each clock inν. For
X ⊆ C, ν[X := 0] denotes the clock valuation that updates every clockx ∈ X to zero,
and leaves all the other clock values unchanged. The valuegν of a clock constraintg
with respect to the clock valuationν is obtained by substituting the clocksx in g with
the corresponding valueν(x). If gν simplifies to the true value,ν satisfiesg and we write
ν |≈g. A setX ⊆ VC of clock valuations satisfiesg ∈ Constr, written asX |≈g, if and
only if ν |≈g for all ν ∈ VC. A pair (l, ν) ∈ L × VC is called atimed configuration, if
it satisfies the invariantsI (l); formally, ν |≈ I (l) iff ν |≈g for every invariantg ∈ I (l). A
clock region[2] is a setX ⊆ VC of clock valuations, such that for all timing constraints
g ∈ Constr(γ) and for any twoν1, ν2 ∈ X it is the case thatν1 |≈g if and only if ν2 |≈g.
In this case we writeν1� ν2.

A timed stepis either adelay step, where time advances by some positive real-
valuedδ, or an instantaneousstate transition step. For δ > 0, we say that the timed

configuration (l, ν + δ) is obtained from (l, ν) by a delay step(l, ν)
δ
⇒(l, ν + δ), if the

invariant constraintν + δ |≈ I (l) holds. A state transition step(l, ν)
g,r
⇒(l′, ν′) occurs if

there exists al
g,r
−→l′ ∈ E, andν |≈ g, ν′ := ν[r := 0], andν′ |≈ I (l′).

The lazy approximation method, we present here, allows for verifying not only
safety properties, but also liveness properties. Livenessin dense real time is complicated
by the possible sequences of infinitesimally decreasing delay steps; they constitute a de-
generated behavior of a system, a behavior that has to be disallowed. As in [18,17], we
eliminate this undesired behavior by restricting the modelof timed automata to delay
steps that force a clock to step beyond integer bounds when all fractional clock values
are not zero. We have shown [18,17] that such a restriction does not change the possible
observations of the model with respect toµ-calculus formulas. The proof can easily be
adapted to TCTL formulas.

A restricted delay step[18,17] is a delay step (l, ν)
δ
⇒(l, ν + δ) for all positive, real-

valuedδ, such that

∃x ∈ C.∃k ∈ {0, . . . , γ}. ν(x) = k∨ (ν(x) < k∧ ν(x) + δ ≥ k).

In this paper we consider timed systems with restricted delay steps. The union of
restricted delay and state transition steps defines the timed transition relation⇒ of a
timed systemS.

The semantics of a timed systemS = 〈L, L0,C, I ,P,E〉 is given by associated with
it a transition systemM = 〈S,S0,P,N〉, whereS = L × VC, S0 = L0 × V0 ⊆ S are
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the initial states,P = P, andN is the timed transition relation⇒ introduced above.
For (s, s′) ∈ N, we also writes′ ∈ N(s), and if S ⊆ S, thenN(S) is ∪s∈SN(s). The
converse transition relatioñN is defined bỹN(s, s′) ⇐⇒ N(s′, s). We assume that the
transition relationN is total, that is, every state has a successor. Apathπ is a finite or
infinite sequence of configurationsπ = (s0, s1, . . .) such thatsi+1 ∈ N(si) for all i ≥ 0.
We sometimes denote a path bys0⇒s1⇒ . . ..

Given a setS ⊆ S and the transition relationN, we define threepredicate trans-
formersfrom 2S to 2S; post(N)(S) = N(S), pre(N)(S) = Ñ(S), andp̃re(N)(S) = {s ∈
S | N(s) ⊆ S}. Thepostconditionfunction post(N)(S) computes for a given setS of
states, the set of states that can be reached in one step from some state inS. Thepreim-
agefunctionpre(N)(S) returns the set of states that can reachS in a single step. The
preconditionfunction p̃re(N)(S) returns the set of those states that have no successors
outside ofS.

The logic TCTL [1] is a dense real-time extension of CTL with time bounded
modalities and is defined by the grammar (p ∈ AP)

ϕ := p | ¬ϕ | ϕ1∧ ϕ2 | E[ϕ1 U∼c ϕ2] | A[ϕ1 U∼c ϕ2] .

The semantics of TCTL formulas is given in the usual way, withrespect to a transition
system. The notions ofs-path and TCTL-structure are as in [1], and are reviewed in
Appendix A.

3 Abstraction Functions

3.1 Abstracting Timed Systems

Definition 1 (Abstraction Predicates [18,17]). Given a set of clocksC, anabstrac-
tion predicatewith respect toC is any formula with the set of free variables inC.
Similarly to timing constraints, the value of an abstraction predicateψ with respect to a
clock valuationν, where both free and bound variables are interpreted in the domainC,
is denoted by the juxtapositionψν. Wheneverψν evaluates to true, we writeν |≈ψ.

A set of abstraction predicatesΨ = {ψ0, · · · , ψn−1} determines anabstraction functionα,
which maps clock valuationsν to abitvector bof lengthn, such that thei-th component
of b is set if and only ifψi holds forν. Here, we assume that bitvectors of lengthn are
elements of the setBn, which are functions of domain{0, · · · , n−1} and codomain{0, 1}.
The inverse image ofα, that is, theconcretization functionγ, maps a bitvector to the
set of clock valuations that satisfy allψi whenever thei-th component of the bitvector is
set. Thus, a set of concrete states (l, ν) is transformed by the abstraction functionα into
the abstract stateα(l, ν), and an abstract state (l, b) is mapped byγ to a set of concrete
statesγ(l, b).

