
Semantic Web Technology as a Basis for Planning and Scheduling Systems

Bernd Schattenberg and Steffen Balzer and Susanne Biundo
Dept. of Artificial Intelligence

University of Ulm, D-89069 Ulm, Germany
{firstname }. {lastname }@uni-ulm.de

Abstract

This paper presents an architecture for planning and schedul-
ing systems that addresses key requirements of real-world ap-
plications in a unique manner. The system provides a robust,
scalable and flexible framework for planning and schedul-
ing software through the use of industrial-strength middle-
ware and multi-agent technology. The architectural concepts
extend knowledge-based components that dynamically per-
form and verify the system’s configuration. The use of stand-
ardized components and communication protocols allows a
seamless integration with third-party libraries and existing
application environments.
The system is based on a proper formal account of hy-
brid planning, the integration of HTN and POCL planning.
The theoretical framework allows to decouple flaw detection,
modification computation, and search control. In adopting
this methodology, planning and scheduling capabilities can
be easily combined by orchestrating respective elementary
modules and strategies. The conceptual platform can be used
to implement and evaluate various configurations of planning
methods and strategies, without jeopardizing system consist-
ency through interfering module activity.

Introduction
Hybrid planning – the combination of hierarchical task net-
work (HTN) planning with partial order causal link (POCL)
techniques – turned out to be most appropriate for complex
real-world planning applications (Estlin, Chien, & Wang
1997), like crisis management support (Biundo & Schat-
tenberg 2001; Castillo, Fdez-Olivares, & González 2001).
Here, the solution of planning problems often requires the
integration of planning from first principles with the utiliza-
tion of predefined plans to perform certain complex tasks.

Previous work (Schattenberg, Weigl, & Biundo 2005) in-
troduced a formal framework for hybrid planning, in which
the plan generation process is functionally decomposed into
well-defined flaw detecting and plan modification generat-
ing functions. As an important feature of this approach, an
explicit triggering function defines, which modifications are
suitable candidates for solving which flaws. This allows
to completely separate the computation of flaws from the
computation of possible plan modifications, and in turn both
computations can be separated from search related issues.
The system architecture relies on this separation and exploits
it in two ways: module invocation and interplay are specified

through the triggering function while the explicit reasoning
about search can be performed on the basis of flaws and
modifications without taking their actual computation into
account. This explicit representation of the planning strategy
allows for the formal definition of a variety of strategies,
and even led to the development of novel so-calledflexible
strategies.

The functional decomposition induces a modular and flex-
ible system design, in which arbitrary system configurations
–viz. planning and scheduling functionalities– can be integ-
rated seamlessly. A prototype of this architecture served as
an experimental environment for the evaluation of flexible
strategies as well as a conceptual proof for the expandabil-
ity of the system with respect to new techniques: namely,
the integration of scheduling (Schattenberg & Biundo 2002;
2006) and probabilistic reasoning (Biundo, Holzer, & Schat-
tenberg 2004; 2005).

While (Schattenberg, Weigl, & Biundo 2005) presen-
ted the theoretical framework for a straight-forward system
design for hybrid plan generation, a number of functional
and non-functional requirements are obviously not met by
such an architectural nucleus when it comes closer to real-
world application scenarios like crisis management support,
assistance in telemedicine, personal assistance in ubiquit-
ous computing environments, etc. Like any other mission
critical software in these contexts, planning and scheduling
systems should feature characteristics which call for highly
sophisticated software support:

1. declarative, automated system configuration and verifica-
tion – for fast, flexible, and safe system deployment and
maintenance, and for an easy application-specific config-
uration tailoring

2. scalability, including transparency with respect to system
distribution, access mechanisms, concurrency, etc. – for
providing computational power on demand without addi-
tionally burdening system developers

3. standards compliance – for integrating third-party sys-
tems and libraries, and for interfacing with other services
and software environments

Each of these characteristics represents a challenge in its
own for any software environment, and this is in particu-
lar the case for planning and scheduling applications. This
paper describes a novel planning and scheduling system ar-

chitecture which essentially addresses all of the above chal-
lenges, and shows how the formal framework of (Schat-
tenberg, Weigl, & Biundo 2005) has been incorporated. It
shows not only how modern software technology –in partic-
ular middleware and knowledge-based systems– can be suc-
cessfully applied to a prototypical academic planning soft-
ware, but also illustrates how (in principle) any planning and
scheduling system can benefit from it. The resulting sys-
tem performs a dynamical configuration of its components
and even reasoning about the consistency of that configura-
tion is possible. The planning components are transparently
deployed, distributed (including an optimized concurrency),
and load-balanced while retaining a relatively simple pro-
gramming model for the component developer. Standard-
ized protocols and components finally provide easy access
to other software products and services.

The rest of this document is organized as follows: The
next section presents the formal framework of hybrid plan-
ning on which our approach is based. Then a reference plan-
ning process model is defined, as an overview for the archi-
tecture. This is followed by a description of the architecture
components, how the middleware is used and how a refined
planning process model is realized. After that, there is a sec-
tion devoted to the use of knowledge representation mech-
anisms in the system. The paper concludes with an overview
over related work and some final remarks.

Formal Framework
Our planning system relies on a formal specification of hy-
brid planning (Schattenberg, Weigl, & Biundo 2005): The
approach features a STRIPS-like representation of action
schemata with PL1 literal lists for preconditions and effects
and state transformation semantics based on respective atom
sets. It discriminates primitive operators and abstract ac-
tions (also called complex tasks), the latter representing ab-
stractions of partial plans. The plan data structure, in HTN
planning referred to astask network, consists of complex
or primitive task schema instances, ordering constraints and
variable (in-)equations, and causal links for representing the
causal structure of the plan. For each complex task schema,
at least onemethodprovides a task network for implement-
ing the abstract action.

