
Model Checking a Fault-Tolerant Startup
Algorithm: From Design Exploration To

Exhaustive Fault Simulation∗†

Wilfried Steiner
Real-Time Systems Group,

Technische Universität Wien, Austria
steiner@vmars.tuwien.ac.at

John Rushby
Computer Science Laboratory,

SRI International, USA
rushby@csl.sri.com

Maria Sorea, Holger Pfeifer
Abteilung Künstliche Intelligenz,

Universiät Ulm, Germany
sorea|pfeifer@informatik.uni-ulm.de

Abstract

The increasing performance of modern model-checking toolsoffers high
potential for the computer-aided design of fault-tolerantalgorithms. Instead
of relying on human imagination to generate taxing failure scenarios to probe
a fault-tolerant algorithm during development, we define the fault behavior
of a faulty process at its interfaces to the remaining systemand use model
checking to automatically examine all possible failure scenarios. We call this
approach “exhaustive fault simulation”. In this paper we illustrate exhaustive
fault simulation using a new startup algorithm for the Time-Triggered Archi-
tecture (TTA) and show that this approach is fast enough to bedeployed in the
design loop. We use the SAL toolset from SRI for our experiments and de-
scribe an approach to modeling and analyzing fault-tolerant algorithms that
exploits the capabilities of tools such as this.

∗This work was supported by the European projects NEXT TTA (IST-2001-32111) and ARTIST
(IST-2001-34820), and by NASA Langley Research Center (contract NAS1-00079).

† 2004 IEEE. Personal use of this material is permitted. However, permission to reprint/republish
this material for advertising or promotional purposes or for creating new collective works for resale
or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works
must be obtained from the IEEE.

1

1 Introduction
Design of fault-tolerant distributed real-time algorithms is notoriously difficult and
error-prone: the combinations of fault arrivals, interleaving of concurrent events,
and variations in real-time durations lead to acase explosionthat taxes the intellec-
tual capacity of human designers. These difficulties are compounded when opti-
mizing numerical parameters—e.g., seeking to determine a minimum safe timeout,
or the time required to stabilize after an upset.

In an idealized world, algorithms are derived by a systematic process guided
by formal correctness arguments but, in contemporary reality, designers generally
have an informal argument in mind and develop the final algorithm and its pa-
rameters by mentally exploring local variations against that argument and against
scenarios that highlight tricky cases. Exploration against scenarios can be partially
automated using a simulator or rapid prototype and such automation may increase
the number of scenarios that can be examined and the reliability of the examination.

Automated examination of scenarios can be taken still further using model
checking. In model checking, the case explosion problem is transformed into one
of state explosion—meaning that the time and space required to run the model
checker grows rapidly and eventually becomes infeasible asthe size of the model
grows, so that abstraction, or consideration of only limited numbers of fault cases
and real-time delays, must be employed.

When using model checking in the design loop, the challenge is to cover a use-
fully large number of scenarios in a very short time (say a fewminutes), so that the
designers can perform an interactive exploration of the design space without losing
concentration or patience. As a design becomes consolidated, attention shifts from
exploration to verification and the challenge for model checking becomes one of
covering a truly exhaustive set of scenarios for a realistically accurate model in
reasonable time (say, overnight).

Whether model checking is performed for exploration or verification, a matter
of concern is the ease of encoding the algorithm, its fault model, and assumed
environment in the language of the model checker: most of these languages were
originally developed for specifying hardware circuits or programs and are less than
ideal for describing fault-tolerant algorithms and their fault models at appropriate
levels of abstraction.

In this paper, we describe an approach that provides a “dial”so that a single
model can be used in model checking for both rapid exploration and exhaustive
verification, and we illustrate how the model can be used bothto check correctness
and to help estimate worst-case performance parameters. Wealso demonstrate how
the latest generation of model-checking tools (we use SAL from SRI) meets the
challenges of providing both a convenient modeling language and the performance
to examine trillions of states in a few hours. We illustrate our approach using a new
startup algorithm for the Time-Triggered Architecture (TTA).

This paper is structured as follows. In Section 2, we presentan overview of
the Time-Triggered Architecture and discuss its startup inan informal manner. In
Section 3, we discuss generic modeling issues and introducea formal model of

2

the startup algorithm in the SAL language. The desired correctness properties are
specified in Section 4 and Section 5 presents and discusses the results of our model-
checking experiments. We conclude in Section 6.

2 The Time-Triggered Architecture
The Time-Triggered Architecture (TTA) supplies a foundation for fault-tolerant
safety-critical applications, such as control functions in cars and aircraft. It pro-
vides an ultra-reliable logical bus connecting the “host” computers that implement
the chosen application, and a set of services that make it relatively simple to orga-
nize the application in a fault-tolerant manner. Each host computer attaches to the
system through a TTAcontroller; the combination of a host and its controller is
called anode. Nodes communicate over replicated shared media, calledchannels.
While initially the channels were physical buses, current realizations favor a “star”
topology with acentral guardianat the hub of each star. The central guardians pro-
vide more robust defense against error propagation than theprevious approach that
located simpler guardians at each node [8]. The node controllers and the central
guardians collectively implement the Time-Triggered Protocol TTP/C that guaran-
tees correct operation of the system despite faults in some of the hosts, controllers,
or central guardians.

2.1 Synchronization and Startup
A TTA system or “cluster” with4 nodes and2 central guardians is depicted on the
left of Figure 1. During steady-state operation, the nodes execute a time-division
multiple-access (TMDA) strategy to access the medium; thatis, the access pattern
(called the TDMA schedule) is defined a priori, as depicted onthe right of Figure
1.

A.4

A.1

A.3

A.2

… Node … Guardian

Cluster

Time

Cluster Communication

TDMA round n

A.1 A.2 A.3 A.4 A.1 A.2 A.4

Figure 1: TTA cluster and TDMA schedule

Each TTA node has a mapping from its local time to theslots in the cyclic
TDMA schedule; in particular, each nodei knows the local time at which the slot
for nodek begins—we can denote this time bysi(k). Operation of TTA depends on
synchronization of the local clocks, which simply means that for any two nonfaulty
nodesi andj, the instants wheni’s local clock readssi(k) and whenj’s clock reads
sj(k) must occur very close together in real time.

