Model Checking a Fault-Tolerant Startup
Algorithm: From Design Exploration To
Exhaustive Fault Simulatioh

Wilfried Steiner
Real-Time Systems Group,
Technische Universitat Wien, Austria
steiner@vmars.tuwien.ac.at

John Rushby
Computer Science Laboratory,
SRI International, USA
rushby@csl.sri.com

Maria Sorea, Holger Pfeifer
Abteilung Kuinstliche Intelligenz,
Universiat Ulm, Germany
sorea|pfeifer@informatik.uni-ulm.de

Abstract

The increasing performance of modern model-checking wif¢ss high
potential for the computer-aided design of fault-toleraigbrithms. Instead
of relying on human imagination to generate taxing failergrios to probe
a fault-tolerant algorithm during development, we define fdwlt behavior
of a faulty process at its interfaces to the remaining systachuse model
checking to automatically examine all possible failurensg®s. We call this
approach “exhaustive fault simulation”. In this paper viesifrate exhaustive
fault simulation using a new startup algorithm for the Tiffréggered Archi-
tecture (TTA) and show that this approach is fast enough ttepéoyed in the
design loop. We use the SAL toolset from SRI for our experithand de-
scribe an approach to modeling and analyzing fault-totembyorithms that
exploits the capabilities of tools such as this.

*This work was supported by the European projects NEXT TTA{2801-32111) and ARTIST
(IST-2001-34820), and by NASA Langley Research CentertfaohNAS1-00079).

2004 IEEE. Personal use of this material is permitted. Hewexermission to reprint/republish
this material for advertising or promotional purposes ordi@ating new collective works for resale
or redistribution to servers or lists, or to reuse any capyed component of this work in other works
must be obtained from the IEEE.

1 Introduction

Design of fault-tolerant distributed real-time algorithis notoriously difficult and
error-prone: the combinations of fault arrivals, intevieg of concurrent events,
and variations in real-time durations lead toase explosiothat taxes the intellec-
tual capacity of human designers. These difficulties arepmamded when opti-
mizing numerical parameters—e.g., seeking to determinmermam safe timeout,
or the time required to stabilize after an upset.

In an idealized world, algorithms are derived by a systetnatdbcess guided
by formal correctness arguments but, in contemporarytyediesigners generally
have an informal argument in mind and develop the final algariand its pa-
rameters by mentally exploring local variations againat #trgument and against
scenarios that highlight tricky cases. Exploration agansnarios can be partially
automated using a simulator or rapid prototype and suchraitton may increase
the number of scenarios that can be examined and the rilialfithe examination.

Automated examination of scenarios can be taken still &urthsing model
checking. In model checking, the case explosion problemaissformed into one
of state explosior-meaning that the time and space required to run the model
checker grows rapidly and eventually becomes infeasiblbasize of the model
grows, so that abstraction, or consideration of only lichiteimbers of fault cases
and real-time delays, must be employed.

When using model checking in the design loop, the challesti@ dover a use-
fully large number of scenarios in a very short time (say af@nwutes), so that the
designers can perform an interactive exploration of theggdespace without losing
concentration or patience. As a design becomes consdalidatention shifts from
exploration to verification and the challenge for model &liveg becomes one of
covering a truly exhaustive set of scenarios for a readifificaccurate model in
reasonable time (say, overnight).

Whether model checking is performed for exploration orfieation, a matter
of concern is the ease of encoding the algorithm, its fauldehoand assumed
environment in the language of the model checker: most cktfenguages were
originally developed for specifying hardware circuits oograms and are less than
ideal for describing fault-tolerant algorithms and theiult models at appropriate
levels of abstraction.

In this paper, we describe an approach that provides a “dilthat a single
model can be used in model checking for both rapid explanatiod exhaustive
verification, and we illustrate how the model can be used tmteck correctness
and to help estimate worst-case performance parameteralsé@/demonstrate how
the latest generation of model-checking tools (we use SAMfERI) meets the
challenges of providing both a convenient modeling languatd the performance
to examine trillions of states in a few hours. We illustrabe approach using a new
startup algorithm for the Time-Triggered Architecture AT

This paper is structured as follows. In Section 2, we preaantverview of
the Time-Triggered Architecture and discuss its startugnirinformal manner. In
Section 3, we discuss generic modeling issues and introdifoemal model of

the startup algorithm in the SAL language. The desired ctwess properties are
specified in Section 4 and Section 5 presents and discussessthits of our model-
checking experiments. We conclude in Section 6.

2 The Time-Triggered Architecture

The Time-Triggered Architecture (TTA) supplies a foundatifor fault-tolerant
safety-critical applications, such as control functionsars and aircraft. It pro-
vides an ultra-reliable logical bus connecting the “hostinputers that implement
the chosen application, and a set of services that makeattwely simple to orga-
nize the application in a fault-tolerant manner. Each hostjuter attaches to the
system through a TTAontroller, the combination of a host and its controller is
called anode Nodes communicate over replicated shared media, celladnels
While initially the channels were physical buses, curreatizations favor a “star”
topology with acentral guardianat the hub of each star. The central guardians pro-
vide more robust defense against error propagation thaoréwious approach that
located simpler guardians at each node [8]. The node cterschnd the central
guardians collectively implement the Time-Triggered Beot TTP/C that guaran-
tees correct operation of the system despite faults in sditine dnosts, controllers,
or central guardians.

2.1 Synchronization and Startup
A TTA system or “cluster” with4 nodes an@ central guardians is depicted on the

left of Figure 1. During steady-state operation, the nodesgte a time-division
multiple-access (TMDA) strategy to access the medium;ithdhe access pattern
(called the TDMA schedule) is defined a priori, as depictedhenright of Figure
1.

_ TDMAroundn |
| | | | | |

---‘A.4 A.1‘ A2 ‘ A3 ‘A.4 A.1‘ A2 h..