Planning problems are given by an initial task network,
i.e. an abstract plan, a set of primitive and complex task
schemata, and a set of methods specifying possible imple-
mentations of the complex tasks. A partial plan is a solution
to a given problem, if it contains primitive operators only,
the ordering and variable constraints are consistent, and the
causal links support all operator preconditions without being
threatened.

Flaws
The violation of solution criteria is made explicit by so-
calledflaws– data structures which literally “point” to de-
ficiencies in the plan and allow for the problems’ classifica-
tion: A flaw f is a pair(flaw,E) with flaw indicating the
flaw class andE being a set of plan components the flaw
refers to. The set of flaws is denoted byF with subsets
Fflaw for given labelsflaw.

E.g., the flaw representing a threat between a plan
step tek and a causal link〈tei, φ, tej〉, is defined as:
(Threat, {〈tei, φ, tej〉, tek}). In the context of hybrid plan-
ning, flaw classes also cover the presence of abstract actions
in the plan, ordering and variable constraint inconsistencies,
unsupported preconditions of actions, etc.

The generation of flaws is encapsulated by detection mod-
ules, i.e. functions that take as an argument a plan and re-
turn a set of flaws. Without loss of generality we may as-
sume, that there is exactly one such function for each flaw
class. The function for the detection of causal threats, e.g.,
is defined as follows:
fdet

CausalThreat(P) 3 (Threat, {〈tei, φ, tej〉, tek}) iff:
tek 6≺∗ tei or tej 6≺∗ tek in the transitive closure≺∗ of
P ’s ordering relation and the variable (in-) equations of
P allow for a substitutionσ such thatσ(φ) ∈ σ(del(tek))
for positive literalsφ andσ(|φ|) ∈ σ(add(tek)) for neg-
ative literalsφ.

Modifications
The refinement steps for obtaining a solution out of a prob-
lem specification (which means to get rid of any flaws) are
explicit representations of changes to the plan structure. A
plan modificationm is a pair(mod, E⊕ ∪ E) with mod
denoting the modification class.E⊕ andE	 are element-
ary additions and deletions of plan components, respect-
ively. The set of all plan modifications is denoted byM
and grouped into subsetsMmod for given classesmod.

The following structure represents adding an order-
ing constraint between to plan stepstei and tej :
(AddOrdConstr, {⊕(tei ≺ tej)}). Further examples of hy-
brid planning modifications are the insertion of new action
schema instances, variable (in-) equations, and causal links,
and of course the expansion of complex tasks according to
appropriate methods.

As with the flaws, the generation of plan modifications
is encapsulated by modification modules. These functions
take a plan and a set of flaws as arguments and compute all
possible plan refinements that solve flaws. E.g., promotion
and demotion as an answer to a causal threat is defined as:

fmod
AddOrdConstr(P, {f, . . .}) ⊇ { (AddOrdConstr, {⊕(tek ≺ tei)}),

(AddOrdConstr, {⊕(tej ≺ tek)})}
for f = (Threat, {〈tei, φ, tej〉, tek}).

Refinement-based Planning
It is obvious that some classes of modifications address par-
ticular classes of flaws while others do not. This relation-
ship is explicitly represented by the so-calledmodification
triggering functionα which relates flaw classes with suit-
able modification classes (cf. (Schattenberg, Weigl, & Bi-
undo 2005)). As an example, causal threat flaws can in prin-
ciple be solved by expanding abstract actions which are in-
volved in the threat, by promotion or demotion, or by separ-
ating variables through in-equality constraints (cf. (Biundo
& Schattenberg 2001)):

α(FThreat) = MExpandTask ∪MAddOrdConstr∪
MAddVarConstr

Please note, that the triggering function states nothing about
the relationship of the actual flaw and modification in-
stances.

Apart from serving as an instruction, which modifica-
tion generators to consign with which flaw, the definition
of the triggering function gives us a general criterion for dis-
carding un-refineable plans: For any detection and modi-
fication modules associated by a trigger functionα, fdet

x
andfmod

y1
, . . . , fmod

yn
with My1 ∪ . . . ∪Myn

= α(Fx): if⋃
1≤i≤n fmod

yi
(P, fdet

x (P)) = ∅ then P cannot be refined
into a solution.

A generic algorithm can then be defined which uses these
modules (see Alg. 1): In a first phase, the results of all de-
tection module implementations are collected. In a second
phase, the resulting flaws are propagated according to the
triggering function1 α to the respective modification module
implementations. If any flaw remains un-answered, a fail-
ure is indicated. A strategy module selects in a third phase
the most promising modification, which is then applied to
the plan. The algorithm is then called recursively with that
modified plan. The strategy also serves as a backtracking
point of the procedure.

Algorithm 1 A generic planning algorithm, based on expli-
cit flaw and modification computation

plan(P, T, M):
F ← ∅
for all fdet

x do
F ← F ∪ fdet

x (P)
if F = ∅ then

return P
M ← ∅
for all Fx = F ∩ Fx with Fx 6= ∅ do

answered← false
for all fmod

y withMy ⊆ α(Fx) do
M ′ ← fmod

y (P, Fx)
if M ′ 6= ∅ then

M ←M ∪M ′

answered← true
if answered= false then

return fail
return plan(apply(P, fstrat

z (P, F, M)), T, M)

(Schattenberg, Weigl, & Biundo 2005) demonstrated how
planning strategies are formally defined in that framework
and illustrated its potential. Several adaptations of strategies
taken from the literature were presented, as well as a set
of novel flexibleplanning strategies. The latter exploit the
explicit flaw and modification information, which allows
for selection schemata that are not defined along flaw or
modification type preferences, but perform an opportunistic
way of plan generation. In a first series of experiments, a
set of flexible and fixed, classical strategies competed on a
former planning competition benchmark for HTN systems,
the UMTranslog domain as it has been shipped with the
UMCP system. It turned out, that flexible strategies are not
only competitive to their fixed ancestors, but also showed

1This makes the algorithm completely independent from the ac-
tually deployed module implementations.