Definition 2 (Abstraction/Concretization [18,17]). Let C be a set of clocks andVC

the corresponding set of clock valuations. Given a finite setof predicatesΨ = {ψ0, · · · , ψn−1},
theabstraction functionα : L × VC → L × Bn is defined by

α(l, ν)(i) := (l, ψiν)
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and theconcretization functionγ : L × Bn→ L × P(VC) is defined by

γ(l, b) := {(l, ν) ∈ L × VC | I (l) ∧
n−1∧

i=0

ψiν ≡ b(i)}.

We also use the notationsα(S) := {α(l, ν) | (l, ν) ∈ S} andγ(Sa) := {γ(l, b) | (l, b) ∈ Sa}.
Now, the abstraction/concretization pair (α, γ) forms a Galois connection.

Definition 3 (Feasible State). An abstract state (l, b) is feasibleif and only if its
concretization is not empty, that is,γ(l, b) , ∅.

A set of predicates is feasible, if the conjunction of the predicates is satisfiable.

Definition 4 (Over-/Under-approximation [18,17]). Given a (concrete) transition sys-
temM = 〈Sc,Sc

0,P,⇒〉, whereSc = L × VC, Sc
0 = L0 × V0, and a setΨ of abstraction

predicates, we construct two (abstract) transition systemsM+Ψ = 〈S
a,Sa

0,P,⇒
+〉, and

M−Ψ = 〈S
a,Sa

0,P,⇒
−〉.

– Sa := L × Bn

– (l, b)⇒+(l′, b′) iff
∃ν, ν′ ∈ VC s.t. (l, ν) ∈ γ(l, b) ∧ (l′, ν′) ∈ γ(l′, b′). (l, ν)⇒(l′, ν′)

– (l, b)⇒−(l′, b′) iff (l, b) feasible, and
∀ν ∈ VC s.t. (l, ν) ∈ γ(l, b). ∃ν′ ∈ VC s.t. (l′, ν′) ∈ γ(l′, b′). (l, ν)⇒(l′, ν′)

– Sa
0 := {(l0, b0) | l0 ∈ L0, andb0(i) = 1 iff ν0 |= ψi}.

M
+
Ψ is called anover-approximation, andM−Ψ anunder-approximationofM.

Obviously, we have that⇒−⊆⇒+. If the setΨ of abstraction predicates is understood
from the context, we omit it in the notation for under-, and over-approximation, and we
writeM−, respectivelyM+.

For the transition relations⇒−,⇒+, and⇒ we defineγ(⇒−), γ(⇒+), respectively
α(⇒) as follows:

γ(⇒−) := {((l, ν), (l′, ν′)) ∈ Sc | ∃b, b′. (l, b)⇒− (l′, b′) ∧ (l, ν) ∈ γ(l, b) ∧

(l′, ν′) ∈ γ(l′, b′)}

γ(⇒+) := {((l, ν), (l′, ν′)) ∈ Sc | ∃b, b′. (l, b)⇒+ (l′, b′) ∧ (l, ν) ∈ γ(l, b) ∧

(l′, ν′) ∈ γ(l′, b′)}

α(⇒) := {(α(l, ν), α(l′, ν′)) | (l, ν)⇒ (l′, ν′)}

The next statement follows directly from Definition 4.

Lemma 1 ( [18,17]). For a (concrete) transition systemM with the transition relation
⇒ and the corresponding over- and under-approximationsM+Ψ , M−Ψ with respective
transition relations⇒+, and⇒−: (1) γ(⇒−) ⊆ ⇒ ⊆ γ(⇒+) and (2)⇒− ⊆ α(⇒) ⊆ ⇒+.
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Definition 4 does not allow the incremental computation of over- and under-approxi-
mations. When adding new predicates toΨ , new approximations have to be constructed
from scratch starting from the initial transition system. We modify Definition 4 such that
successive approximations can be computed incrementally from previously obtained
approximations by adding new predicates from the basis.

We introduce the following notations. A bitvector of lengthk is denoted byb[0 :
k − 1], and corresponds to the setΨk = {ψ0, . . . , ψk−1} of abstraction predicates. The
abstraction and concretization functions determined byΨk are denoted byαk, γk, re-
spectively. The finite over-approximation ofM with respect toΨk is denoted byM+Ψk

and is the tuple〈Sa
k,S

a
0k
,P,⇒+k 〉. Similarly, the finite under-approximation ofM with

respect toΨk is denoted byM−Ψk
= 〈Sa

k,S
a
0k
,P,⇒−k 〉. Note that the mapping functionP

does not depend on the abstraction predicates, merely on thefinite control structureL.

Definition 5 (Incremental Over-/Under-approximation). For a timed systemS, with
corresponding transition systemM, and a TCTL formulaϕ, letΨ be the corresponding
basis of abstraction predicates,M+Ψk

= 〈Sa
k,S

a
0k
,P,⇒+k 〉 andM−Ψk

= 〈Sa
k,S

a
0k
,P,⇒−k 〉 the

over-approximation and under-approximation ofM obtained in stepi with respect to
a setΨk ⊂ Ψ of abstraction predicates, respectively. LetΨk′ be the set of predicates
obtained from the failed model-checking attempt in stepi. The over-approximation
M+Ψm

= 〈Sa
m,S

a
0m
,P,⇒+m〉 respectively under-approximationM−Ψm

= 〈Sa
m,S

a
0m
,P,⇒−m〉

obtained in stepi + 1 with respect to the set of predicatesΨm = Ψk ∪ Ψk′ , is derived
fromM+Ψk

, respectivelyM−Ψk
, as follows:

– Sa
m = {(l, b[0 : m− 1]) | (l, b[0 : k− 1]) ∈ Sa

k and
∀i = k, . . . , k+ k′ − 1. b[i] = 1 if Ψk ∩ ψi , ∅, elseb[i] = 0}

– (l, b[0 : m− 1])⇒+m(l′, b′[0 : m− 1]) iff
• (l, b[0 : k− 1])⇒+k (l′, b′[0 : k− 1]) and
• ∃ νm, ν

′
m ∈ VC s.t. (l, νm) ∈ γm(l, b[0 : m− 1]) and (l′, ν′m) ∈ γm(l, b′[0 : m− 1])

with νm = νk ∩ {ν ∈ VC | Ψk′ν ≡ 1} andν′m = ν
′
k ∩ {ν

′ ∈ VC | Ψk′ν ≡ 1} such
that (l, νm)⇒(l′, ν′m).