Thesynchronization problemis to adjust the values ofsi (or, equivalently, the
local clocks) so that nodes remain synchronized despite thedrift of their hardware
clocks (due to their oscillators operating at slightly different rates). The synchro-
nization problem is well understood and many algorithms to solve it have been
developed and formally verified, including the algorithm employed in TTA [10].

3

The startup problemis to establish values for the functionssi (or, equiva-
lently, for the local clocks) as the nodes first power up so that they quickly become
synchronized; therestart problemis to reestablish synchronization after transient
faults have afflicted the values ofsi or the local clocks at one or more (or all) nodes.
Here, we are concerned with algorithms for the startup and restart problems.

2.2 Fault Hypothesis
Since TTA systems are designed for safety-critical applications, a sufficient degree
of fault tolerance must be provided. The fault hypothesis (i.e., the number, arrival
rate, and kind of faults to be tolerated) of the basic bus-based TTP/C protocol is
discussed in [2]. Fault injection studies [1] showed that additional mechanisms,
such as the central guardians of the star topology [3], are necessary to achieve
the demanding requirements for fault tolerance in the aerospace and automotive
industries.

With respect to the protocol execution, each central guardian has full knowl-
edge of the parameters of its attached nodes, and can therefore judge whether a
message (which is sometimes called a “frame” in TTA) sent by anode is valid or
not (i.e., is sent within its assigned slot and satisfies certain consistency checks).
Guardians relay valid messages to all the other nodes on their channel, so that from
the nodes’ point of view, the channel looks like a broadcast bus. A basic TTA
system uses two channels, whose central guardians are connected by a pair ofin-
terlinks that allow each guardian to receive data broadcast on the other channel.
The interlinks are needed in the algorithm developed here toavoid scenarios in
which one clique of nodes is synchronized to one guardian andanother set to the
other, with each clique unaware of the existence of the other. Each interlink is uni-
directional: that is, the central guardian of channelX receives data from channel
X̄ on one interlink but cannot transmit on this interlink, and vice versa.

The implementation of a central guardian makes it physically impossible for
it to create a correct frame by itself (it lacks the hardware to construct the CRC
that is part of a valid frame), or to store a previously sent frame or delay it for an
arbitrarily long duration. Thus, if a central guardian receives a correct frame over
the interlink connection from the other channel it can be assured that the frame was
sent by a correct sender and the data can be used safely.

Using central guardians, TTA is claimed to tolerate one faulty component (the
“single failure hypothesis”); this can be either a faulty node, which is allowed to
send arbitrary signals for arbitrary durations with arbitrary frequency, or a faulty
channel (including its guardian), which is allowed to show the same behavior as
a faulty node with the restriction that it cannot create correct frames, nor delay
frames for an arbitrary duration.

2.3 Fault-Tolerant Startup
A basic solution to the startup problem is for nodes that see no traffic for some time
to send a “wakeup” message that carries their own identity. This message provides
a common event that all nodes can use as a baseline for their local clocks, and the
identity of the sender indicates the position in the TDMA schedule to which this
time corresponds.

4

Of course, two nodes may decide to send wakeup messages at approximately
the same time, and these messages will “collide” on the channel. In a bus-based
TTA, the signals from colliding messages physically overlay on the medium, but
propagation delays cause different nodes to see the signalsat different times so that
collision detection can be unreliable. In a star topology, the central guardians arbi-
trate collisions and select just one message from any that arrive at approximately
the same time to forward to the other nodes. However, each central guardian arbi-
trates independently, so nodes can receive different messages on the two channels
at approximately the same time; resolving these “logical collisions” is a task of the
startup algorithm.

In addition to collisions, the startup algorithm must deal with faulty nodes that
may send “wakeup” messages at inappropriate times, masquerade as other nodes,
and generally fail to follow the algorithm. Many of these faults can be detected
and masked only with sophisticated guardians; the central guardians of the star
topology are a cost-effective way to provide this protection. However, this addi-
tional fault tolerance exacts a price: the central guardians must synchronize with
the nodes during startup. Because the communication systemis replicated and
there are two central guardians, it is particularly crucialthat a faulty node must
not be able to initiate or infiltrate a startup sequence to cause the central guardians
to start at different positions in the TDMA schedule. And, ofcourse, one of the
guardians could itself be faulty.

Fault-tolerant startup of a TTA system clearly requires rather intricate algo-
rithms in the nodes and guardians. A suitable “node only” startup algorithm for
the bus topology is implemented in TTP/C [11]. A startup algorithm with central
guardians was designed as part of the star topology developed in the NEXT TTA
project. Model checking assisted in the design loop of this algorithm and led to a
more resource-efficient solution: whereas the initial guardian startup algorithm re-
quired1 timer per node, the final version uses only a single timer. Model checking
also was used in assurance of the overall algorithm and confirmed the need to mod-
ify the algorithm used in the nodes to overcome certain partitioning scenarios (see
Section 5.2). The finished algorithms are outlined below andthe model-checking
activity that assisted in their development and assurance is the focus of the rest of
the paper.

2.3.1 Node Startup

The state-machine of the startup algorithm executed in the nodes is depicted in
Figure 2(a). It consists of4 states:INIT, LISTEN, COLDSTART, andACTIVE .
Each nodei has two unique timeout parameters,τ listen

i andτ coldstart
i that are de-

fined in the following recursive way (based on the unique value τ
startup
i).

Startup Delay: τ
startup
i is unique to each node. It is given by the duration of all

TDMA slots from the beginning of the TDMA round up to the beginning of the

5

slot for nodei (whose duration isτ slot
i):

τ
startup
i =

{

0 i = 0
∑i

j=1
τ slot
j−1 i > 0

Listen Timeout: τ listen
i is given by the sum of the node’s startup delayτ

startup
i

and2 TDMA rounds (each of durationτ round): τ listen
i = τ

startup
i + 2τ round.