Strategy

Inspector

Constructor

Assistant

Phase 1: make expertises

Modification cycle

Assistant cycle

Phase 2: detect flaws

Phase 3: compute modifications

Phase 4:
modify

blackboard

Figure 1: The reference planning process model for PANDA

high optimization potential and –due to their opportunistic
modus operandi– can easily be combined.

Architecture Overview
In following the proposed design of the last sections, the
basic architecture of PANDA (Planning and Acting in a Net-
work Decomposition Architecture) is that of a multiagent-
based blackboard system. The agent societies map directly
on the presented module structure, with the agent metaphor
providing maximal flexibility for the implementation.

Inspectorsare implementations of flaw detection mod-
ules. There is one such agent per flaw class.

Constructorsare agent incarnations of the plan modifica-
tion generating modules. We may assume, that each modi-
fication class is represented by one such agent.

Assistantsprovide shared inference and services which
are required by other agents. Assistant agents propagate im-
plications of temporal action information transparently into
the ordering constraints, simplify variable constraints, etc.

Coordinatorsimplement the planning strategy module by
synchronizing the execution of the other agents and perform-
ing the modification selection. Currently only one coordin-
ator is allowed in the system – the so calledstrategy.

Figure 1 shows the reference planning model for PANDA ,
which defines the agent interaction. A planningcyclecorres-
ponds to an iteration of a monolithic algorithm (cf. Alg. 1).
It consists of two sub-cycles that are divided into 4 phases
(see Fig. 1), in which the agents execute concurrently.

Phase 1: Assistants repeatedly derive additional informa-
tion and post it on the blackboard. This phase ends when
no member of the assistant community added information
anymore.

Phase 2: Inspectors analyze the current plan residing on the
blackboard and post the results, i.e. the detected and pri-
oritized flaws, to the strategy and to the constructors as-
signed to them.

Phase 3: Constructors compute all possible modifications
for the received flaws and send them along with a prioriz-
ation to the strategy.

Phase 4: The strategy compares all results received from
the inspectors and constructors and selects one of the
modifications to be executed on the current plan. A plan-
ning cycle is hereby completed and the system continues
with phase 1 to execute the next planning cycle.

Phase transitions are performed only by the strategy when
all participating agents have finished execution. Thus, the
phase transitions can be viewed as synchronization points
within the planning process. The strategy modifies the plan
until no more flaws are detected or an inspector published
a flaw for which no resolving modification is issued. In the
first case, the current plan constitutes a solution to the given
planning problem, in the latter case the planning process has
reached a dead end and the system has to backtrack in order
to execute a different modification on the strategy’s stack.
The blackboard is implemented as a stack that stores the
current plan, all derived information, and performed modi-
fications. This structure enables the strategy to backtrack the
system to a certain point.

The following sections will show, how the reference
planning process model has been implemented, using mid-
dleware and knowledge-based technology. The chosen
multiagent-system is based on on an industrial-strength mid-
dleware and uses an explicit knowledge representation in
the implementation of the necessary protocols. A refined
version of the reference model will then allow us to exploit
agent concurrency more efficiently.

A Knowledge-based Middleware
Core Components
An obvious implementation for a planning system following
the reference process model would still run in a sole Java vir-
tual machine, viz. on a single computational resource. This
stands in contrast to the requirements that complex and dy-
namic application domains demand. For crisis management
support, e.g., information must be gathered from distributed
and even mobile sources, the planning process requires a lot
of computational power, etc. So scalability and distribution
play key roles in the proposed system architecture, while
maintaining the (simple but effective) reference process.

The main aspect in middleware systems like application
servers is to hide the mechanisms that enable the distrib-
uted handling of objects from the programmer. Thus, it is
possible to develop distributed applications much more effi-
ciently. In other words, such middleware systems make dis-
tribution issuestransparentto the programmer. Examples
for transparency in middleware systems are location trans-
parency, scalability transparency, access transparency, con-
currency transparency etc. (Emmerich 2000). Scalability
transparency for example means that it is completely trans-
parent to the programmer how a middleware system scales
in response to a growing load. In summary, middleware sys-
tems take care of the complexity of handling distributed ob-
jects and provide an abstract and easy to use API to the pro-
grammer.

In order to benefit from application server technology, the
PANDA system builds upon the open-source implementation
JBoss (Stark 2003). The most important components that a
Java 2 Enterprise Edition – J2EE(Sun 1999) based applic-
ation server delivers w.r.t. this work are the following:

• Enterprise Java Beans – EJBsare the objects that are
managed by an application server. All transparency as-
pects apply to them. They are the building blocks of a

distributed J2EE application (Sun 2003).

• The Java Naming and Directory Interface – JNDIis the
directory service that enables location and access trans-
parency. It provides a mapping between Java names and
remote interfaces of Java objects. The access to all EJBs
and other services of the application server is provided
through this interface.

• The Java Messaging Service – JMSenables asynchron-
ous and location transparent communication between Java
components (especially EJBs) beyond virtual machine
boundaries. So this service will be of interest when it
comes to communication between the different compon-
ents of PANDA .

In addition to the features described above, application
server implementations also cover aspects like security,
database access, transaction management etc. They all be-
long to the J2EE specification. However, a full discussion of
their benefits for the PANDA system is beyond the scope of
this paper.