– (l, b[0 : m− 1])⇒−m(l′, b′[0 : m− 1]) iff
• (l, b[0 : k− 1])⇒−k (l′, b′[0 : k− 1]) and
• ∀ νm, ν

′
m ∈ VC s.t. (l, νm) ∈ γm(l, b[0 : m−1]) and (l′, ν′m) ∈ γm(l′, b′[0 : m−1])

with νm = νk ∩ {ν ∈ VC | Ψk′ν ≡ 1} andν′m = ν
′
k ∩ {ν

′ ∈ VC | Ψk′ν ≡ 1} such
that (l, νm)⇒(l′, ν′m).

The setSa
m can also be defined as in Definition 4 as the product ofL andBm, where

Bm is the set of all bitvectors of lengthm. However, the above definition is more re-
strictive, in the sense that a smaller set of abstract statesthanL × Bm is obtained, since
infeasible states are discarded.

3.2 TCTL Abstraction

We define abstractions and concretizations functions for TCTL formulas based on a
set of abstraction predicatesΨϕ. The predicates are extracted from the timed-bounded
modalities of the formulas. For every timed-bounded modality of a given formulaϕ we
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introduce a new clock variablezi . Now, the set of abstraction predicatesΨϕ with respect
to ϕ consists of all the formulaszi∼c with free variableszi , where∼c denotes the timed
bound of the modalities occurring inϕ. For example, the abstraction predicates corre-
sponding to the formulaϕ = EG<2 p ∧ A[qU≤4 r], with p, q, r atomic propositions,
are given asΨϕ = {z1 < 2, z2 ≤ 4}.

Definition 6 (TCTL Abstraction Predicates). Given a TCTL formulaϕ. A TCTL
abstraction predicateis a formulazi∼ci , with zi a free variable and∼ci the time bound
of the i-th modality inϕ. The TCTL abstraction predicates corresponding to a formula
ϕ are collected in the setΨϕ. If ϕ does not contain any timed-bounded modalities, then
Ψϕ is empty.

Definition 7 (TCTL Abstraction /Concretization). Given a TCTL formulaϕ, and
a setΨϕ of abstraction predicates. Furthermore, letψ ≡ z∼c be a predicate inΨϕ,
corresponding to the bounded modalityU∼c. Theabstraction functionαϕ : TCT L→
CT L is defined inductively over the structure ofϕ.

αϕ(tt) := tt αϕ(p) := p αϕ(¬ϕ) := ¬αϕ(ϕ)

αϕ(ϕ1∧ϕ2) := αϕ(ϕ1) ∧ αϕ(ϕ2)

αϕ(E[ϕ1 U∼c ϕ2] := E[αϕ(ϕ1) U (αϕ(ϕ2)∧ψ)]

αϕ(A[ϕ1 U∼c ϕ2] := A[αϕ(ϕ1) U (αϕ(ϕ2)∧ψ)]

The concretization functionγϕ : CT L → TCT L maps a CTL formula to a TCTL
formula, and is the inverse operation toαϕ, that isγϕ(ϕ) = αϕ−1(ϕ).

Now, given a timed automatonS with a set of clocksC, and a TCTL formulaϕ,
we add the clockszi corresponding to the bounded modalities ofϕ to C, and define the
abstraction predicates with respect to the new set of clocks. The initial values of the
clockszi equal zero, and the largest constants, which these clocks are even compared
to are given by the constantsci , appearing in the bounded modalities ofϕ. Let Ψ be
the set of abstraction predicates corresponding toS andϕ. If ϕ does not contain any
timed-bounded modalities, thenΨ consists only of the predicates with respect to the
automaton clocks, as in Definition 1.

Definition 8 (Predicate Abstracted Semantics of CTL). Letϕc be a TCTL formula,
M = 〈Sc,Sc

0,P,⇒〉 a transition system, andΨ a set of abstraction predicates. Consider,
as given in Definition 4, the over-approximationM+Ψ = 〈S

a,Sa
0,P,⇒

+〉, and the under-
approximationM−Ψ = 〈S

a,Sa
0,P,⇒

−〉 ofM. Furthermore, letϕ = αϕ(ϕc) be the CTL
formula obtained by abstractingϕc using the predicates corresponding to the bounded
modalities inϕ. Then, thepredicate abstractedsemantics [[ϕ]]M

σ
Ψ , whereσ is either+

or −, of the CTL formulaϕ with respect to the finite-state transition systemsMσ
Ψ is

defined in a mutually inductive way. The notation ¯σ is used to toggle the signσ.