Cold-Start Timeout: τ coldstart
i is given by the sum of the node’s startup delay

τ
startup
i and1 TDMA round: τ coldstart

i = τ
startup
i + τ round.

INIT

(1)

LISTEN

(2)

COLD

START

(3)

ACTIVE

(4)

1.1 2.1

2.2

3.1

3.2

(a) Node Startup

INIT

(1)

LISTEN

(2)

1.1

2.1 STARTUP

(3)

Tentative

ROUND

(5)

ACTIVE

(7)

Protected

STARTUP

(6)

2.2

3.2

SILENCE

(4)

3.1

4.1

5.1

5.2

6.1

6.26.3

2.3

(b) Guardian Startup

Figure 2: State-machine of the TTA startup algorithm

When a node is powered-on it either has to integrate to an already synchronous
set, or it must initiate or wait for a cold-start to be executed. Each newly started (or
restarted) nodei, after performing some internal initialization in theINIT state,
transits toLISTEN (Transition 1.1) and listens for the unique durationτ listen

i

to determine whether there is a synchronous set of nodes communicating on the
medium. During synchronous operationi-frames (this is the name of a kind of

6

message, it has nothing to do with nodei) are transmitted periodically that carry the
current protocol state, including position in the TDMA round. If the node receives
such an i-frame, it adjusts its state to the frame contents and is thus synchronized to
the synchronous set (2.2); if not, the cold-start mechanism is executed. Cold-start
is done in two phases. During the first phase (while in theLISTEN state), each
node listens for a “cold-start” message (cs-frame) from another node indicating the
beginning of the cold-start sequence; cs-frames are similar to i-frames but carry a
protocol state suggested by the sending node. When a node completes reception
of a cs-frame, it enters the second phaseCOLDSTART (2.1) and resets its local
clock toδcs (that is the transmission duration of the cs-frame). Thus, all nodes that
received the cs-frame have synchronized local clocks (within system tolerances,
including propagation delay). Each node that receives neither an i-frame nor a cs-
frame during theLISTEN phase will enterCOLDSTART (2.1), resets its local
clock to0 and sends out a cs-frame by itself. Thus, after the transmission of the
cs-frame (δcs later), the local clock of the sending node will also be synchronized
to the local clocks of the set of receiving nodes. This algorithmic choice, not to
directly synchronize the receiving nodes on the contents ofthe first cs-frame while
in the LISTEN state, is called thebig-bangmechanism. There is, of course, the
possibility that two nodesp andq send out simultaneous or overlapping cs-frames.
The receiving nodes will see this as a logical collision but take the same actions as
if a single cs-frame was received. Each nodep in COLDSTART state waits for
reception of another cs-frame or i-frame until its local clock reaches the value of its
individual cold-start timeoutτ coldstart

p . If it receives such a frame it synchronizes
on its contents and enters theACTIVE state (3.2); if not, it resets its local clock
and again broadcasts a cs-frame (3.1). No further collision can occur at this point,
for the following reasons.

1. Based on the strict order of the unique cold-start timeouts τ coldstart
i no two

nodes that caused a collision can collide again.

2. Sinceτ listen
i > τ coldstart

j , for every two nodesi, j, no newly awoken nodei
may cause a collision.

The big-bang mechanism ensures better precision, since thesynchronization
quality in the second phase is independent of the propagation delay: a receiving
node knows the identity of theuniquesender of the cs-frame and can compensate
for its known propagation delay. More importantly, the big-bang mechanism is
necessary to mask certain faults—see Section 5.2.

2.3.2 Guardian Startup

A faulty node could masquerade as another during startup, send cs-frames at in-
appropriate times (or continuously), and generally fail tofollow the algorithm. A
central guardian can mask these faults, but to do so (and to perform its prime func-
tion of enforcing the TDMA schedule during steady-state operation), it must itself
synchronize with its nodes. The startup algorithm of the guardians is depicted in
the state-machine in Figure 2(b).

7

A central guardian starts inINIT state where all communication on its chan-
nel is blocked. When its initialization is finished it transits toLISTEN state (1.1)
and listens to the interlink for2 ∗ τ round , that is, it tries to integrate to an already
running system. If an i-frame is received, the central guardian transits toACTIVE
state (2.3); if a cs-frame is received, it transits toTentative ROUND state (2.2).
If an integration was not possible duringLISTEN , the central guardian transits to
STARTUP state (2.1). All ports are now opened and the central guardian waits un-
til it receives a valid frame either on one of its ports or on the interlink. If more than
one port become active at the same time, the central guardianselects one port non-
deterministically. If a cs-frame is received and no logicalcollision occurred (that is
the guardian received either two identical cs-frames—one on one of its stubs and
the second on the interlink—or only one frame), the central guardian transits to
Tentative ROUND state (3.1). If a collision occurred the central guardian transits
to SILENCE state (3.2). InTentative ROUND state the central guardian operates
the remaining TDMA round (the received frame duringSTARTUP state is con-
sidered the first frame of a TDMA round); if during this round avalid i-frame is
received, the startup initiated by the cs-frame sender is confirmed and the central
guardian proceeds toACTIVE state (5.2). If during this TDMA round no valid i-
frame was received the central guardian transits toProtected STARTUP(5.1). If
a central guardian transits toSILENCE state (because a collision was received)
it blocks all communication for the remaining round and transits to Protected
STARTUP as well (4.1).Protected STARTUPstate differs fromSTARTUP state
in that here the ports are enabled for one TDMA round according to the cold-start
timeouts of the nodes. Thus, in contrast toSTARTUP state every node is forced
to stay to its timeout pattern. The transitions fromProtected STARTUPstate to
Tentative ROUND state (6.1) andSILENCE state (6.2) underly the same rules as
in STARTUP state. If no transition is done for a period of one TDMA round the
central guardian transits back toSTARTUP state (6.3) and the startup sequence
is repeated. Since the central guardian has full knowledge of the attached nodes’
parameters (which are specified off-line), it can detect faulty transmissions with
respect to protocol operation. If a central guardian detects a faulty node it will
block all further attempts of this node to access the communication channel during
the startup sequence. Thus, a faulty node cannot influence the startup sequence
forever.