Although the application server technology provides
powerful mechanisms, we still need more support for real-
izing the multiagent system functionalities of the reference
model. Instead of investigating proprietary agent life-cycle
management and communication mechanisms, we decided
to take advantage of the work of the Foundation for Intel-
ligent Physical Agents (FIPA), which has been developing
standards for that area since 1996. The second core com-
ponent which is chosen to implement all agent specific fea-
tures, i.e. to take care of the agent computing capabilities of
the system, is therefore BlueJADE (Cowan & Griss 2002).
BlueJADE integrates the well-known multiagent framework
JADE (Bellifemineet al. 2005) with JBoss. This integra-
tion puts the agent system life cycle under full control of the
application server, that means all distribution capabilities of
the application server apply to the agent societies. Access to
the JADE agent API is provided by BlueJADE’s ServiceM-
Bean interface. It has been selected as the agent computing
platform for PANDA because of the following key features:

It is a FIPA-compliant agent platform and provides a lib-
rary of ready-to-use agent interaction protocols. This en-
ables the PANDA system to interact with other multi-agent-
systems and their services.

It is a distributed system, i.e. its agents can be spread
transparently over several agent containers running on dif-
ferent nodes in a network, including the migration of run-
ning agents between containers. These features can be
exploited for distributed information gathering and (auto-
mated) load balancing. It has to be noted, that this kind
of distribution management is “on top” of the middleware
facilities: agent migration typically anticipates pro-actively
the computation or communication load in a relative abstract
manner, while middleware migration reacts on such load
changes based on very low-level operating system specific
sensors. It makes sense to provide both mechanisms in par-
allel, e.g. to migrate scheduling inspector agents, which are
known to require much computational resources onto dedic-
ated compute servers.

The LEAP extension (Caire 2005) adds support for ubi-

quitous computing. Agents are able to run even on mobile
devices such as Java capable cellular phones, PDAs, etc.,
which are all coveted user-interfaces in many application do-
mains.

BlueJADE supports application defined content lan-
guages and ontologies. So a DAML-based content language
can be easily integrated (this will be discussed later).

The system comes with a set of sophisticated graphical
debugging tools. This speeds up the development process
significantly.

The knowledge representation and reasoning facilities
which are used throughout the system constitute the third
core component. During its development, the PANDA frame-
work required an increasing amount of knowledge that rep-
resents planning related concepts (flaw and modification
classes, etc.), the system configuration (which inspectors,
constructors, and strategies to deploy), and the plan gen-
eration process itself (the reference process, including the
backtracking procedure, etc.). Most of this knowledge is
typically represented implicitly through algorithms and data
structures. To make it explicit and modifiable without touch-
ing the system’s implementation, it must be extracted and
represented in a common knowledge base which uses a rep-
resentation formalism that is expressive enough to capture
all modeling aspects on one side and that allows efficient
reasoning on the other side. As a result of this, the system
can be configured generically and that configuration can be
verified on a higher semantic level.

There is a large number of knowledge representation sys-
tems available on the market which promise to meet the
requirements. But since special regard is spent on stand-
ards compliance, theDARPA Agent Markup Language –
DAML (Horrocks, Harmelen, & Patel-Schneider 2001) has
been chosen as the grounding representation formalism for
this task. It combines the key features of description logics
(Baaderet al. 2003) with Internet standards such as XML
or RDF (Manola & Miller 2003) and – even more import-
ant – powerful reasoners and other freely available tools ex-
ist to integrate the language into applications. In our case,
the knowledge encoded in DAML must be made available
to the Java programming language. Therefore, a Java ob-
ject model is necessary that provides mappings in both dir-
ections – from Java to DAML and vice versa. The JENA
API (McBride 2000) from Hewlett Packard delivers an in-
memory object model of a DAML document along with a
rich API to query and manipulate it. By using DAML as the
content language for the BlueJADE agent communication
and also as the language for describing system configura-
tions and communication means, we achieve a homogeneous
representation in the system.

Last, but not least, it is of course necessary to integrate
a suitable description logic system to store the knowledge
and to reason about it. The RACER system (Haarslev &
Möller 2001) has the essential capabilities that are required:
a DAML codec, an efficient reasoning component, and a
knowledge store based on a client-server architecture.

Figure 2: Static system structure of PANDA

The System Structure
Figure 2 shows PANDA ’s static system structure as a UML
deployment diagram. The association arrows indicate which
components communicate with each other. Their labels de-
note the transport protocols being used. BlueJADE is ag-
gregated by JBoss as a (Service-) MBean. It’s functionality
is exposed via theJadeServiceInterface.

The PANDA Client component represents the client ap-
plication that controls the PANDA system. Currently, an
RMI-based communication is used. The PANDA client ob-
tains an interface to the PANDA system by querying JBoss’s
directory service JNDI. But also web-based approaches us-
ing SOAP or HTTP are supported. In this way, JBoss
provides technologies like Web Services and Java Servlets.

Regarding the integration with the JBoss infrastructure,
the PANDA prototype defines three specializations of EJBs
for non-agent system components: the interface to the
RACER system, to the blackboard, and to the agent society
(from outside the system).

Access to the Racer server is provided by theRacerSes-
sionBean. The main reason for integrating the Racer system
via an EJB proxy is that all components that depend on the
Racer system – i.e. EJBs and Agents – are able to access
it transparently. They do not need to know its IP address
or socket number. Furthermore, the RacerSessionBean can
be viewed as generic integration approach for all kinds of
reasoner architectures. The communication between Racer
and the RacerSessionBean is realized with theJRacerclient
API which translates Java method calls into Lisp function
calls. It should be emphasized that each component that ob-
tains a reference to the RacerSessionBean gets its own in-
stance – as usual for SessionBeans. Therefore, queuing of
requests is delegated to the Racer server. In a similar fash-
ion, theBlackboardSessionBeanrepresents a proxy to the
blackboard component.