[[tt]]M
σ
Ψ := Sa

[[ p]]M
σ
Ψ := {(l, b) ∈ Sa | p ∈ P(l)}

[[¬ϕ]]M
σ
Ψ := Sa \ [[ϕ]]M

σ̄
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[[ϕ1∨ϕ2]]M
σ
Ψ := [[ϕ1]]M

σ
Ψ ∪ [[ϕ2]]M

σ
Ψ

[[E[ϕ1 Uϕ2]]]M
σ
Ψ := {s ∈ Sa | for some pathπ = (s0⇒

σs1⇒
σ . . .) with s0 = s,

for somei ≥ 0, si ∈ [[ϕ2]]M
σ
Ψ andsj ∈ [[ϕ1]]M

σ
Ψ for 0 ≤ j < i}

[[A[ϕ1 Uϕ2]]]M
σ
Ψ := {s ∈ Sa | for every pathπ = (s0⇒

σs1⇒
σ . . .) with s0 = s,

for somei ≥ 0, si ∈ [[ϕ2]]M
σ
Ψ andsj ∈ [[ϕ1]]M

σ
Ψ for 0 ≤ j < i}

We also writeMσ, (l, b) |=a ϕ, to denote that (l, b) ∈ [[ϕ]]M
σ
Ψ .

Theorem 1 (Soundness of Abstraction).LetM = 〈Sc,Sc
0,P,⇒〉 be a transition sys-

tem,Ψ a set of abstraction predicates, andM+,M− the over-approximation and under-
approximation ofM with respect toΨ . Then for any TCTL formulaϕ the following
holds.

γ([[αϕ(ϕ)]]M
−
Ψ ) ⊆ [[ϕ]]M ⊆ γ([[αϕ(ϕ)]]M

+
Ψ )

Here,αϕ is the abstraction function for TCTL formulas from Definition 7, andγ the
concretization function from Definition 2.

We now give a criterion, based on the notion of regions, for a set of abstraction predi-
cates that is sufficient for guaranteeing convergenceof the over- and under-approximations
in general.

3.3 Set of Basis Predicates

A basisis a set of abstraction predicates that is expressive enoughto distinguish between
two clock regions. If a basis is used for predicate abstraction, then the approximation is
exact with respect to the TCTL logic, that is, the approximation is property-preserving.

Definition 9 (Basis [18,17]). Let S be a timed automaton with clock setC and letΨ
be a set of abstraction predicates. ThenΨ is abasiswith respect toS iff for all clock
valuationsν1, ν2 ∈ VC: [ (∀ψ ∈ Ψ. ν1 |≈ψ⇔ ν2 |≈ψ) ⇒ ν1� ν2 ].

For example, for a timed automatonS with clock setC and largest constantγ the
(infinite) set of clock constraintsConstr, the (infinite) set of invariant constraintsInv, the
(finite) set of clock constraintsConstr(γ), and the (finite) set of membership predicates
for the quotientVC modulo� are all basis sets. Since the set of predicatesConstr(γ) is
finite, there is a finite basis for every timed automaton. Notice, however, that this basis
is not necessarily minimal.

Theorem 2. LetS be a timed automaton,M the corresponding transition system, and
ϕ a TCTL formula. Furthermore, letC be the set of clocks corresponding toS andϕ,
andγ the largest constant, which these clocks are compared to. Let Ψ be a basis with
respect toC, andM−Ψ ,M+Ψ the under- and over-approximation ofS with respect toΨ .
Then, for any TCTL formulaϕ,

[[αϕ(ϕ)]]M
−
Ψ = [[αϕ(ϕ)]]M

+
Ψ .

Corollary 1 (Basis Completeness).LetS = 〈L, L0,C, I ,P,E〉, be a timed automaton,
andM the corresponding transition system. Then for any TCTL formulaϕ, and initial
statel0 ∈ L0 the following holds: (Ψ is a basis forS andϕ)

(l0, b0) ∈ [[αϕ(ϕ)]]M
−
Ψ ⇔ (l0, ν0) ∈ [[ϕ]]M ⇔ (l0, b0) ∈ [[αϕ(ϕ)]]M

+
Ψ .
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4 Symbolic Counterexamples for TCTL

Given a Kripke structureM, with S0 initial states, and a TCTL formulaϕ, a symbolic
counterexamplecarries a justification thatM,S0 |=/ ϕ. When we write~X, we mean a list
of elements of the form [X0, . . .], and~Xm implies that the list~X is of lengthm+1, that is,
of the form [X0, . . . ,Xm]. We writec ⊢ M,C |=/ ϕ to denote thatc is a counterexample,
which demonstrates that for every states ∈ C,M, s |=/ ϕ.

For a transition systemM = 〈S,S0,P,N〉, and a setC ⊆ S, let Ω0 denote the set
of all s-paths starting in any state inC ∩ S0, defined asΩ0 = {ρ ∈ f (s) | s ∈ C ∩ S0}

1

andΩ0(t) be those states that can be reached from any state inC ∩ S0 at time pointt,
Ω0(t) = {s ∈ S | s = ρ(t) andρ ∈ Ω0}. For a bounded modality with time boundt ∼ c,
let ζ ∈ AP be an atomic proposition that holds in a states if and only if s ∈ Ω0(t).

Definition 10 (Symbolic Counterexamples).2 LetM = 〈S,S0,P,N〉 be a transition
system, whereS= L×VC, S0 ⊆ S, andN is the transition relation. For a TCTL formula
ϕ, and a set of statesC ⊆ S0, a symbolic counterexamplec justifyingM,C |=/ ϕ has the
form ~Xm, and is defined as follow.

1. A counterexamplec ⊢ M,C |=/ EG∼cϕ is a listc = ~Xm, such that∃C′ ⊆ S with
(a) M,C′ |=/ ϕ∧ ζ,
(b) X0 ⊆ C′,
(c) Xi+1 ⊆ Xi ∪ p̃re(N)(Xi), for i < m,
(d) C = Xm.