3 Verification Model
The startup algorithm described in the previous section is fairly subtle and must
cope with many kinds of fault and timing behaviors. Model checking provides a
way to explore these behaviors in an automatic way, but facescertain difficulties.
First, the algorithm involves time in an essential way and the most realistic for-
mal model for the algorithm will be one in which time is treated as a continuous
variable. Timed automata provide a suitable formalism of this kind, and are mech-
anized in model checkers such as Kronos and UPPAAL. Lönn [9] considers startup
algorithms for TDMA systems similar to TTA and verifies one ofthem using UP-
PAAL. However, model checking for timed automata is computationally complex,

8

so that when we add the case/state explosion caused by considering a large num-
ber of fault scenarios, the model rapidly becomes computationally infeasible. Our
initial experiments did use timed automata and we were unable to consider more
than a very few simple kinds of faults.

It is essential to the utility of model checking for exploration and verification
of fault-tolerant algorithms that we are able to consider a large number of different
kinds of faults—ideally, we would like the fault model to beexhaustive, meaning
that we describe every kind of fault we can think of, and let the model checker
inject these in all possible ways. Since this is impracticable in a model that uses
continuous time, we looked for an abstraction employing discrete time.

Nodes executing the startup algorithm measure time by counting off slots in
the TDMA schedule. Although slots have duration and may be offset at different
nodes, we can think of them as indivisible units: we do not care by how much
the slots at different nodes are offset, just whether they overlap at all (so that a
collision can occur). Thus, we can use a discrete notion of time and can model
the collective behavior of a cluster of nodes as the synchronous composition of
discrete systems. Another way to justify this modeling approach is to think of it as
describing the system from the point of view of a central guardian: each discrete
instant corresponds to some real time interval at the guardian and all messages that
(start to) arrive in that interval are regarded as simultaneous; the behavior of the
nodes is driven off (i.e., synchronously composed with) thediscretization provided
by the central guardian.

Fully exhaustive fault models pose a challenging prospect,so we developed a
modeling “dial” that could inject varyingdegreesof faults: our idea was to use as
high a degree (i.e., as many kinds) of faults as proved feasible in practice. In the
remainder of this section we first present our basic model of the startup algorithm
and then describe the modeling concepts for faulty components of varying degrees.
Due to space limitations we only give representative parts of the node’s model and
refer the interested reader to [13] where the complete source code of the SAL model
and an extended version of this paper can be found, together with instructions that
will help to recreate the experiments.

3.1 Basic Model
The system model comprisesn nodes, each synchronously composed with two
centralhubs that each contain a central guardian that blocks certain faulty mes-
sages. At each time step, each node examines the input messages received from
the hubs, consults its private state variables, and possibly generates an output mes-
sage that it sends to the hubs. Each hub examines the messagesreceived from the
nodes and the other hub and constructs the single message that will comprise the
consistent input presented to the nodes at the next time step.

We specify this discrete, synchronous model in the languageof SAL as follows.
We begin by defining the types over which the state variables will range.

9

startup: CONTEXT =
BEGIN
n: NATURAL = 4;
index: TYPE = [0..n-1];
maxchannels: NATURAL = 2;
channels: TYPE = [0..maxchannels-1];
maxcount: NATURAL = 20*n;
counts: TYPE = [0..maxcount];

Here, n is the number of nodes (here assigned the value 4, but we also ex-
amine models with 3, 5, and 6 nodes), which are identified by elements of the
type index . Analogously,maxchannels is the number of channels, which are
identified by elements of the typechannels . The largest timeout considered is
maxcount and the values of a timeout counter are given by the typecounts .

states: TYPE = {init, listen, start, active, faulty,
faulty_lock0, faulty_lock1, faulty_lock01 };

hub_states: TYPE = {hub_init, hub_listen, hub_startup,
hub_tentative, hub_silence, hub_protected,
hub_active, hub_faulty };

msgs: TYPE = {quiet,noise,cs_frame,i_frame };

The enumerated typesstates , hub states , and msgs specify, respec-
tively, the states of the algorithm at a node, the states of the algorithm at a hub,
and the kind of messages that can be exchanged with a hub. The states correspond
to those in the state-machines of Section 2, plus additionalfaulty states that are
used in the simulation of faulty components. Each node may output messages with
valuesquiet (meaning no message),noise (meaning a syntactically invalid
signal),cs frame (a cs-frame), ori frame (an i-frame); the hub will return a
message type based on the inputs of the attached nodes.

LT_TO:ARRAY index OF NATURAL = [[j:index] 2*n+j];
CS_TO:ARRAY index OF NATURAL = [[j:index] n+j];

The unique timeouts for each node are specified asLT TO (listen timeout) and
CS TO(cold-start timeout), as defined in Section 2.

We specify the input and output variables of an individual node as follows.

node[id:index]: MODULE = BEGIN INPUT
msg_in: ARRAY channels OF msgs,
time_in: ARRAY channels OF index,
lock_in: ARRAY channels OF BOOLEAN

OUTPUT
msg_out: ARRAY channels OF msgs,
time_out: ARRAY channels OF index,
state: states,
counter: counts,
errorflag: BOOLEAN

The msg in represents the kind of message that the node receives from the
hubs; if it is a normal message, thentime in indicates the slot position trans-
mitted in the sender’s frame, which equals the current time measured relative to
the start of the TDMA round if the sender sends a correct value. We can think of

10

this information as being included in the message, but it is easier to model it as a
separate variable. The input variablelock in is used to make the model more
compact and is discussed in Section 3.2.