The PandaSessionBeanrepresents the facade by which
the PANDA client configures and controls the planning pro-
cess. It uses the RacerSessionBean to derive the agents and

Inspector1Inspector1

JADE Services

Agent

PandaAgent

Strategy
WorkerAgent

Inspector Constructor Assistant
Strategy

JA
D
E

P
an
d
a

Interaction Protocols
Communication Mgmt.
Life-Cycle Mgmt.

TheStrategy Inspector1 Constructor1 Inspector1Assistant1

Bean Connections
ABox Handling

Sub Cycle Mgmt.
Backtracking

Cycle Control
Worker Implementation

Figure 3: The logical layer structure of the agent framework

their implementations that must be instantiated and creates
them using theJadeServiceInterface. Communication with
the agent framework is done via theJadeBridgeclass of the
BlueJADE package, which creates and accesses agent mes-
sages (see below) in an object-oriented manner.

Basically, two mainclasses of agentsexist in the Blue-
JADE agent container. The first is the class of stand-
ard agents that come with the JADE and BlueJADE soft-
ware packages. They provide the FIPA infrastructure, sev-
eral debugging tools and JADE specific communication ser-
vices. TheGatewayagent’s role is to mediate messages
between JADE agents and components outside the JADE
agent container. It’s counterpart in the EJB container is
the JadeBridge. The Gateway sends and receives stringified
messages in theAgent Communication Language(ACL) via
a TCP/IP socket connection.

Custom agents in the PANDA system, i.e. all agent
types from the reference model, are all derived from the
PandaAgent class which encapsulates low level data
conversion and communication mechanisms. The PANDA
agents form the second class in the JADE agent container.
The PandaAgent class on its part is derived transitively
from the JADE agent base classAgent which provides the
integration into the JADE agent container (cf. Figure 3).

The reference model (Fig. 1) omits the actual means for
calling agents, in a distributed implementation, these re-
mote calls are typically message based. From the agent con-
tainer’s point of view, agents in the JADE agent container
and thePandaSessionBeancommunicate by using messages
encoded in the agent communication languageFIPA-ACL
(FIP 2002b) (in short ACL). ACL is a language based on
speech-act theory, i.e. every message describes an action
that is intended to be carried out with that message sim-
ultaneously (e.g. the request “compute detections”). Such
intentions are calledperformatives. ACL defines formal se-
mantics for performatives (FIP 2002a) that induce basic in-
teraction protocols upon which more complex protocols like
contract nets and auctions are built.

Besides parameters that are necessary for communica-
tion like performative name, participant information, etc., an
ACL message includes parameters that describe the content
that is intended for the receiving participant like thecontent
languagethe content is encoded in, the domain the content
refers to, etc. In order to be qualified for the use as a content

language in an ACL message, a language must meet certain
requirements that are induced by the semantics of the per-
formatives. For example arequestrequires always at least
an action to be delivered with the content. Otherwise the
agent that receives the request does not know what it is re-
quested to do. Furthermore, when an agentinformsanother
agent about the result of an action, the content must contain
the propositions that represent the result. Thus, a content
language must at least provide representations of actions and
propositions, so the agents are able to interact in a meaning-
ful way. The content language that is used by the PANDA
agents is described below.

The Planning Process
Figure 4 gives an overview of the refined model of the plan-
ning process that was taken as the basis for implementa-
tion. The white colored states specify the life-cycle man-
agement of a planning session (initializing the process, start-
ing planning, suspending it, etc.). Each state transition is
labeled with the triggering ACL message and its origin-
ator: sender:performative followed by action or
proposition . Senders can also be described by their
class, e.g.Worker denotes all worker agents. The same
applies to propositions and actions, e.g.Compute denotes
the actionCompute and all sub-actions likeInspect ,
Construct , etc.

The planning process starts in an artificialundefined
state in which all agents are deployed and send agreements
for their initialization process. After that, the strategy in-
forms all agents, that the system is initialized, and this is
where the reference model started with phase 1: The as-
sistants are requested to perform their inference on which
they have to agree. After their processing (leaving the
assisting state), the inspectors are requested to search
for flaws (phase 2), and so on.

Please note, that not all states have been modeled in the
state machine. Most states are abstract in order to reduce
complexity of the state automaton while maintaining a de-
gree of granularity that allows the user to monitor the plan-
ning process. E.g., the statebacktracking summarizes
all possible sub-states that describe the interaction between
each particular worker agent and the strategy.

The refined planning process model has two major im-
provements over the reference model: First, it extends agent
concurrency. The reference planning process model in
Fig. 1, defines the agent classes to execute one after another,
synchronized by phase transitions. In that model, concur-
rency is only allowed within a particular phase. But espe-
cially between phase 2 and 3 such a synchronization is too
strict, because a constructor must wait until the last inspector
has finished, even if a constructor has already received all
flaws it requires for computation. Constructors should there-
fore be able to decide on their own when to start execu-
tion. The refined process model reflects this by a combined
inspecting&constructing state. The constructors’
behavior has therefore been changed from reactive to pro-
active – resulting in a stronger notion of agency.

Second, an enhanced backtracking procedure allows for
the implementation of optimized and more sophisticated

Figure 4: The refined PANDA planning process model

reasoning techniques, including worker agents, i.e. assist-
ants, inspectors, and constructors, to be equipped with a state
history or caches, etc. To keep backtracking consistent, the
worker agents now participate in the backtracking process:
they have to synchronize via agreement statements and then
notify the strategy when they are finished (cf. state trans-
itions frombacktracking).