‘ﬁme
|:|.. Node Q ... Guardian

Cluster Cluster Communication

Figure 1: TTA cluster and TDMA schedule

Each TTA node has a mapping from its local time to #hetsin the cyclic
TDMA schedule; in particular, each nod&nows the local time at which the slot
for nodek begins—we can denote this time byk). Operation of TTA depends on
synchronization of the local clocks, which simply means tbaany two nonfaulty
nodes andy, the instants wheiis local clock reads; (k) and whery’s clock reads
sj(k) must occur very close together in real time.

The synchronization probleris to adjust the values af; (or, equivalently, the
local clocks) so that nodes remain synchronized despitdrifieof their hardware
clocks (due to their oscillators operating at slightly eifént rates). The synchro-
nization problem is well understood and many algorithmsdivesit have been
developed and formally verified, including the algorithmptoayed in TTA [10].

The startup problemis to establish values for the functions (or, equiva-
lently, for the local clocks) as the nodes first power up sotiey quickly become
synchronized; theestart problemis to reestablish synchronization after transient
faults have afflicted the values gfor the local clocks at one or more (or all) nodes.
Here, we are concerned with algorithms for the startup ast@ureproblems.

2.2 Fault Hypothesis

Since TTA systems are designed for safety-critical apfitioa, a sufficient degree
of fault tolerance must be provided. The fault hypotheses (the number, arrival
rate, and kind of faults to be tolerated) of the basic bugtasSTP/C protocol is
discussed in [2]. Fault injection studies [1] showed thatitmhal mechanisms,
such as the central guardians of the star topology [3], acessary to achieve
the demanding requirements for fault tolerance in the paws and automotive
industries.

With respect to the protocol execution, each central gaardias full knowl-
edge of the parameters of its attached nodes, and can treejefitge whether a
message (which is sometimes called a “frame” in TTA) sent bpde is valid or
not (i.e., is sent within its assigned slot and satisfiesageitonsistency checks).
Guardians relay valid messages to all the other nodes arctiesinel, so that from
the nodes’ point of view, the channel looks like a broadcast bA basic TTA
system uses two channels, whose central guardians areatedri®/ a pair ofn-
terlinks that allow each guardian to receive data broadcast on tlex ottannel.
The interlinks are needed in the algorithm developed hemvtid scenarios in
which one clique of nodes is synchronized to one guardianaanther set to the
other, with each clique unaware of the existence of the offgeh interlink is uni-
directional: that is, the central guardian of chanieteceives data from channel
X on one interlink but cannot transmit on this interlink, ancewersa.

The implementation of a central guardian makes it physidatipossible for
it to create a correct frame by itself (it lacks the hardwarednstruct the CRC
that is part of a valid frame), or to store a previously seairfe or delay it for an
arbitrarily long duration. Thus, if a central guardian riges a correct frame over
the interlink connection from the other channel it can beigessthat the frame was
sent by a correct sender and the data can be used safely.

Using central guardians, TTA is claimed to tolerate onetfacbmponent (the
“single failure hypothesis”); this can be either a faultydepwhich is allowed to
send arbitrary signals for arbitrary durations with adoirfrequency, or a faulty
channel (including its guardian), which is allowed to shtwe same behavior as
a faulty node with the restriction that it cannot create ecrframes, nor delay
frames for an arbitrary duration.

2.3 Fault-Tolerant Startup
A basic solution to the startup problem is for nodes that seeaffic for some time

to send a “wakeup” message that carries their own identhis message provides
a common event that all nodes can use as a baseline for theirdocks, and the
identity of the sender indicates the position in the TDMAexthle to which this
time corresponds.

Of course, two nodes may decide to send wakeup messagesraxiapgtely
the same time, and these messages will “collide” on the aiarin a bus-based
TTA, the signals from colliding messages physically oweda the medium, but
propagation delays cause different nodes to see the sigidifferent times so that
collision detection can be unreliable. In a star topololgg, ¢entral guardians arbi-
trate collisions and select just one message from any thaeat approximately
the same time to forward to the other nodes. However, eadnatguardian arbi-
trates independently, so nodes can receive different gessa the two channels
at approximately the same time; resolving these “logicHisions” is a task of the
startup algorithm.

In addition to collisions, the startup algorithm must de@hvfaulty nodes that
may send “wakeup” messages at inappropriate times, mamipias other nodes,
and generally fail to follow the algorithm. Many of these lfaucan be detected
and masked only with sophisticated guardians; the centratdigns of the star
topology are a cost-effective way to provide this protattitiowever, this addi-
tional fault tolerance exacts a price: the central guaglimnist synchronize with
the nodes during startup. Because the communication syisteaplicated and
there are two central guardians, it is particularly crudiet a faulty node must
not be able to initiate or infiltrate a startup sequence teedlie central guardians
to start at different positions in the TDMA schedule. And,colurse, one of the
guardians could itself be faulty.

Fault-tolerant startup of a TTA system clearly requireheatintricate algo-
rithms in the nodes and guardians. A suitable “node onlyftgtaalgorithm for
the bus topology is implemented in TTP/C [11]. A startup &albon with central
guardians was designed as part of the star topology dewklioghe NEXT TTA
project. Model checking assisted in the design loop of tlgsrdthm and led to a
more resource-efficient solution: whereas the initial digar startup algorithm re-
quired1 timer per node, the final version uses only a single timer. &lctecking
also was used in assurance of the overall algorithm and coedithe need to mod-
ify the algorithm used in the nodes to overcome certain fi@mthg scenarios (see
Section 5.2). The finished algorithms are outlined below thiedmnodel-checking
activity that assisted in their development and assurantieeifocus of the rest of
the paper.

2.3.1 Node Startup

The state-machine of the startup algorithm executed in tues is depicted in
Figure 2(a). It consists of states:INIT, LISTEN, COLDSTART, andACTIVE .
Each node has two unique timeout parametergs» and !4t that are de-
fined in the following recursive way (based on the unique &afti*’**?).