2. A counterexamplec ⊢ M,C |=/ AG∼cϕ is a listc = ~Xm, such that∃C′ ⊆ S with
(a) M,C′ |=/ ϕ∧ ζ,
(b) X0 ⊆ C′,
(c) Xi+1 ⊆ Xi ∪ pre(N)(Xi), for i < m,
(d) C = Xm.

5 Incremental Abstraction-Refinement Algorithm

Definition 11 (Set Inclusion w.r.t. Clock Valuations). For two sets of statesS =
{(l1, ν1), . . . , (lm, νm)} andS′ = {(l′1, ν

′
1), . . . , (l′n, ν

′
n)}, the set inclusion with respect to

clock valuationsrelationS ⊆ν S′ is defined as:

S ⊆ν S′ iff [n = m, l i = l′i , andνi ⊆ ν
′
i , for all 0 ≤ i ≤ m].

The abstraction-refinement algorithm is displayed in Figure 2. The variablesΨn

andΨa store the currently unused (new) and used (actual) abstraction predicates, re-
spectively. Initially,Ψa contains those predicates from the basis that correspond to
the bounded modalities ofϕ, and possibly some predicates derived from the timing
constraints of the automaton, andΨn contains the remaining predicates (lines (1)-(2)).
First, it is checked ifs0 ∈ γ([[αϕ(ϕ)]]M

−
Ψa ) by calling a finite-state CTL model checker

1 A s-path throughS is a mapρ fromR≥0 to S, satisfyingρ(0) = s, for s ∈ S. f is a map, which
assigns to everys ∈ S a set ofs-paths throughS [1]. See also Appendix A.

2 For lack of space we define here only counterexamples forEG∼c ϕ andAG∼c ϕ, but the full
definition can be found in Appendix B.
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Algorithm: abstract_and_refine
Input: M, S, s0, N, ϕ, Ψ
Output: answer to model checking query “M, s0 |= ϕ ?”

chooseΨ ′ = {ψ1, . . . , ψi} fromΨ ; (1)

Ψn := Ψ \ Ψ ′; Ψa := Ψ ′; (2)
loop (3)

if s0 ∈ γ([[αϕ(ϕ)]]M
−
Ψa ) then return true (4)

else ifs0 < γ([[αϕ(ϕ)]]M
+
Ψa ) then return false (5)

else let[X0,X1, . . . ,Xn] be a counterexample inM+
Ψa

(6)

if there exists [Xc
0,X

c
1, . . . ,X

c
n] s.t. Xc

i ⊆ν γ(Xi) for all 0 ≤ i ≤ n (7)
and [Xc

0, X
c
1, . . . ,X

c
n] is counterexample inM (8)

then return false (9)

else letk s.t.Xc
k+1 * Xc

k ∪ pre(N)(Xc
k); S = pre(N)(Xc

k−1) ⊆ S (10)
choosefeasibleΨ ′ = {ψ1, . . . , ψi} ⊆ Ψn s.t.∃(l, ν) ∈ S. ν |≈ψi ; (11)

Ψa := Ψa ∪ Ψ
′; Ψn := Ψn \ Ψ

′ (12)
endif (13)

endif (14)
endloop (15)

Fig. 2. Iterative abstraction-refinement algorithm.

that generates symbolic evidence, as for example the WMC model checker [10,20]. If
indeed the under-approximation satisfies the abstracted formulaαϕ(ϕ), then, by Corol-
lary 1,M also satisfiesϕ and the algorithm returnstrue (line (4)). As next, we check
if s0 < γ([[αϕ(ϕ)]]M

+
Ψa ). If the over-approximation does not satisfyαϕ(ϕ), then, also

by Corollary 1,M does not satisfyϕ and the algorithm returnsfalse (line (5)). Oth-
erwise (line (6)), that is, ifs0 < γ([[αϕ(ϕ)]]M

−
Ψa ) and s0 ∈ γ([[αϕ(ϕ)]]M

+
Ψa ), the CTL

model checker returns a counterexample in the form of an abstract list of sets of states
[X0,X1, . . . ,Xn], where the initial state ofM+Ψa

is contained inXn. If for the abstract
list of sets of states there exists a corresponding list of concrete sets of states, which is
indeed a counterexample for the concrete transition systemand given (TCTL) formula,
then we obtain a counterexample for the concrete model-checking problem (lines (7)-
(9)). This requires checking the satisfiability of a Booleanformula with linear arithmetic
constraints, which in turns requires quantifier elimination, and can be performed using,
for example, DDDs [16], or the satisfiability checker ICS [12]. In case the abstract coun-
terexample is spurious, there exists a smallest indexk such thatXc

k+1 * Xc
k ∪pre(N)(Xc

k)
(line (10)).k is the index of the list of statesXc

k that can reach in one step states inXc
k−1,

but which can no longer be reached from the states inXc
k+1. Now, we have to choose

those predicates from the basis that are satisfied by the valuationsν of some states
(l, ν) ∈ S (lines (10)-(11)). We add the selected predicates toΨa and compute a new ab-
straction. Notice that the concretization functionγ actually depends on the current set
Ψa of abstraction predicates. The iterative abstraction-refinement algorithm terminates
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l0, p
x ≤ 1

l1, p
x ≤ 1

l2,¬p

l3,¬p q0 : l0, ψ0 ∧ψ1 ∧ p

q1 : l1, ψ0 ∧ψ1 ∧ p

q2 : l2, ψ0 ∧ψ1∧¬p

q3 : l2, ψ0∧¬ψ1 ∧¬p

q4 : l2,¬ψ0 ∧¬ψ1∧¬p

q5 : l3, ψ0 ∧ψ1∧¬p

q6 : l3, ψ0∧¬ψ1 ∧¬p

q7 : l3,¬ψ0 ∧¬ψ1∧¬p

Fig. 3.Timed automaton (left) and over-approximation withψ0 ≡ (z≤ 2),ψ1 ≡ (x ≤ 1)
(right) for Example 1.

after a finite number of refinements, yielding a sound and complete decision procedure
for checking whether or not a timed automaton satisfies a given TCTL formula.