The output variablesmsg out , time out , state , andcounter represent,
respectively, the message that this node will output to the hub, its estimate of the
identity of the node associated with the current slot (i.e.,its estimate of time relative
to the start of the TDMA round), its state within the algorithm, and the value of
its timeout counter. The output variableerrorflag is used for diagnosis of the
model and has no influence on the protocol execution.

LOCAL
startupdelay: counts,
big_bang: BOOLEAN

Each node has a local variablestartupdelay that indicates the maximum
duration a node is allowed to stay ininit state (simulating the different power-on
times of the different nodes). Initially set toTRUE, the local variablebig bang
is setFALSEif a big bang has been received.

The algorithm is specified by a series of guarded commands. Wedescribe in
detail those that apply to a node in theinit state, and one transition of a node in
listen state, as representative illustrations.

[% Transition: 1.1
state = init

--> state’ = IF NOT faulty_node[id] THEN listen
ELSE faulty ENDIF;

counter’ = 1;
msg_out’ = msg_out;
time_out’ = time_out;

[] % Let time advance
state = init AND counter < startupdelay

--> state’ = state;
counter’ = counter+1;
msg_out’ = msg_out;
time_out’ = time_out;

Here, the[character introduces a set of guarded commands, which are sepa-
rated by the[] symbol; the%character introduces a comment. A SAL guarded
command is eligible for execution in the current state if itsguard (i.e., the part be-
fore the--> arrow) is true. The SAL model checker nondeterministicallyselects
one of the enabled commands for execution at each step; if no commands are eli-
gible, the system is deadlocked. State variables are unprimed before execution of
a command and primed in the new state, that is, after the execution of a command.

Provide the counter is less thanstartupdelay , both the above commands
are eligible for execution; thus, the node can nondeterministically choose to stay
in the init state (incrementing itscounter by 1) or to transit to thelisten
state. If the counter reachesstartupdelay , the node must transit either to
listen or faulty state, depending whether the node simulates a correct node
or a faulty one. Hence, the two guarded commands above allow the node to “wake

11

up” and transit to thelisten state at any point during the specified period of
startupdelay ; on entering thelisten (or faulty) state, its counter is reset
to 1.

We next describe a class of transitions for a node fromlisten to (cold)
start state.

[] % Transition 2.1
([] (k: channels):
state = listen AND big_bang AND msg_in[k] = cs_frame

AND (NOT (EXISTS (j:channels): j/=k AND
(msg_in[j] = cs_frame OR msg_in[j] = i_frame) AND
(time_in[k]/=time_in[j] OR msg_in[k]/=msg_in[j])))

--> state’ = start; counter’ = 2;
msg_out’=[[j:channels] quiet];
time_out’=[[j:channels] 0];
big_bang’ = FALSE;)

This guarded command is a short hand for a set of transitions.It represents one
transition for eachk , with k = 0, 1. The precondition is satisfied, if the node is in
listen state, abig bang has not been received yet by this node, the incoming
message on channelk is a cs-frame, and there does not exist a channel different
from k (in a dual-channel system, there is only one other channel) where a cs-
frame or i-frame is received that has anothertime in value than that on channel
k . The output and local variables will be set to the appropriate values. The subtly
differentiated cases in the precondition were helpful in testing different algorithm
designs.

3.2 Failure Modeling
Faults vastly increase the statespace that must be exploredin model checking, and
they do so in two different ways. The first way is by introducing genuinely different
behaviors; we provide afault degree“dial” to parameterize this as described in the
following section. The second way is to introduce “clutter”in the form of states
that differ in irrelevant ways: for example, a faulty node can end up in one of
many different states, but once the correct components haveexcluded this node
from further consideration, its state has no effect on system behavior. However,
a model checker distinguishes all the different states of the faulty component and
this needlessly complicates its task. A valuable “trick” inmodeling fault-tolerant
algorithms is to set the states of faulty components to fixed values once they can
no longer affect the behavior of the system. We implement this by a mechanism
we call feedback.

3.2.1 Node Failures

The model simulates time in discrete slot granularity and a faulty node is simulated
as one that can send arbitrary messages in each slot. We classify the possible
outputs of such a faulty node into the sixfault degreesdepicted by the(6 × 6)
matrix in Figure 3. For example, a fault degree of1 allows a faulty node only to
fail silent, while fault degree6 allows a node to send an arbitrary combination of
cs-frames and i-frames with correct or incorrect semantics, noise, or nothing on
each channel.

12

q
u

ie
t

cs
_

fr
am

e

 (
g

o
o

d
)

i_
fr

am
e

 (
g

o
o

d
)

n
o

is
e

cs
_

fr
am

e

(b
ad

)

i_
fr

am
e

 (
b

ad
)

quiet 1 4

cs_frame (good) 2 4

i_frame (good) 3 4

noise 4 4

cs_frame (bad) 5 5

i_frame (bad) 6 6

5

6

6

6

6

6

6

6

5

5

5

5

5

6

3

3

3

4

5

6

2

2

3

4

chB

chA

Figure 3: Fault degree

Each of these36 combinations was explicitly described by guarded commands
in the SAL model.

[] state = faulty AND degree >= 2
-->
msg_out’=[[j:channels] IF j = 0

THEN cs_frame ELSE quiet ENDIF];
time_out’ = [[j:channels] IF j = 0

THEN faulty_ID ELSE 0 ENDIF];
state’ = IF lock_in[0] AND lock_in[1] AND feedback

THEN faulty_lock01
ELSIF lock_in[0] AND feedback THEN faulty_lock0
ELSIF lock_in[1] AND feedback THEN faulty_lock1
ELSE state ENDIF;

Here, one guarded command of a faulty node with fault degree2 or greater is
depicted: such a faulty node is allowed to broadcast a cs-frame on channel0 and
does not send on the second channel. Furthermore, to reduce the statespace, we use
“feedback”: thelock in[i] input variables are set by the hubi (corresponding
to its lock output variables) if it discovers that the node is faulty (byjudging on the
node’s output behavior). A faulty node will then transmit only quiet on channel
i, since the hub will block all messages of the faulty node anyway. To judge its
effect, this feedback routine can be turned on and off by setting the feedback
parameter toTRUEor FALSErespectively.