Startup Delay: 7'*""" is unique to each node. It is given by the duration of all

TDMA slots from the beginning of the TDMA round up to the batimg of the

slot for nodei (whose duration is;$'%):

startup { 0 i1=0
T =

i slot
’ 2 =1 T i>0

Listen Timeout: 7/%*%" is given by the sum of the node’s startup defd/"“*”

and2 TDMA rounds (each of duration”“"d): rlisten — pstartup o 9 round,

)

Cold-Start Timeout: rodstart is given by the sum of the node’s startup delay

K3
79T and 1 TDMA round: roldstart — pstertup y pround

7

(a) Node Startup

Protected
TUP
)

Tentative
ROUND
(©)]

5.2
[ACTIVE
o @)

(b) Guardian Startup

Figure 2: State-machine of the TTA startup algorithm

When a node is powered-on it either has to integrate to aadyreynchronous
set, or it must initiate or wait for a cold-start to be exedutéach newly started (or
restarted) node, after performing some internal initialization in theIT state,
transits toLISTEN (Transition 1.1) and listens for the unique duratio;disten
to determine whether there is a synchronous set of nodes oaioating on the
medium. During synchronous operatiéframes (this is the name of a kind of

message, it has nothing to do with najlare transmitted periodically that carry the
current protocol state, including position in the TDMA ralrf the node receives
such an i-frame, it adjusts its state to the frame contertssahus synchronized to
the synchronous se2.Q); if not, the cold-start mechanism is executed. Cold-start
is done in two phases. During the first phase (while intH&TEN state), each
node listens for a “cold-start” messags{framé from another node indicating the
beginning of the cold-start sequence; cs-frames are sitoilaframes but carry a
protocol state suggested by the sending node. When a nodaatemreception
of a cs-frame, it enters the second ph@€@LDSTART (2.1) and resets its local
clock tod., (that is the transmission duration of the cs-frame). Thiligcales that
received the cs-frame have synchronized local clocks iuvilistem tolerances,
including propagation delay). Each node that receiveheedn i-frame nor a cs-
frame during theLISTEN phase will enteiCOLDSTART (2.1), resets its local
clock to0 and sends out a cs-frame by itself. Thus, after the trangmisd the
cs-frame §., later), the local clock of the sending node will also be syonized

to the local clocks of the set of receiving nodes. This atparic choice, not to
directly synchronize the receiving nodes on the contentsefirst cs-frame while
in the LISTEN state, is called thbig-bangmechanism. There is, of course, the
possibility that two nodeg andq send out simultaneous or overlapping cs-frames.
The receiving nodes will see this as a logical collision laketthe same actions as
if a single cs-frame was received. Each npd@ COLDSTART state waits for
reception of another cs-frame or i-frame until its localoBloeaches the value of its
individual cold-start timeou’t;‘)ldst“”. If it receives such a frame it synchronizes
on its contents and enters tA€TIVE state 8.2); if not, it resets its local clock
and again broadcasts a cs-frarie]. No further collision can occur at this point,
for the following reasons.

1. Based on the strict order of the unique cold-start timeeg“s:a" no two
nodes that caused a collision can collide again.

2. Sincer/sten > reeldstart for every two nodes, j, no newly awoken nodg
may cause a collision.

The big-bang mechanism ensures better precision, sincgyti@hronization
guality in the second phase is independent of the propagdttay: a receiving
node knows the identity of theniquesender of the cs-frame and can compensate
for its known propagation delay. More importantly, the bgag mechanism is
necessary to mask certain faults—see Section 5.2.

2.3.2 Guardian Startup

A faulty node could masquerade as another during startungl seframes at in-
appropriate times (or continuously), and generally failditow the algorithm. A
central guardian can mask these faults, but to do so (andforpeits prime func-
tion of enforcing the TDMA schedule during steady-staterafien), it must itself
synchronize with its nodes. The startup algorithm of therdiaas is depicted in
the state-machine in Figure 2(b).

A central guardian starts ilNIT state where all communication on its chan-
nel is blocked. When its initialization is finished it tratssio LISTEN state (1.1)
and listens to the interlink fa2 = 77°“*¢ that is, it tries to integrate to an already
running system. If an i-frame is received, the central giaartransits tcACTIVE
state (2.3); if a cs-frame is received, it transitsTemtative ROUND state (2.2).

If an integration was not possible duribldSTEN , the central guardian transits to
STARTUP state (2.1). All ports are now opened and the central guandats un-

til it receives a valid frame either on one of its ports or oaitiiterlink. If more than
one port become active at the same time, the central guasdlaots one port non-
deterministically. If a cs-frame is received and no logimallision occurred (that is
the guardian received either two identical cs-frames—anere of its stubs and
the second on the interlink—or only one frame), the centtadrdian transits to
Tentative ROUND state (3.1). If a collision occurred the central guardiamsits

to SILENCE state (3.2). InTentative ROUND state the central guardian operates
the remaining TDMA round (the received frame duriB8JARTUP state is con-
sidered the first frame of a TDMA round); if during this roundalid i-frame is
received, the startup initiated by the cs-frame sendernirooed and the central
guardian proceeds #®&CTIVE state (5.2). If during this TDMA round no valid i-
frame was received the central guardian transit8rtected STARTUP (5.1). If

a central guardian transits ®ILENCE state (because a collision was received)
it blocks all communication for the remaining round and sits to Protected
STARTUP as well (4.1).Protected STARTUPstate differs fronSTARTUP state

in that here the ports are enabled for one TDMA round accgrthirthe cold-start
timeouts of the nodes. Thus, in contrast¥BARTUP state every node is forced
to stay to its timeout pattern. The transitions fréhrotected STARTUP state to
Tentative ROUND state (6.1) an&ILENCE state (6.2) underly the same rules as
in STARTUP state. If no transition is done for a period of one TDMA rouhd t
central guardian transits back 8TARTUP state (6.3) and the startup sequence
is repeated. Since the central guardian has full knowledidlecoattached nodes’
parameters (which are specified off-line), it can detecltyamansmissions with
respect to protocol operation. If a central guardian dstactaulty node it will
block all further attempts of this node to access the comoation channel during
the startup sequence. Thus, a faulty node cannot influemcstdntup sequence
forever.