Thus, the agent behavior is extended by a backtracking
mechanism with three core capabilities: First, a synchron-
ized restart of the system must be guaranteed, i.e. a re-
start can only take place, if all worker agents have finished
backtracking. Second, the different granularity of the state
histories of agents working in different sub-cycles is con-
sidered. Assistants can be executed multiple times in a plan-
ning cycle, whereas inspectors and constructors will be ex-
ecuted only once. Therefore, assistants must be backtracked

independently from Inspectors and Constructors. Third, in
order to backtrack the system immediately, the strategy must
be able to interrupt the worker agents’ execution, the agents
therefore perform their computations in a non-blocking way.

In summary, the enhanced mechanisms for concurrency
and backtracking allow the system to benefit from early
fail decisions in terms of an increased performance: Non-
repairable inconsistencies are typically very quickly detec-
ted and processed by constructors.

Ontology-based Components
Like it has been mentioned before, DAML is used as repres-
entation formalism to describe and share knowledge in the
PANDA system, ranging from flaw communication to system
state transitioning. It is one of the emerging standards in the
Semantic Web community for representing and communic-

ContentLanguageElement

Action

Proposition

Argument

Compute

Backtrack

Construct

Inspect

Assist

CycleNumber
hasArgumenthasArgument

Backtracked

Failed

Computed

Assisted

Inspected

Constructed

PlanGenerationElement

hasResult

Modification

Expertise

Flaw

xsd:Decimal

hasCycleNumber

hasResult

hasResult

hasResult

xsd:String

hasMessage

Figure 5: The content language ontology

ating knowledge (Horrocks, Harmelen, & Patel-Schneider
2001). It ensures interoperability with third-party systems
like RACER and forms the basis for communicating know-
ledge among agents. Most important, it enables knowledge
to be represented in a uniform, explicit, and declarative man-
ner, so the system becomes more robust, flexible, and main-
tainable.

To be able to use DAML as a content language in ACL
messages (recall the speech act structure), at least actions
and propositions must be able to be represented within
DAML (Schalk et al. 2002). This is sufficient for the needs
of PANDA . Figure 5 shows the ontology that provides the
concepts to enable DAML-based communication. Property
cardinalities have been omitted for clarity.

Actions can have arguments, e.g., the action sub-concept
Backtrack must come with aCycleNumber whose
value is represented as the XML-schema typedecimal .
So an action could be compared with a method signature
without argument order. In PANDA , every argument of
an action is modeled in the ontology in order to give it
a formal semantics. Therefore, in contrast to (Schalket
al. 2002), the argument order does not have to be con-
sidered. Propositions are currently only used to represent
ActionResults . The sub-conceptComputed carries
the PlanGenerationElements that are the results of
the worker agents’ computations, e.g. aConstructed
proposition has anModification element as a result.
The content of an ACL message is represented by instances
of the PANDA system ontology embedded in a DAML-
document. JENA takes care of encoding and decoding the
DAML content of ACL messages. For any content that has
to be sent, its JENA object model is constructed using the
described ontology. After that, the model is serialized and
inserted into the appropriate ACL message. The decoding
of DAML content works exactly the opposite way. The ob-
ject model of the DAML content is constructed by parsing
its serialized representation and can then be queried with the

JENA API.
DAML plays its second key role in the automated con-

figuration of the agent container (Figure 6 shows the un-
derlying ontology). The configuration process is com-
posed of two sub-processes. First, the agents that are part
of the planning process must be instantiated. The Pan-
daSessionBean uses RACER to derive the leaf concepts
of PandaAgent and to determine the implementation as-
signmentsImplementationElements of the Worker-
Agents. In the example of Figure 6, the assigned implement-
ation for theInspector1 agent is an instance of Java class
panda.jade.agent.Inspector1Impl . After being
created, the PANDA agents insert their descriptions into the
ABox of RACER, so RACER keeps track of the deployed
agent instances.

Second, the communication links, viz. the implement-
ation of the triggering functionα, must be established
between the instantiated agents. RACER is used by each
PANDA agent on startup to derive its communication links
to other agents, i.e. from which agents it will receive and to
which agents it has to send messages. This is done by us-
ing the ontology to derive the dependencies between agents
from defined dependencies between the flaws and modifica-
tions: The system ontology specifies which agent instance
implements which type ofInspector , and it does the
same for the constructor agents. RACER derives from that,
which flaw and modification types will be generated by the
agent instances, and if the model includes anα-relationship
between them (solved-by), the agent instances’ commu-
nication channels are linked. Based upon the subsump-
tion capabilities that come with DAML and description lo-
gics, it is even possible to exploit sub-class relationships
betweenPlanGenerationElements (illustrated by the
bold printed concept connections in Fig. 6). An example for
a modification class hierarchy are ordering relation manipu-
lations with sub-classespromotionanddemotion. Regarding
flaws, the system ontology distinguishesprimitiveopen pre-
conditions and those involvingdecomposition axioms(Bi-
undo & Schattenberg 2001).

A knowledge based configuration offers even more bene-
fits: Imagine a less informed configuration mechanism, say,
reading a respective file in XML format, that holds the de-
scriptions on the agents to be loaded and the message links
to be established between them as a representation of the
triggering functionα. Semantic verification can then only
be based on type checking by, e.g., Java class loaders. In the
presented architecture, the system model can be checked on
startup for possible inconsistencies in a verification step of
the planning process in stateinitializing before plan
generation starts (cf. Fig. 4). An example for such an in-
consistency is a constructor that is missing a link to a flaw,
warnings can be issued for flaws and modifications without
implementations of their generating agents, etc.