3.2.2 Hub Failures

Analogous to a faulty node, a faulty hub is simulated by assigning its output vari-
ables to arbitrary values, within its fault hypothesis (a faulty hub cannot create
correct messages) in each slot.

[] ([] (i: index):
state=hub_faulty AND msg_in’[i] /= quiet
-->
msg_out’ = [[j:index] IF partitioning[j]

THEN msg_in’[i]
ELSE IF send_noise[j] THEN noise ELSE quiet ENDIF
ENDIF];

time_out’ =[[j:index] time_in’[i]];
interlink_msg_out’ = msg_in’[i];
interlink_time_out’ = time_in’[i];)

13

This example of a transition by a faulty hub is activated if anattached node
sends a message other thanquiet to the hub. The faulty hub then is free to
select a subset of nodes to which the message is forwarded. The local variable
partitioning , an array of boolean variables, creates such a partitioningof the
nodes. By specifying no initial value for this variable, themodel checker is forced
to test every assignment. The faulty hub is allowed to send eithernoise or quiet
to the other nodes, using the similarly uninitialized boolean arraysend noise .
We call this methodimplicit failure modeling (in the sense, that it is not necessary
to model transitions for each subset explicitly).

4 Correctness Properties
In the following we describe some correctness properties ofthe algorithms and
their formulation as “lemmas” in SAL notation. Here,Gdenotes thealwaysor �

modality of linear temporal logic (LTL), andF denotes theeventuallyor ♦ modal-
ity. SAL allows a modular model description. To compose the modules, the input
and output variables have to be mapped to global (unique) variables, local variables
may be mapped for better readability of the properties undertest. lstates and
hstates correspond to thestate variable in node and hub, respectively.

Lemma 1 Safety: Whenever any two nodes are in theACTIVE state, these nodes
will agree on the slot time.

safety: LEMMA system |- G(FORALL (i,j:index):
(lstates[i] = active AND lstates[j] = active) =>
(node_time_out[i] = node_time_out[j]));

Lemma 2 Liveness: All correct nodes will eventually reach theACTIVE state.

liveness: LEMMA system |- F((FORALL (i:index):
lstates[i] = active OR faulty_node[i]));

Lemma 3 Timeliness: All correct nodes will reach theACTIVE state within a
bounded time (see 5.3).

timeliness: LEMMA system |-
G(startup_time <= @par_startuptime);

Lemma 4 Safety2: Whenever a node reaches theACTIVE state, a correct hub
has also reached either theTentative ROUND or ACTIVE states.

safety_2: LEMMA system |-
G ((EXISTS (i:index): lstates[i] = active) =>
(hstates[1]=hub_active OR hstates[1]=hub_tentative));

Within our model-checking study additional lemmas were examined to gain
confidence in our model. Those lemmas can be found in the source code of the
SAL model.

14

5 Experimental Results and Discussion
In this section we present results from our experiment usingmodel checking in
development of the new startup algorithm. Our experiments were performed on an
Intel(R) Xeon(TM) with a CPU speed of2.80GHz and2GByte memory. We used
the Linux distribution of SAL 2.0 [5].

5.1 Effectiveness of Statespace Reduction
Our decision to use a discrete model for time was critical to our ability to perform
these experiments at all. Although we cannot yet prove the soundness of this ab-
straction, we gained confidence in it by selectively removing mechanisms from the
SAL model of the algorithm and observing that the model checker always detected
the expected system failures.

In exploring algorithmic variations, it was crucial for themodel checker to
deliver results within the human attention span of a few minutes. Our principal
“dials” for trading time required against thoroughness of the exploration performed
by the model checker were the number of nodes considered (typically from 3 to 6),
and the fault degree. The parameterδfault selects the fault modes that a faulty node
may exhibit. Figure 4 illustrates the verification times in seconds for three lemmas
in a 4-node model withδfault = 1, 3, 5. The results clearly show the increase
in verification times with fault degree. A fault degree of 1 issuitable for quick
investigation in the inner design loop, while degrees 3 and 5invite a coffee break.

δfault safety liveness timeliness

1 44.11 196.05 77.14
3 166.34 892.15 615.03
5 251.12 1324.54 921.92

Figure 4: Effect of Increasing Fault Degree on Model-Checking Performance
The feedback mechanism (i.e., forcing failed components toa standard state to

reduce the statespace) was ineffective or counterproductive in practice for medium
to large models, but for very large models it proved essential. For example, one
property was successfully model checked in a 6-node model in30,352 seconds
(about 8.5 hours) with feedback on, but had not terminated after 51 hours with it
off. In future research, we intend to investigate in more detail the influence of the
feedback mechanism on model checker performance.

5.2 Design Exploration: Big-Bang Mechanism
One area where we performed extensive design exploration was to determine the
necessity and effectiveness of the big-bang mechanism. A crucial requirement
of the startup algorithm is that it should not establish synchronous operation of a
subset of nodes on a faulty hub while the second, correct, channel is available but
unsynchronized. In such a case it would be possible for the faulty hub to forward
messages only to the synchronous subset but not to the other nodes and hub; other
nodes that are not yet synchronized would perform the startup algorithm (since the
traffic of the synchronous set is hidden by the faulty hub) andstart up independently
of the other, already synchronized, nodes thereby establishing a classical clique
scenario [12], in which two subsets of nodes are communicating within each subset

15

but not as one coordinated whole. The big-bang mechanism (Section 2) is used to
prevent such scenarios.