3 \Verification Model

The startup algorithm described in the previous sectiomiityfsubtle and must
cope with many kinds of fault and timing behaviors. Modelaltieg provides a
way to explore these behaviors in an automatic way, but faedain difficulties.
First, the algorithm involves time in an essential way aral rthost realistic for-
mal model for the algorithm will be one in which time is tredi@s a continuous
variable. Timed automata provide a suitable formalism isfkind, and are mech-
anized in model checkers such as Kronos ar#AAL. Lonn [9] considers startup
algorithms for TDMA systems similar to TTA and verifies onetloém using W-
PAAL. However, model checking for timed automata is computatigrcomplex,

so that when we add the case/state explosion caused by eongic large num-
ber of fault scenarios, the model rapidly becomes compmurtally infeasible. Our
initial experiments did use timed automata and we were en@btonsider more
than a very few simple kinds of faults.

It is essential to the utility of model checking for explaoat and verification
of fault-tolerant algorithms that we are able to considearrgd number of different
kinds of faults—ideally, we would like the fault model to bghaustivemeaning
that we describe every kind of fault we can think of, and le&t thodel checker
inject these in all possible ways. Since this is impracfieab a model that uses
continuous time, we looked for an abstraction employingréi® time.

Nodes executing the startup algorithm measure time by swuff slots in
the TDMA schedule. Although slots have duration and may feebht different
nodes, we can think of them as indivisible units: we do noedar how much
the slots at different nodes are offset, just whether therlap at all (so that a
collision can occur). Thus, we can use a discrete notionnoé thnd can model
the collective behavior of a cluster of nodes as the syndusrcomposition of
discrete systems. Another way to justify this modeling apph is to think of it as
describing the system from the point of view of a central dizar: each discrete
instant corresponds to some real time interval at the gaaraid all messages that
(start to) arrive in that interval are regarded as simultase the behavior of the
nodes is driven off (i.e., synchronously composed with)diseretization provided
by the central guardian.

Fully exhaustive fault models pose a challenging prosysectye developed a
modeling “dial” that could inject varyinglegreeof faults: our idea was to use as
high a degree (i.e., as many kinds) of faults as proved flasitpractice. In the
remainder of this section we first present our basic moddi@startup algorithm
and then describe the modeling concepts for faulty compsraivarying degrees.
Due to space limitations we only give representative pdrtkeonode’s model and
refer the interested reader to [13] where the complete saade of the SAL model
and an extended version of this paper can be found, togeittemstructions that
will help to recreate the experiments.

3.1 Basic Model
The system model comprisesnodes each synchronously composed with two

centralhubsthat each contain a central guardian that blocks certailtyfaues-
sages. At each time step, each node examines the input reessagived from
the hubs, consults its private state variables, and pgsg#ierates an output mes-
sage that it sends to the hubs. Each hub examines the messeagiesd from the
nodes and the other hub and constructs the single messageiltlomprise the
consistent input presented to the nodes at the next time step

We specify this discrete, synchronous model in the lango&§AL as follows.
We begin by defining the types over which the state variabigsamge.

startup: CONTEXT =

BEGIN

n: NATURAL = 4;

index: TYPE = [0..n-1];

maxchannels: NATURAL = 2;
channels: TYPE = [0..maxchannels-1];
maxcount: NATURAL = 20*n;

counts: TYPE = [0..maxcount];

Here, n is the number of nodes (here assigned the value 4, but we ®iso e
amine models with 3, 5, and 6 nodes), which are identified bynehts of the
typeindex . Analogouslymaxchannels is the number of channels, which are
identified by elements of the typdhannels . The largest timeout considered is
maxcount and the values of a timeout counter are given by the tpets

states: TYPE = {init, listen, start, active, faulty,
faulty lock0, faulty lockl, faulty lock01 }
hub_states: TYPE = {hub_init, hub_listen, hub_startup,
hub_tentative, hub_silence, hub_protected,
hub_active, hub_faulty IS
msgs: TYPE = {quiet,noise,cs_frame,i_frame }

The enumerated typestates , hub _states , and msgs specify, respec-
tively, the states of the algorithm at a node, the stateseftborithm at a hub,
and the kind of messages that can be exchanged with a hubtatbe sorrespond
to those in the state-machines of Section 2, plus additifandly states that are
used in the simulation of faulty components. Each node mgyubuessages with
valuesquiet (meaning no messagenoise (meaning a syntactically invalid
signal),cs _frame (a cs-frame), or _frame (an i-frame); the hub will return a
message type based on the inputs of the attached nodes.

LT_TO:ARRAY index OF NATURAL = [[jiindex] 2*n+j];
CS_TO:ARRAY index OF NATURAL = [[jiindex] n+j];

The unique timeouts for each node are specifiedd B O (listen timeout) and
CS.TO(cold-start timeout), as defined in Section 2.
We specify the input and output variables of an individualeas follows.

node[id:index]: MODULE = BEGIN INPUT
msg_in: ARRAY channels OF msgs,
time_in: ARRAY channels OF index,
lock_in: ARRAY channels OF BOOLEAN
OUTPUT
msg_out: ARRAY channels OF msgs,
time_out: ARRAY channels OF index,
state: states,
counter: counts,
errorflag: BOOLEAN

Themsg.in represents the kind of message that the node receives fem th
hubs; if it is a normal message, théme _in indicates the slot position trans-
mitted in the sender’s frame, which equals the current tineasured relative to
the start of the TDMA round if the sender sends a correct vale can think of

10

this information as being included in the message, but iages to model it as a
separate variable. The input varialidek _in is used to make the model more
compact and is discussed in Section 3.2.