Theorem 3 (Termination, Soundness, and Completeness).LetM be a transition
system with a corresponding finite basisΨ , andϕ a TCTL formula. Then the algorithm
in Figure 2 always terminates. Moreover, if it terminates with true, thenM |= ϕ, and if
the result isfalse, thenM |=/ ϕ.
Proof. Let n be the cardinality of the basisΨ . Every execution of the loop (line
(3)) adds at least one new predicate from the basis to the setΨa (line (12)). After at
mostn iterations, according to Theorem 2, [[αϕ(ϕ)]]M

−
Ψ = [[αϕ(ϕ)]]M

+
Ψ . By Theorem 1,

γ([[αϕ(ϕ)]]M
−
Ψ ) = [[ϕ]]M = γ([[αϕ(ϕ)]]M

+
Ψ ), and by Corollary 1,M+Ψ satisfies the formula

αϕ(ϕ) if and only ifM satisfiesϕ. Thus, the algorithm terminates, since eitherϕ can be
established or a concrete counterexample can be derived. �

Example 1.Consider the timed automaton from Figure 3, left side, for which we want
to establish the propertyEG≤2 p. A given basis for this system and this property is
Ψ = {x = 0, z = 0, x = 1, z = 1, x = 2, z = 2, x ≥ 1, x ≤ 1, z ≥ 1, z ≤ 1, x ≥ 2, x ≤
2, z≥ 2}. The transition system with the initial over-approximationusing the abstraction
predicatesψ0 ≡ (z≤ 2) andψ1 ≡ (x ≤ 1) is shown in the right side of Figure 3. Model
checking the abstract formulaϕ = αϕ(EG≤2 p) = EG(p∧ψ0) on the transition system

M+{ψ0,ψ1}
returnsfalse, sinces0 = (l0, x = z= 0) < γ([[ϕ]]M

+
{ψ0,ψ1} ). The finite-state model-

checking algorithm WMC [10,20] returns the symbolic counterexample [X0,X1,X2],
whereX0 = {q2, q5}, X1 = {q1, q2, q5}, andX2 = {q0, q1, q2, q5}. Recall the meaning
of this counterexample list: the setX0 consists of those states that do not satisfy the
subformulap∧ψ0, X1 are the states inX0 plus those states that can reach only states in
X0 in one step, and so forth. The concretization of this list of set of states is [Xc

0,X
c
1,X

c
2]

whereXc
i ⊆ν γ(Xi) for all i = 0, 1, 2.3

γ(X0) = (l2, z≤ 2 ∧ x ≤ 1) ∪ (l3, z≤ 2 ∧ x ≤ 1)

3 To simplify the notation we denote sets of concrete states such as{(l, ν) | l = l0∧ ν(x) <

1∧ ν(z) ≤ 2} by (l0, x < 1∧ z≤ 2).
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l0
y ≤ 1

l1 l2

x := 0

x := 0 y > xy := 0

x > y

q0 : l0, ψ0

q1 : l0,¬ψ0

q2 : l1, ψ0

q3 : l1,¬ψ0

q4 : l2,¬ψ0

l0, ψ0 ∧¬ψ1

l0,¬ψ0 ∧ψ1

l1, ψ0 ∧¬ψ1

l1,¬ψ0∧¬ψ1

Fig. 4. Timed automaton and over-approximations withψ0 ≡ (x = 0) (lower left part)
andΨ = {x = 0, x > y} (lower right part) for Example 2.

γ(X1) = γ(X0) ∪ (l1, z≤ 2 ∧ x ≤ 1)

γ(X2) = γ(X1) ∪ (l0, z≤ 2 ∧ x ≤ 1)

Now we have to check if the list [Xc
0,X

c
1,X

c
2] is a counterexample on the concrete tran-

sition system, by checking the satisfiability of the conditions from Definition 2 (1). All
four conditions are satisfied in our example, thus, the abstraction-refinement algorithm
terminates with the answerfalse, meaning that the timed system from Figure 3 does not
satisfies the propertyEG≤2 p.

We now illustrate a situation in which the concretization ofthe abstract counterexample
yields a spurious concrete counterexample, which initiates a refinement step.

Example 2.Consider the timed automaton from the upper part in Figure 4.We want
to prove that locationl2 is never reached, specified asϕ = ¬E[ttU at_l2], where the
atomic (boolean) propositionat_l2 is true if the system is in locationl2. Note thatϕ is
actually a CTL formula, and need therefore not to be abstracted.ϕ can be rewritten as
AG¬at_l2. A given basis for this system isΨ = {x = 0, y = 0, x ≤ 1, x ≥ 1, y ≤
1, y ≥ 1, x > y, x < y}. The transition system of the initial over-approximation with
the single abstraction predicateψ0 ≡ (x = 0) is shown in the lower left part of Figure 4.
Model checkingϕ = AG(¬at_l2) on the transition systemM−{x=0} returnsfalse, since
s0 = (l0, x = y = 0) < γ([[ϕ]]−

{x=0}). The list [X0,X1,X2,X3], with X0 = {q4}, X1 =

{q3, q4}, X2 = {q1, q2, q3, q4}, X3 = {q0, q1, q2, q3, q4} is returned as a counterexample.
The concretization of this counterexample yields

γ(X0) = (l2, x > 0 ∧ y ≥ 0)

γ(X1) = (l1, x > 0 ∧ y ≥ 0) ∪ (l2, x > 0 ∧ y ≥ 0)

γ(X2) = (l0, x > 0 ∧ y ≥ 0) ∪ (l1, x ≥ 0 ∧ y ≥ 0) ∪ (l2, x > 0 ∧ y ≥ 0)

γ(X3) = (l0, x ≥ 0 ∧ y ≥ 0) ∪ (l1, x ≥ 0 ∧ y ≥ 0) ∪ (l2, x > 0 ∧ y ≥ 0)
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Now, we have to check if there is a corresponding symbolic counterexample on
the concrete system, that is, there exists [Xc

0,X
c
1,X

c
2,X

c
3], with Xc

i ⊆ν γ(Xi), for all i =
0, . . . , 3. This is the case if the following formula is valid.