Related Work
There are two major agent-based planning architectures on
the market. In the O-Plan system (Tate, Drabble, & Kirby
1994), a blackboard is examined by (in our terminology
combined inspector and constructor) modules that write

PlanGenerationElement
Modification

Expertise

Flaw

SystemConfigElement

PandaAgent

PandaBean

Controller

Worker

Service

Flaw1

Flaw2

Flaw11

Flaw12

Mod1

Mod2

Inspector

Constructor

Assistant

Exp1

Inspector1

Inspector2

Constructor1

Constructor2

Assistant1

PandaSessionBean

Strategy

ImplementationElement WorkerThread

panda.jade.agent.Inspector1Impl

panda.jade.agent.Inspector2Impl

panda.jade.agent.Constructor1Impl

panda.jade.agent.Constructor2Impl

panda.jade.agent.Assistant1Impl

generates

generates

generates

generates

generatedBy

generatedBy

generatedBy

generates

solvedBy

hasImpl

hasImpl

hasImpl

hasImpl

hasImpl

hasImpl

solvedBy solvedBy

Concept

subClassOf
Property

Figure 6: The system configuration ontology

their individually highest ranked flaw on the agenda of a
search controller. This controller selects one agenda entry
and triggers the respective module to perform its highest
prioritized modification. O-Plan has been extended by a
workflow-oriented infrastructure, called the I-X system in-
tegration architecture (Tate 2000). A plug-in mechanism
serves as an interface to various (application tailored) tools.
The planner itself is a monolithic system structure.

The Multi-agent Planning Architecture MPA (Wilkins
& Myers 1998) relies upon a very generic agent-based
approach. It executes an agent society in which desig-
nated coordinators decompose the planning problem into
sub-problems, which are solved by subordinated groups of
agents that may again decompose the problem again. Single
agents return their solutions to their associated managers,
which synthesizes the overall solution of its sub-agents.
Communication of queries and results is based on the highly
abstract KQML formalism. To our knowledge, no (stand-
ardized) middleware functionality has been incorporated.

The SIADEX architecture (de la Asunción et al. 2005)
uses XML-RPCs for building a distributed planning environ-
ment, that is accessible via standardized HTTP and Java pro-
tocols. The architecture decouples a (monolithic) planning
server, knowledge base management, and execution monit-
oring.

In order to address connectivity issues, some planning
systems offer their functionality as web service. Examples
are the CGI-based O-Plan interface (Tate & Dalton 2003)
and the approach in (Tsoumakaset al. 2005), where a plan-

ner uses SOAP for communication and WDSL for present-
ation of the service. Although this view helps in enhancing
the accessibility of planning software, the system (develop-
ment) itself is not directly supported.

A representative for an application framework for build-
ing planning applications is Aspen (Fukunagaet al. 1997).
It provides planning-specific data infrastructure, supportive
inference mechanisms, and algorithmic templates, in order
to facilitate rapid planning application development “out-of-
the-box”. It does not support the development of (standard-
ized) concurrent planning functionality.

None of the above systems or architectures features a flex-
ible, knowledge-based configuration of the plan generation
process.

Conclusions and Future Work
We have presented a novel architecture for planning sys-
tems. It relies on a formal account of hybrid planning,
which allows to decouple flaw detection, modification com-
putation, and search control (Schattenberg, Weigl, & Bi-
undo 2005). Planning capabilities, like HTN and POCL,
can easily be combined by orchestrating respective element-
ary modules via an appropriate strategy module. The imple-
mented system can be employed as a platform to implement
and evaluate various planning methods and strategies. It can
be easily extended to additional functionality, like integrated
scheduling (Schattenberg & Biundo 2002; 2006) and prob-
abilistic reasoning (Biundo, Holzer, & Schattenberg 2004;
2005), without implying changes to the deployed modules

– in particular flexible strategy modules – and without jeop-
ardizing system consistency through interfering activity.

This work has investigated three main areas of interest of
the PANDA planning system. The incorporation of higher
semantics by making use of knowledge representation and
inference techniques extends the capabilities of the system
significantly in both functional and non-functional manner.
Verification can be performed on a much higher level, and
the system becomes more flexible and configurable the more
hard-coded knowledge is extracted and described declarat-
ively. With the use of application server technology and
standardized communication protocols, PANDA has laid the
foundation for a distributed system that is able to handle
real-world application scenarios in an adequate manner. Still
much work has to be done to evolve PANDA to a full-
fledged planning web service, but application server tech-
nology seems to provide the appropriate architectural basis.

We plan to deploy this system as a central component in
projects for assistance in telemedicine applications as well
as for personal assistance in ubiquitous computing environ-
ments.

Future versions will not only keep the agents but also the
planning state and agent messages in the system ontology
and ABox in order to extend the verification capabilities
of the system, including multiple ABoxes to enable multi-
session planning. This will make the PANDA system even
more robust w.r.t. corrupted agent behavior by reasoning in
real-time over the dependencies between system states, pos-
sible actions and sent messages that trigger state transitions.
To achieve this, knowledge about communication (i.e. mes-
sage performatives, sender, receivers etc.) and interaction
(i.e. FIPA-protocols and the planning process model) will
be incorporated into the description logics representation of
the system.

By extracting the hard-coded planning process model, de-
scribing it in a declarative manner, and executing it on a gen-
eric engine that uses this description as process template,
changes to the planning process would not involve a change
of code anymore. The process model itself an then be veri-
fied by transforming it into a petri net representation (Naray-
anan & McIlraith 2002).

References
Baader, F.; Calvanese, D.; McGuinness, D.; and Nardi, D.
2003.The Description Logic Handbook. Cambridge.

Bellifemine, F.; Caire, G.; Trucco, T.; and Rimassa, G.
2005. JADE programmer’s guide.http://jade.tilab.
com/doc/programmersguide.pdf .