The output variablemisg.out ,time _out ,state ,andcounter represent,
respectively, the message that this node will output to tii® iis estimate of the
identity of the node associated with the current slot (itgestimate of time relative
to the start of the TDMA round), its state within the algomithand the value of
its timeout counter. The output varialderorflag is used for diagnosis of the
model and has no influence on the protocol execution.

LOCAL
startupdelay: counts,
big_bang: BOOLEAN

Each node has a local varialdtartupdelay that indicates the maximum
duration a node is allowed to stayimit state (simulating the different power-on
times of the different nodes). Initially set ItRUE the local variabléig _bang
is setFALSEIf a big bang has been received.

The algorithm is specified by a series of guarded commandsdaseribe in
detail those that apply to a node in timit¢ state, and one transition of a node in
listen state, as representative illustrations.

[% Transition: 1.1
state = init
--> state’ = IF NOT faulty_node[id] THEN listen
ELSE faulty ENDIF;

counter’ = 1;
msg_out’ = msg_out;
time_out’ = time_out;

[% Let time advance
state = init AND counter < startupdelay
--> state’ = state;

counter’ = counter+1;
msg_out’ = msg_out;
time_out’ = time_out;

Here, thel character introduces a set of guarded commands, which pae se
rated by thg]] symbol; the%character introduces a comment. A SAL guarded
command is eligible for execution in the current state ibisrd (i.e., the part be-
fore the--> arrow) is true. The SAL model checker nondeterministicakjects
one of the enabled commands for execution at each step; ibmonands are eli-
gible, the system is deadlocked. State variables are updrimafore execution of
a command and primed in the new state, that is, after the 8gacf a command.

Provide the counter is less thatartupdelay , both the above commands
are eligible for execution; thus, the node can nondetestigailly choose to stay
in theinit state (incrementing itsounter by 1) or to transit to thdisten
state. If the counter reachesartupdelay , the node must transit either to
listen orfaulty state, depending whether the node simulates a correct node
or a faulty one. Hence, the two guarded commands above dilewdde to “wake

11

up” and transit to thdisten state at any point during the specified period of
startupdelay ;on entering thdisten (orfaulty) state, its counter is reset
to 1.

We next describe a class of transitions for a node fimien to (cold)
start state.

[l % Transition 2.1

(1 (k: channels):

state = listen AND big_bang AND msg_in[k] = cs_frame
AND (NOT (EXISTS (j:channels): jil=k AND

(msg_in[j] = cs_frame OR msg_in[j] = i_frame) AND
(time_in[k]/=time_in[j] OR msg_in[k]/=msg_in[j])))
--> state’ = start; counter’ = 2,

msg_out’=[[j:channels] quiet];
time_out'=[[j:channels] 0];
big_bang’ = FALSE;)

This guarded command is a short hand for a set of transitlorepresents one
transition for eaclk, with £ = 0, 1. The precondition is satisfied, if the node is in
listen state, abig _bang has not been received yet by this node, the incoming
message on channklis a cs-frame, and there does not exist a channel different
from k (in a dual-channel system, there is only one other channe#reva cs-
frame or i-frame is received that has anothiere _in value than that on channel
k. The output and local variables will be set to the appropniatiues. The subtly
differentiated cases in the precondition were helpful gtitg different algorithm
designs.

3.2 Failure Modeling
Faults vastly increase the statespace that must be expioneddel checking, and

they do so in two different ways. The first way is by introducgenuinely different
behaviors; we provide fault degree€'dial” to parameterize this as described in the
following section. The second way is to introduce “clutteér’the form of states
that differ in irrelevant ways: for example, a faulty nhodenaand up in one of
many different states, but once the correct components é&esleded this node
from further consideration, its state has no effect on sydtehavior. However,
a model checker distinguishes all the different states efallty component and
this needlessly complicates its task. A valuable “trick’hiodeling fault-tolerant
algorithms is to set the states of faulty components to fix@des once they can
no longer affect the behavior of the system. We implemerst ltlyia mechanism
we callfeedback

3.2.1 Node Failures

The model simulates time in discrete slot granularity araldty node is simulated
as one that can send arbitrary messages in each slot. Wéclkhss possible
outputs of such a faulty node into the dawlt degreesdepicted by thg6 x 6)
matrix in Figure 3. For example, a fault degreelddllows a faulty node only to
fail silent, while fault degre® allows a node to send an arbitrary combination of
cs-frames and i-frames with correct or incorrect semanticgse, or nothing on
each channel.

12

2 o | |2 e
B ||5|E B|E B|3|E5lE T
chA 2lg 20 BB E|T E
quiet 1 2 3 [4] 5 6
cs_frame (good) | [2| 2 3 14 5 6
i frame (good) 31 3 3 |14 5 6
noise 41 4 4 14 5 6
cs frame (bad) 51 5 5 [5] 5 6
i frame (bad) 6| 6 6 [6] 6 6

Figure 3: Fault degree

Each of thes&6 combinations was explicitly described by guarded commands

in the SAL model.

[] state = faulty AND degree >= 2
-->

msg_out'=[[j:channels] IF j = 0

THEN cs_frame ELSE quiet ENDIF];
time_out’ = [[j:channels] IF j = 0

THEN faulty ID ELSE 0 ENDIF];

state’ = IF lock_in[0] AND lock_in[1] AND feedback
THEN faulty_lock01
ELSIF lock_in[0] AND feedback THEN faulty_lockO
ELSIF lock_in[1] AND feedback THEN faulty_lockl
ELSE state ENDIF;

Here, one guarded command of a faulty node with fault deg@ree greater is
depicted: such a faulty node is allowed to broadcast a csefran channel and
does not send on the second channel. Furthermore, to rdtustatespace, we use
“feedback”: thelock _in[i] input variables are set by the hulficorresponding
toitslock output variables) if it discovers that the node is faulty jimdging on the
node’s output behavior). A faulty node will then transmityoquiet on channel
1, since the hub will block all messages of the faulty node awywro judge its
effect, this feedback routine can be turned on and off byngpthe feedback
parameter td RUEor FALSErespectively.