φ = ∃Xc
0 ⊆ν γ(X0), . . . ,Xc

3 ⊆ν γ(X3),∃C′ ⊆ S.

(M |=/ C′ ⇒ ¬at_l2) ∧ (Xc
0 = C′) ∧ ∧2

i=0 (Xc
i+1⇒ (Xc

i ∨ pre(N)(Xc
i )))

Here,φ is not satisfiable, since on the concrete transition systemXc
2 * (Xc

1∪pre(N)(Xc
1))

does not hold.Xc
1 ∪ pre(N)(Xc

1) = (l2, x > 0∧ y ≥ 0)∪ (l1, x > y ≥ 0) does not contain
a state with locationl0, but according to Definition 11 and the fact thatXc

2 ⊆ν γ(X2), Xc
2

must contain a state with al0 location, and thereforeXc
2 * (Xc

1 ∪ pre(N)(Xc
1)).

Now, k = 1 in our abstraction refinement algorithm, andS = {(l1, ν) | ν(x) > ν(y)},
and the new abstraction predicate is chosen to beψ1 ≡ x > y. Figure 4 (lower right
part) shows the reachable fragment of the resulting approximation ofM with Ψ =

{ψ0, ψ1}. Model checking the formulaϕ = AG(¬at_l2) onM−{ψ0,ψ1}
succeeds, sinces0 =

(l0, ψ0 ∧ ¬ψ1) ∈ γ([[ϕ]]M
−
{ψ0,ψ1} ).

6 Conclusion

We have defined symbolic counterexamples for the full TCTL logic, and used them
for developing a verification algorithm for timed automata based on predicate abstrac-
tion, untimed model checking, and decision procedures for the Boolean combination
of linear arithmetic constraints. The main advantage of this approach is that finite state
abstractions are computed lazily and incrementally. Abstraction refinement terminates
quickly, as a multitude of spurious counterexamples is eliminated in every refinement
step through the use of symbolic counterexamples for TCTL. Using symbolic coun-
terexamples makes it possible to apply the abstraction refinement paradigm to the full
TCTL logic.

Dual to the notion of symbolic counterexamples, we can also define symbolic wit-
nesses for the full TCTL, as extensions of symbolic witnesses for CTL [20]. These
witnesses and counterexamples can be seen as proofs for the judgment that the timed
automaton does or does not satisfy the given TCTL formula, and can be independently
verified using a satisfiability checker that can decide the theory of linear arithmetic with
reals. Moreover, explicit linear or tree-like witnesses and counterexamples can be ex-
tracted from these symbolic evidence, following the approach in [20] for the untimed
case.

The method of lazy approximation is also applicable for other real-time logics.
Moreover, this technique can readily be extended to also apply to richer models than
timed automata, such as parameterized timed automata, timed automata with other in-
finite data types, or even to hybrid systems. The price to pay is that such extensions are
necessarily incomplete.

Work in progress investigates the combination of lazy approximation with the ap-
proach to controller synthesis for finite-state systems presented in [20], for synthesizing
real-time controllers.
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Note to the reviewer: the Appendices are not part of the official submission.

A TCTL Syntax and Semantics

Definition 12 (TCTL Syntax). Let AP be a set of atomic propositions, andp ∈ AP.
The formulas of TCTL are inductively defined as follows:

ϕ := p | ¬ϕ | ϕ1 ∧ ϕ2 | E[ϕ1 U∼c ϕ2] | A[ϕ1 U∼cϕ2]

Definition 13 (s-Path). For a setS of states ands ∈ S, ans-path throughS is a mapρ
fromR≥0 to S, satisfyingρ(0) = s.

Definition 14 (TCTL-Structure). A structure for a TCTL formula is a tupleM =

〈S,S0, µ, f 〉, where

– S is a set of states.
– S0 ∈ S is an initial state.
– µ : S→ P(AP) is a labeling function, which assigns to each state a set of atomic

propositions true in that state.
– f is a map, which assigns to everys ∈ S a set ofs-paths throughS, and is closed

under suffix and fusion.4

Definition 15 (Semantics of TCTL). Given a TCTL-structureM = 〈S,S0, µ, f 〉,
over a setS= L×VC, of timed configurations, and a TCTL-formulaϕ, the set of states
[[ϕ]]M, which validates the formulaϕ is defined inductively over the structure ofϕ.

[[ p]]M := {s ∈ S | p ∈ µ(s)}

[[¬ϕ]]M := S\ [[ϕ]]

[[ϕ1∧ϕ2]]M := [[ϕ1]]M ∩ [[ϕ2]]M

[[E[ϕ1 U∼cϕ2]]]M := {s ∈ S | for someρ ∈ f (s), for somet ∼ c, ρ(t) ∈ [[ϕ2]]M and

ρ(t′) ∈ [[ϕ1]]M, for all 0 ≤ t′ < t}

[[A[ϕ1 U∼cϕ2]]]M := {s ∈ S | for all ρ ∈ f (s), for somet ∼ c, ρ(t) ∈ [[ϕ2]]M and

ρ(t′) ∈ [[ϕ1]]M, for all 0 ≤ t′ < t}

Definition 16 (Other Temporal Operators). The following temporal operators can
be defined as usual.