Our model-checking experiments verified the necessity of the big-bang mech-
anism by producing the following counterexample in its absence for a cluster of 4
nodes:

1. noden2 andn3 start up with one slot difference;

2. after the listen timeouts expire,n2 andn3 send their cs-frames, resulting in
a collision;

3. the correct hub forwards the winning node, sayn2, on its channel to all nodes
and the second channel;

4. the faulty hub forwards the winning node on its channel,n3, only to the
correct hub;

5. nodesn1 andn4 receive only one cs-frame (fromn2) and synchronize on it,
thus reachingACTIVE state;

6. the correct hub sees a collision, since the faulty hub forwards the other cs-
frame to it, and thus will not synchronize to the active set ofnodes.

The big-bang mechanism discards the first cs-frame a node receives, since this
cs-frame could be part of a collision of two nodes. The model-checking studies
showed the necessity and correctness of this mechanism.

There is a class of scenarios similar to the one above that is not directly ad-
dressed by the algorithm: this is where nodes start up on a single faulty guardian
(believing the other guardian to be unavailable), and only asubset of them achieve
synchronous operation. These scenarios are excluded in practice by arranging the
power-on sequence so that the guardians are running before the nodes: the algo-
rithm is able to deal with a faulty guardian provided the other guardian is available
at the start of its operation.

SAL 2.0 provides both bounded and symbolic model checkers. Bounded model
checkers, which are based on propositional satisfiability (SAT) solvers, are special-
ized for detecting bugs: they explore models only to a specified, bounded depth and
can be faster than symbolic model checkers (which effectively explore the entire
statespace) when bugs are present that can be detected within the bound. Bounded
model checking provides algorithm developers with anotheranalytical “dial”: they
can explore to increasing depths with a bounded model checker and switch to the
“unbounded” depth of a symbolic model checker only when all the “shallow” bugs
have been detected and eliminated. In our big-bang experiments, the SAL bounded
model checker was sometimes more efficient than the symbolicone at exposing the
failing scenarios. For example, it found a violation to theSafety 2 property in
a 5-node system at depth 13 in 93 seconds (solving a SAT problem with 405,398
nodes), whereas the symbolic model checker required 127 seconds (for a model
with 682 BDD variables).

5.3 Worst-Case Startup Scenarios
We define the worst-case startup time,τwcsup (startup time in the model), as
the maximum duration between2 or more non-faulty nodes entering theLISTEN

16

or COLDSTART states and1 or more non-faulty nodes reaching theACTIVE
state.

We explored worst-case startup times by model checking thetimeliness
property for different values of@par startuptime , setting it first to some
small explicit value (e.g., 12) and increasing it by small steps (e.g., 1) until coun-
terexamples were no longer produced. By exploring different cases and different
cluster sizes, we were able to develop an understanding of the worst-case scenarios.

The deduced formula for worst-case startup timeτwcsup (which occurs when
there is a faulty node) is given in the following equations.

τwcsup = τ listen
max−1 + 2 ∗ τ coldstart

max−1 + τ slot

= 3 ∗ τ round − 2 ∗ τ slot

+2 ∗ (2 ∗ τ round − 2 ∗ τ slot) + τ slot

= 7 ∗ τ round − 5 ∗ τ slot .

5.4 Automated Verification and Exhaustive Fault Simulation
During exploration of the algorithm we were content to consider modest cluster
sizes and fault degrees, but for verification we wanted to examine larger clusters
and “exhaustive” modeling of faults. The termexhaustive fault simulationwas
chosen in analogy to fault injection and with respect to the nomenclature given
in [7]. While fault injection means actually to insert faults into physical systems,
fault simulation is concerned with modeling faulty behavior in a mathematically
model. Exhaustivefault simulation means that all hypothesized fault modes are
modeled and all their possible scenarios are examined. In our case, this means
model checking our model of the startup algorithm with the fault degree set to 6.
A desirable goal is to be able to check all properties for a reasonable-sized cluster
(say 5 nodes) overnight (say 12 hours, or 43,200 seconds). Inthis section we
give formulas to estimate the number of scenarios under testfor exhaustive fault
simulation and report the performance achieved.

Different startup delays: Given a system ofn nodes and2 guardians, where
each of the nodes and one of the guardians was allowed to startup at an instant
during a period ofδinit , the number of scenarios,|Ssup |, based on these different
startup times is given by|Ssup | = (δinit)

n+1 .

Worst-case startup scenarios with a faulty node: Given the worst-case startup
time of the systemτwcsup and the fault degree of a faulty nodeδfault , the number
of scenarios for one particular startup pattern of nodes andhubs,|Sf .n.|, is given
by |Sf .n.| = ((δfault)

2)τ
wcsup

. Numerical estimates for these parameters are given
in Figure 5 (δfault = 6).

The SAL symbolic model checker is able to count the number of reachable
states in a model. For the model used in the big-bang tests, these numbers were
1,084,122,880 states for 3 nodes, 508,573,786,112 for 4, and 259,220,300,300,290
for 5; these are approximately227, 235, and243 states, respectively, in reasonable
agreement with Figure 5.

17

nodes δinit |Ssup | τwcsup |Sf .n.|
(slots) (slots)

3 24 3.3 ∗ 105 16 8 ∗ 1024

4 32 3.3 ∗ 107 23 6 ∗ 1035

5 40 4.1 ∗ 109 30 4.9 ∗ 1046

Figure 5: Number of Scenarios for Different Fault Degrees

Figures 6(a), 6(b), and 6(c) present the model checker performance for Lemmas
1, 2, and 3 in presence of a faulty node with fault degreeδfault = 6 and startup-
delay δinit = 8 ∗ τ round . The feedback column indicates whether the feedback
optimization was turned on or off. Figure 6(d) presents the results for Lemma 4 in
presence of a faulty hub with startup-delayδinit = 8 ∗ τ round . Results are shown
for models with3, 4, and5 nodes. The eval column indicates if the respective
lemma is satisfied.

The cpu time column gives the execution time of the corresponding model-
checking run, while the BDD column gives the number of BDD variables for the
model (this is equivalent to the number of state bits after eliminating those that are
simple combinations of others). 300 or so state bits is usually considered the realm
of “industrial” model checking, where skilled tinkering may be needed to obtain a
result in reasonable time. Yet all these results were obtained with no special efforts
beyond those described.