3.2.2 Hub Failures

Analogous to a faulty node, a faulty hub is simulated by agsiits output vari-
ables to arbitrary values, within its fault hypothesis (altia hub cannot create
correct messages) in each slot.

0 @ (i index):
state=hub_faulty AND msg_in’[i] /= quiet
>
msg_out’ = [[j:index] IF partitioning]j]
THEN msg_in’[i]
ELSE IF send_noise[j] THEN noise ELSE quiet ENDIF
ENDIF];
time_out’ =[[j:index] time_in"[i]];
interlink_msg_out’ = msg_in'[i];
interlink_time_out’ = time_in[i];)

13

This example of a transition by a faulty hub is activated ifatached node
sends a message other thaquiet to the hub. The faulty hub then is free to
select a subset of nodes to which the message is forwarded.lotal variable
partitioning , an array of boolean variables, creates such a partitiooiitige
nodes. By specifying no initial value for this variable, thedel checker is forced
to test every assignment. The faulty hub is allowed to sethéioise orquiet
to the other nodes, using the similarly uninitialized beol@rraysend _noise .

We call this methodmplicit failure modeling (in the sense, that it is not necessary
to model transitions for each subset explicitly).

4 Correctness Properties

In the following we describe some correctness propertiehefalgorithms and
their formulation as “lemmas” in SAL notation. Her@,denotes thalwaysor [J
modality of linear temporal logic (LTL), and denotes theventuallyor modal-
ity. SAL allows a modular model description. To compose thadaies, the input
and output variables have to be mapped to global (uniqu&hlas, local variables
may be mapped for better readability of the properties utekdr Istates and
hstates correspond to thetate variable in node and hub, respectively.

Lemma 1 Safety: Whenever any two nodes are in @1 VE state, these nodes
will agree on the slot time.

safety: LEMMA system |- G(FORALL (i,j:index):
(Istates[i] = active AND Istates[j] = active) =>
(node_time_out[i] = node_time_out[j]));

Lemma 2 Liveness: All correct nodes will eventually reach teTIVE state.

liveness: LEMMA system |- F((FORALL (i:index):
Istates[i] = active OR faulty_node[i]));

Lemma 3 Timeliness: All correct nodes will reach thH&CTIVE state within a
bounded time (see 5.3).

timeliness: LEMMA system |-
G(startup_time <= @par_startuptime);

Lemma 4 Safety2: Whenever a node reaches tAETIVE state, a correct hub
has also reached either thentative ROUND or ACTIVE states.

safety_2: LEMMA system |-
G ((EXISTS (i:index): Istates[i] = active) =>
(hstates[1]=hub_active OR hstates[1]=hub_tentative));

Within our model-checking study additional lemmas wereneixed to gain
confidence in our model. Those lemmas can be found in the s@made of the
SAL model.

14

5 Experimental Results and Discussion

In this section we present results from our experiment usiioglel checking in
development of the new startup algorithm. Our experimemtieywerformed on an
Intel(R) Xeon(TM) with a CPU speed @f80GHz and2GByte memory. We used
the Linux distribution of SAL 2.0 [5].

5.1 Effectiveness of Statespace Reduction
Our decision to use a discrete model for time was criticaluioability to perform

these experiments at all. Although we cannot yet prove thedess of this ab-
straction, we gained confidence in it by selectively remgvirechanisms from the
SAL model of the algorithm and observing that the model ckeekwvays detected
the expected system failures.

In exploring algorithmic variations, it was crucial for tmeodel checker to
deliver results within the human attention span of a few n&gau Our principal
“dials” for trading time required against thoroughnesshef éxploration performed
by the model checker were the number of nodes considereiddtiypfrom 3 to 6),
and the fault degree. The paramefgy,; selects the fault modes that a faulty node
may exhibit. Figure 4 illustrates the verification times étends for three lemmas
in a 4-node model withy,,;; = 1,3,5. The results clearly show the increase
in verification times with fault degree. A fault degree of 1sigtable for quick
investigation in the inner design loop, while degrees 3 amyife a coffee break.

| 0jaun | safety] liveness| timeliness|
1 44.11| 196.05 77.14
3 166.34| 892.15 615.03
5 251.12| 1324.54 921.92

Figure 4: Effect of Increasing Fault Degree on Model-ChegkPerformance

The feedback mechanism (i.e., forcing failed componentsstandard state to
reduce the statespace) was ineffective or counterpraguictipractice for medium
to large models, but for very large models it proved esskenkiar example, one
property was successfully model checked in a 6-node mod80j852 seconds
(about 8.5 hours) with feedback on, but had not terminateat &fL hours with it
off. In future research, we intend to investigate in morai¢te influence of the
feedback mechanism on model checker performance.

5.2 Design Exploration: Big-Bang Mechanism
One area where we performed extensive design exploratigrntavdetermine the

necessity and effectiveness of the big-bang mechanism. ugiatrrequirement
of the startup algorithm is that it should not establish yanous operation of a
subset of nodes on a faulty hub while the second, correchnetias available but
unsynchronized. In such a case it would be possible for thigyfaub to forward

messages only to the synchronous subset but not to the atties mnd hub; other
nodes that are not yet synchronized would perform the gtatgorithm (since the
traffic of the synchronous set is hidden by the faulty hub)stad up independently
of the other, already synchronized, nodes thereby edtitidisa classical clique
scenario [12], in which two subsets of nodes are communigatithin each subset

15

but not as one coordinated whole. The big-bang mechanisoii¢8€?) is used to
prevent such scenarios.