EF∼c ϕ := E[ttU∼cϕ]

AF∼c ϕ := A[ttU∼c ϕ]

EG∼c ϕ := ¬AF∼c¬ϕ

AG∼c ϕ := ¬EF∼c¬ϕ

E[ϕ1 R∼c ϕ2] := ¬A[¬ϕ1 U∼c¬ϕ2]

A[ϕ1 R∼c ϕ2] := ¬E[¬ϕ1 U∼c¬ϕ2]

4 Details on suffix and fusion closure can be found in [1].
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B Symbolic Counterexamples for TCTL

Definition 17 (TCTL Symbolic Counterexamples). LetM = 〈S,S0,P,N〉 be a tran-
sition system, whereS= L × VC, S0 ⊆ S, andN is the transition relation. For a TCTL
formulaϕ, and a set of statesC ⊆ S0, a symbolic counterexamplec justifyingM,C |=/ ϕ
has the form~Xm, where~X is a sequence of states of lengthm + 1, which is defined
inductively over the structure ofϕ. Note that〈c1, . . . , ck〉 ⊢ M,C1 ∪ . . . ∪ Ck |=/ ϕ iff
ci ⊢ M,Ci |=/ ϕ for 1 ≤ i ≤ k.

1. A counterexamplec ⊢ M,C |=/ EG∼c ϕ is a listc = ~Xm, such that∃C′ ⊆ S with (a)
M,C′ |=/ ϕ∧ ζ, (b) X0 ⊆ C′, (c) Xi+1 ⊆ Xi ∪ p̃re(N)(Xi), for i < m, (d)C = Xm.

2. A counterexamplec ⊢ M,C |=/ AG∼c ϕ is a listc = ~Xm, such that∃C′ ⊆ S with (a)
M,C′ |=/ ϕ∧ ζ, (b) X0 ⊆ C′, (c) Xi+1 ⊆ Xi ∪ pre(N)(Xi), for i < m, (d)C = Xm.

3. A counterexamplec ⊢ M,C |=/ EF∼c ϕ is a listc = ~Xm, such that∃C′ ⊆ S with (a)
M,C′ |=/ ϕ∧ ζ, (b) X0 ⊆ C′, (c) Xi+1 ⊆ Xi , for i < m, (d)C = Xm ⊆ p̃re(N)(Xm).

4. A counterexamplec ⊢ M,C |=/ AF∼cϕ is a listc = ~Xm, such that∃C′ ⊆ S with (a)
M,C′ |=/ ϕ∧ ζ, (b) X0 ⊆ C′, (c) Xi+1 ⊆ Xi , for i < m, (d)C = Xm ⊆ pre(N)(Xm).

5. A counterexamplec ⊢ M,C |=/ E[ϕ1 U∼c ϕ2] is a listc = ~Xm, such that∃C′,C′′ ⊆ S
with (a)M,C′′ |=/ ϕ2∧ ζ, andM,C′ |=/ ϕ1∨ (ϕ2∧ ζ), (b) C′ ⊆ X0 ⊆ C′′, (c)
Xi+1 ⊆ (p̃re(N)(Xi) ∩ Xi) ∪C′, (d)C = Xm ⊆ p̃re(N)(Xm).

6. A counterexamplec ⊢ M,C |=/ A[ϕ1 U∼c ϕ2] is a listc = ~Xm, such that∃C′,C′′ ⊆ S
with (a)M,C′′ |=/ ϕ2∧ ζ, andM,C′ |=/ ϕ1∨ (ϕ2∧ ζ), (b) C′ ⊆ X0 ⊆ C′′, (c)
Xi+1 ⊆ (pre(N)(Xi) ∩ Xi) ∪C′, (d)C = Xm ⊆ pre(N)(Xm).

7. A counterexamplec ⊢ M,C |=/ E[ϕ1 R∼c ϕ2] is a listc = ~Xm, such that∃C′,C′′ ⊆ S
with (a)M,C′′ |=/ ϕ2∨¬ζ, andM,C′ |=/ ϕ1∨ (¬ϕ2∧ ζ), (b) C′ ⊆ X0 ⊆ C′′, (c)
Xi+1 ⊆ (p̃re(N)(Xi) ∩C′) ∪ Xi , (d)C = Xm.

8. A counterexamplec ⊢ M,C |=/ A[ϕ1 R∼c ϕ2] is a listc = ~Xm, such that∃C′,C′′ ⊆ S
with (a)M,C′′ |=/ ϕ2∨¬ζ, andM,C′ |=/ ϕ1∨ (¬ϕ2∧ ζ), (b) C′ ⊆ X0 ⊆ C′′, (c)
Xi+1 ⊆ (pre(N)(Xi) ∩C′) ∪ Xi , (d)C = Xm.

9. A counterexamplec ⊢ M, c |=/ ϕ1∨ϕ2 is a listc = ~X0, such that∃C′,C′′ ⊆ S with
(a)M,C′ |=/ ϕ1, andM,C′′ |=/ ϕ2, (b)C = X0 = C′ ∩C′′.

10. A counterexamplec ⊢ M,C |=/ ϕ1∧ϕ2 is a listc = ~X0, such that∃C′,C′′ ⊆ S with
(a)M,C′ |=/ ϕ1, andM,C′′ |=/ ϕ2, (b)C = X0 = C′ ∪C′′.