6 Conclusion
We have presented the verification model and results of a model-checking study
for a new startup algorithm for the TTA. The startup algorithm guarantees a safe
and timely system startup in the presence of one faulty component. Our model-
checking experiments showed the robustness of the algorithm in the presence of a
faulty node or a faulty hub.

We described modeling concepts for abstracting the problemto discrete time,
and for exhaustive fault simulation. The resulting models have billions or even
trillions of reachable states, yet the symbolic model checker of SAL is able to ex-
amine these in a few tens of minutes (for billions of states) or hours (for trillions).
This combination of an effective modeling approach and an efficient tool allowed
us to use model checking over an exhaustive fault model in thedesign loop for the
algorithm, and also helped us establish the worst-case startup times. Thus, this ap-
proach extends previous experiments in model-checking fault-tolerant algorithms
such as [14] and [4] by vastly increasing the number of scenarios considered, while
achieving performance that allows the method to be used in design exploration as
well as for verification.

Ongoing design work is concerned with a shift of complexity from the guardian
algorithms to the node algorithms to make the interlink connections unneces-
sary. In ongoing formal methods studies, we are exploring the use of the infinite-
bounded model checker of SAL (which combines a SAT solver with decision pro-
cedures for theories including real arithmetic) to developand analyze models that

18

nodes feedback eval. cpu time BDD
(sec)

3 on true 62.45 248
4 on true 259.53 316
5 on true 920.74 422

(a) Results for Lemmasafety

nodes feedback eval. cpu time BDD
(sec)

3 on true 228.03 250
4 on true 1242.73 318
5 on true 41264.08 424

(b) Results for Lemmaliveness

nodes feedback wcsup eval. cpu time BDD
(slots) (sec)

3 on 16 true 47.81 268
4 on 23 true 907.61 336
5 on 30 true 4480.90 442

(c) Results for Lemmatimeliness

nodes eval. cpu time BDD
(sec)

3 true 56.65 272
4 true 82.95 348
5 true 4289.77 462
(d) Results for Lemmasafety 2

Figure 6: Performance Results for Model Checking the Lemmas

use continuous time [6], while still allowing rich fault models. We are also using
the PVS theorem prover to formally verify the algorithm and its fault hypothesis in
their most general forms.

References

[1] A. Ademaj, G. Bauer, H. Sivencrona, and J. Torin. Evaluation of fault han-
dling of the Time-Triggered Architecture with bus and star topology. InProc.
of International Conference on Dependable Systems and Networks (DSN
2003), San Francisco, Jun. 2003.

19

[2] G. Bauer, H. Kopetz, and P. Puschner. Assumption Coverage under Different
Failure Modes in the Time-Triggered Architecture. InProc. of International
Conference on Emerging Technologies and Factory Automation, pages 333–
341, Oct. 2001.

[3] G. Bauer, H. Kopetz, and W. Steiner. The central guardianapproach to en-
force fault isolation in a time-triggered system. InProc. of 6th International
Symposium on Autonomous Decentralized Systems (ISADS 2003), pages 37
–44, Pisa, Italy, Apr. 2003.

[4] C. Bernardeschi, A. Fantechi, and S. Gnesi. Model checking fault tolerant
systems. Software Testing, Verification and Reliability, 12:251–275, Dec.
2002.

[5] L. de Moura, S. Owre, H. Ruess, J. Rushby, N. Shankar, M. Sorea, and
A. Tiwari. SAL 2. To be presented at CAV 2004, July 2004. Available
athttp://www.csl.sri.com/˜rushby/abstracts/sal-tool .

[6] B. Dutertre and M. Sorea. Timed systems in SAL. Technicalreport, Com-
puter Science Laboratory, SRI International, Menlo Park, CA, 2004. In prepa-
ration.

[7] J.C.Laprie. Dependability: Basic Concepts and Terminology. Springer-
Verlag, 1992.

[8] H. Kopetz. Fault containment and error detection in the Time-Triggered Ar-
chitecture. InProc. of The 6th International Symposium on Autonomous De-
centralized Systems (ISADS 2003), pages 139–146, Pisa, Italy, Apr. 2003.

[9] H. Lönn and P. Pettersson. Formal verification of a TDMA protocol start-
up mechanism. InPacific Rim International Symposium on Fault-Tolerant
Systems, pages 235–242, Taipei, Taiwan, Dec. 1997. IEEE Computer Society.

[10] H. Pfeifer, D. Schwier, and F. W. von Henke. Formal verification for time-
triggered clock synchronization. In C. B. Weinstock and J. Rushby, editors,
Dependable Computing for Critical Applications—7, volume 12 ofDepend-
able Computing and Fault Tolerant Systems, pages 207–226, San Jose, CA,
Jan. 1999. IEEE Computer Society.

[11] W. Steiner and M. Paulitsch. The transition from asynchronous to syn-
chronous system operation: An approach for distributed fault-tolerant sys-
tems. InThe 22nd International Conference on Distributed Computing Sys-
tems, pages 329–336, Vienna, Austria, July 2002. IEEE Computer Society.

[12] W. Steiner, M. Paulitsch, and H. Kopetz. Multiple failure correction in the
Time-Triggered Architecture. Proc. of 9th Workshop on Object-oriented
Real-time Dependable Systems (WORDS 2003f), Oct. 2003.

20

[13] W. Steiner, J. Rushby, M. Sorea, and H. Pfeifer. SAL model of a TTA startup
algorithm. Research Report 52/2003, Technische Universität Wien, Institut
für Technische Informatik, Treitlstr. 1-3/182-1, 1040 Vienna, Austria, 2003.

[14] T. Yokogawa, T. Tsuchiya, and T. Kikuno. Automatic verification of fault
tolerance using model checking. InProc. of 2001 Pacific Rim International
Symposium on Dependable Computing, page 95, Seoul, Korea, Dec. 2001.

21