Our model-checking experiments verified the necessity @big-bang mech-
anism by producing the following counterexample in its alogefor a cluster of 4
nodes:

1. noden, andng start up with one slot difference;

2. after the listen timeouts expirey; andng send their cs-frames, resulting in
a collision;

3. the correct hub forwards the winning node, sayon its channel to all nodes
and the second channel;

4. the faulty hub forwards the winning node on its chanmgl, only to the
correct hub;

5. nodest; andny receive only one cs-frame (fromy,) and synchronize on it,
thus reachindACTIVE state;

6. the correct hub sees a collision, since the faulty hub dode the other cs-
frame to it, and thus will not synchronize to the active setades.

The big-bang mechanism discards the first cs-frame a noddévesc since this
cs-frame could be part of a collision of two nodes. The matheleking studies
showed the necessity and correctness of this mechanism.

There is a class of scenarios similar to the one above thaitidirectly ad-
dressed by the algorithm: this is where nodes start up ongéesiaulty guardian
(believing the other guardian to be unavailable), and ordylzset of them achieve
synchronous operation. These scenarios are excludeddtigerdy arranging the
power-on sequence so that the guardians are running béfeneodes: the algo-
rithm is able to deal with a faulty guardian provided the otgardian is available
at the start of its operation.

SAL 2.0 provides both bounded and symbolic model checkessnBed model
checkers, which are based on propositional satisfiabliyT{) solvers, are special-
ized for detecting bugs: they explore models only to a spekifiounded depth and
can be faster than symbolic model checkers (which effdgtieeplore the entire
statespace) when bugs are present that can be detected tvidliound. Bounded
model checking provides algorithm developers with anotimadytical “dial”: they
can explore to increasing depths with a bounded model cheeideswitch to the
“unbounded” depth of a symbolic model checker only whentad|“shallow” bugs
have been detected and eliminated. In our big-bang expeténthe SAL bounded
model checker was sometimes more efficient than the symbidi@t exposing the
failing scenarios. For example, it found a violation to Safety _2 property in
a 5-node system at depth 13 in 93 seconds (solving a SAT pnobith 405,398
nodes), whereas the symbolic model checker required 12hdeqfor a model
with 682 BDD variables).

5.3 Worst-Case Startup Scenarios
We define the worst-case startup tim&“? (startup _time in the model), as

the maximum duration betweé@nor more non-faulty nodes entering theSTEN

16

or COLDSTART states and or more non-faulty nodes reaching tA€TIVE
state.

We explored worst-case startup times by model checkingitheliness
property for different values o@par_startuptime , setting it first to some
small explicit value (e.g., 12) and increasing it by smadpst (e.g., 1) until coun-
terexamples were no longer produced. By exploring diffeoases and different
cluster sizes, we were able to develop an understanding e¥dinst-case scenarios.

The deduced formula for worst-case startup tir€**? (which occurs when
there is a faulty node) is given in the following equations.

wesup listen + 2% 7_coldstart + 7_slot
- 1

T mazr—1

T max—

round slot

= 3T —2%T

+92 % (2 % Tround 9k 7_slot) + Tslot

round slot

= TxT — 5T

5.4 Automated Verification and Exhaustive Fault Simulation
During exploration of the algorithm we were content to cdesimodest cluster

sizes and fault degrees, but for verification we wanted teonéxa larger clusters
and “exhaustive” modeling of faults. The terexhaustive fault simulatiowas
chosen in analogy to fault injection and with respect to tbeenclature given
in [7]. While fault injection means actually to insert faulihto physical systems,
fault simulation is concerned with modeling faulty behavio a mathematically
model. Exhaustivefault simulation means that all hypothesized fault modes ar
modeled and all their possible scenarios are examined. Hrcase, this means
model checking our model of the startup algorithm with thdtfdegree set to 6.
A desirable goal is to be able to check all properties for aopable-sized cluster
(say 5 nodes) overnight (say 12 hours, or 43,200 seconds}hidrsection we
give formulas to estimate the number of scenarios underfdestxhaustive fault
simulation and report the performance achieved.

Different startup delays: Given a system ofi nodes an® guardians, where

each of the nodes and one of the guardians was allowed togstattan instant

during a period ob;,;;, the number of scenario&S;,, |, based on these different
startup times is given byS;,,| = (Sinig)" 1.

Worst-case startup scenarios with a faulty node: Given the worst-case startup
time of the systemr™**? and the fault degree of a faulty nodg,,;;, the number

of scenarios for one particular startup pattern of nodeshatus, |S; ,, |, is given

bY |Ss.n| = ((Spaur)?)™ . Numerical estimates for these parameters are given
in Figure 5 (7. = 6).

The SAL symbolic model checker is able to count the numberathable
states in a model. For the model used in the big-bang testse thumbers were
1,084,122,880 states for 3 nodes, 508,573,786,112 fordd2%®,220,300,300,290
for 5; these are approximatefy?’, 235, and2*® states, respectively, in reasonable
agreement with Figure 5.

17

nodes|| ;i |Soup| || TV | |Sf o
(slots) (slots)
3 24 | 3.3%10° 16 8 x 1024
4 32 | 3.3%107 23 6 % 10°°
5 40 | 4.1 %107 30 | 4.9%10%

Figure 5: Number of Scenarios for Different Fault Degrees

Figures 6(a), 6(b), and 6(c) present the model checker ipegiace for Lemmas
1, 2, and 3 in presence of a faulty node with fault degigg; = 6 and startup-
delay §;,;: = 8 * 77", The feedback column indicates whether the feedback
optimization was turned on or off. Figure 6(d) presents #sults for Lemma 4 in
presence of a faulty hub with startup-deldy;; = 8 = 77°“*¢, Results are shown
for models with3, 4, and5 nodes. The eval column indicates if the respective
lemma is satisfied.

The cpu time column gives the execution time of the corredipmnmodel-
checking run, while the BDD column gives the number of BDDialales for the
model (this is equivalent to the number of state bits aftieniabating those that are
simple combinations of others). 300 or so state bits is lisaahsidered the realm
of “industrial” model checking, where skilled tinkering snbe needed to obtain a
result in reasonable time. Yet all these results were obthivith no special efforts
beyond those described.

6 Conclusion

We have presented the verification model and results of a kobeeking study
for a new startup algorithm for the TTA. The startup algaritquarantees a safe
and timely system startup in the presence of one faulty compo Our model-
checking experiments showed the robustness of the algoiittihe presence of a
faulty node or a faulty hub.

We described modeling concepts for abstracting the prolediscrete time,
and for exhaustive fault simulation. The resulting modedsehbillions or even
trillions of reachable states, yet the symbolic model cbedf SAL is able to ex-
amine these in a few tens of minutes (for billions of stated)awrs (for trillions).
This combination of an effective modeling approach and énieft tool allowed
us to use model checking over an exhaustive fault model idéisen loop for the
algorithm, and also helped us establish the worst-caseigttimes. Thus, this ap-
proach extends previous experiments in model-checkinli-tialerant algorithms
such as [14] and [4] by vastly increasing the number of séemaonsidered, while
achieving performance that allows the method to be useddigdexploration as
well as for verification.

Ongoing design work is concerned with a shift of complexignf the guardian
algorithms to the node algorithms to make the interlink @mtions unneces-
sary. In ongoing formal methods studies, we are explorieguge of the infinite-
bounded model checker of SAL (which combines a SAT solveh décision pro-
cedures for theories including real arithmetic) to devedod analyze models that

18

nodes| feedback| eval. | cputime| BDD
(sec)|
3 on true 62.45| 248
4 on true 259.53| 316
5 on true 920.74| 422
(a) Results for Lemmaafety
nodes| feedback| eval. | cputime| BDD
(sec)|
3 on true 228.03| 250
4 on true | 1242.73| 318
5 on true | 41264.08| 424
(b) Results for Lemméveness
nodes| feedback| wcsup | eval. | cpu time| BDD
(slots) (sec)|
3 on 16 true 47.81| 268
4 on 23 true 907.61| 336
5 on 30 true | 4480.90| 442

Figure 6: Performance Results for Model Checking the Lemmas

use continuous time [6], while still allowing rich fault meld. We are also using
the PVS theorem prover to formally verify the algorithm atsdfault hypothesis in

(c) Results for Lemmémeliness

nodes| eval. | cpu time| BDD
(sec)|
3 true 56.65| 272
4 true 82.95| 348
5 true | 4289.77| 462

(d) Results for Lemmaafety _2

their most general forms.

References

[1] A. Ademaj, G. Bauer, H. Sivencrona, and J. Torin. Evabraof fault han-
dling of the Time-Triggered Architecture with bus and stgrdlogy. InProc.
of International Conference on Dependable Systems and ddetw(DSN

2003), San Franciscalun. 2003.

19

[2] G.Bauer, H. Kopetz, and P. Puschner. Assumption Coeeuagler Different
Failure Modes in the Time-Triggered Architecture.Rroc. of International
Conference on Emerging Technologies and Factory Automabiages 333—
341, Oct. 2001.

[3] G. Bauer, H. Kopetz, and W. Steiner. The central guar@dijpproach to en-
force fault isolation in a time-triggered system. Rroc. of 6th International
Symposium on Autonomous Decentralized Systems (ISAD¥ pagas 37
—44, Pisa, Italy, Apr. 2003.

[4] C. Bernardeschi, A. Fantechi, and S. Gnesi. Model chegckault tolerant
systems. Software Testing, Verification and Reliabilit§2:251-275, Dec.
2002.

[5] L. de Moura, S. Owre, H. Ruess, J. Rushby, N. Shankar, Me&oand
A. Tiwari. SAL 2. To be presented at CAV 2004, July 2004. Aable
athttp://www.csl.sri.com/"rushby/abstracts/sal-tool

[6] B. Dutertre and M. Sorea. Timed systems in SAL. Technieglort, Com-
puter Science Laboratory, SRI International, Menlo Pavk, ZD04. In prepa-
ration.

[7] J.C.Laprie. Dependability: Basic Concepts and Terminologypringer-
Verlag, 1992.

[8] H. Kopetz. Fault containment and error detection in theé&-Triggered Ar-
chitecture. InProc. of The 6th International Symposium on Autonomous De-
centralized Systems (ISADS 2003 ges 139-146, Pisa, Italy, Apr. 2003.

[9] H. Lonn and P. Pettersson. Formal verification of a TDM#dtpcol start-
up mechanism. IfPacific Rim International Symposium on Fault-Tolerant
Systemspages 235-242, Taipei, Taiwan, Dec. 1997. IEEE Computee§o

[10] H. Pfeifer, D. Schwier, and F. W. von Henke. Formal vesdfion for time-
triggered clock synchronization. In C. B. Weinstock and dsliby, editors,
Dependable Computing for Critical Applications—vblume 12 ofDepend-
able Computing and Fault Tolerant Systerpages 207—226, San Jose, CA,
Jan. 1999. IEEE Computer Society.

[11] W. Steiner and M. Paulitsch. The transition from asypnclous to syn-
chronous system operation: An approach for distributedt-falerant sys-
tems. InThe 22nd International Conference on Distributed Computys-
tems pages 329-336, Vienna, Austria, July 2002. IEEE Computeiey.

[12] W. Steiner, M. Paulitsch, and H. Kopetz. Multiple fagucorrection in the
Time-Triggered Architecture. Proc. of 9th Workshop on Object-oriented
Real-time Dependable Systems (WORDS 200@f) 2003.

20

[13] W. Steiner, J. Rushby, M. Sorea, and H. Pfeifer. SAL niodl@ TTA startup
algorithm. Research Report 52/2003, Technische Uniérgiien, Institut
fur Technische Informatik, Treitlstr. 1-3/182-1, 104Ce¥na, Austria, 2003.

[14] T. Yokogawa, T. Tsuchiya, and T. Kikuno. Automatic ¥etion of fault
tolerance using model checking. Rroc. of 2001 Pacific Rim International
Symposium on Dependable Computipgge 95, Seoul, Korea, Dec. 2001.

21