Biundo, S., and Schattenberg, B. 2001. From abstract crisis
to concrete relief – A preliminary report on combining state
abstraction and HTN planning. In Cesta, A., and Borrajo,
D., eds.,Proceedings of the 6th European Conference on
Planning (ECP-01).

Biundo, S.; Holzer, R.; and Schattenberg, B. 2004. Deal-
ing with continuous resources in AI planning. InProceed-
ings of the 4th International Workshop on Planning and
Scheduling for Space (IWPSS’04), number 228 in WPP,

213–218. ESA-ESOC, Darmstadt, Germany: European
Space Agency Publications Division.

Biundo, S.; Holzer, R.; and Schattenberg, B. 2005. Pro-
ject planning under temporal uncertainty. In Castillo, L.;
Borrajo, D.; Salido, M. A.; and Oddi, A., eds.,Planning,
Scheduling, and Constraint Satisfaction: From Theory to
Practice, volume 117 ofFrontiers in Artificial Intelligence
and Applications. IOS Press. 189–198.

Caire, G. 2005. LEAP users guide.http://jade.
tilab.com/doc/LEAPUserGuide.pdf .

Castillo, L.; Fdez-Olivares, J.; and González, A. 2001.
On the adequacy of hierarchical planning characteristics
for real-world problem solving. In Cesta, A., and Borrajo,
D., eds.,Proceedings of the 6th European Conference on
Planning (ECP-01).

Cowan, D., and Griss, M. 2002. Making software agent
technology available to enterprise applications. Technical
Report HPL-2002-211, Software Technology Laboratory,
HP Laboratories, Palo Alto.http://www.hpl.hp.com/
techreports/2002/HPL-2002-211.pdf .

de la Asuncíon, M.; Castillo, L.; Fdez.-Olivares, J.; Garcı́a-
Pérez, O.; Gonźalez, A.; and Palao, F. 2005. Knowledge
and plan execution management in planning fire fighting
operations. In Castillo, L.; Borrajo, D.; Salido, M. A.; and
Oddi, A., eds.,Planning, Scheduling, and Constraint Satis-
faction: From Theory to Practice, volume 117 ofFrontiers
in Artificial Intelligence and Applications. IOS Press. 159–
168.

Emmerich, W. 2000. Engineering Distributed Objects.
Wiley. ISBN: 0-471-98657-7.

Estlin, T. A.; Chien, S. A.; and Wang, X. 1997. An argu-
ment for a hybrid HTN/operator-based approach to plan-
ning. In Steel, S., and Alami, R., eds.,Proceedings of the
4th European Conference on Planning (ECP-97), volume
1348 ofLNAI, 182–194. Springer.

FIPA - Foundation for Intelligent Physical Agents.
2002a. FIPA-ACL Communicative Act Library Specific-
ation. http://www.fipa.org/specs/fipa00037/
SC00037J.pdf .

FIPA - Foundation for Intelligent Physical Agents. 2002b.
FIPA-ACL Message Structure Specification. http://
www.fipa.org/specs/fipa00061/SC00061G.pdf .

Fukunaga, A.; Rabideau, G.; Chien, S.; and Yan, D. 1997.
Towards an application framework for automated planning
and scheduling. InProceedings of the 1997 International
Symp. on AI, Robotics & Automation for Space.

Haarslev, V., and M̈oller, R. 2001. Description of the racer
system and its applications. In Goble, C.; McGuinness,
D. L.; Möller, R.; and Patel-Schneider, P. F., eds.,Working
Notes of the 2001 International Description Logics Work-
shop (DL-2001), volume 49 ofCEUR Workshop Proceed-
ings. ISSN 1613-0073.

Horrocks, I.; Harmelen, F.; and Patel-Schneider, P. 2001.
DAML+OIL Specification (March 2001).http://www.
daml.org/2001/03/daml+oil-index.html .

Manola, F., and Miller, E. 2003. RDF primer.http:
//www.daml.org/2001/03/daml+oil-index.html .
McBride, B. 2000. Making software agent
technology available to enterprise applications.
http://www-uk.hpl.hp.com/people/bwm/papers/
20001221-paper/ .
Narayanan, S., and McIlraith, S. A. 2002. Simulation,
verification and automated composition of web services.
In WWW ’02: Proceedings of the 11th International Con-
ference on World Wide Web, 77–88. ACM Press. ISBN
1-58113-449-5.
Schalk, M.; Liebig, T.; Illmann, T.; and Kargl, F. 2002.
Combining FIPA ACL with DAML+OIL - a case study. In
Cranefield, S.; Finin, T.; and Willmott, S., eds.,Proceed-
ings of the Second International Workshop on Ontologies
in Agent Systems.
Schattenberg, B., and Biundo, S. 2002. On the identi-
fication and use of hierarchical resources in planning and
scheduling. In Ghallab, M.; Hertzberg, J.; and Traverso, P.,
eds.,Proceedings of the 6th International Conference on
Artificial Intelligence Planning Systems (AIPS-02), 263–
272. AAAI.
Schattenberg, B., and Biundo, S. 2006. A unifying frame-
work for hybrid planning and scheduling. In Freksa, C.,
and Kohlhase, M., eds.,KI 2006: Advances in Artificial In-
telligence, Proceedings of the 29th German Conference on
Artificial Intelligence, LNAI. Springer. to appear.
Schattenberg, B.; Weigl, A.; and Biundo, S. 2005. Hy-
brid planning using flexible strategies. In Furbach, U., ed.,
KI 2005: Advances in Artificial Intelligence, Proceedings
of the 28th German Conference on Artificial Intelligence,
volume 3698 ofLNAI, 258–272. Springer.
Stark, S. 2003.JBoss Administration and Development.
JBoss Group, LLC, second edition. JBoss Version 3.0.5.
Sun Microsystems. 1999.Simplified Guide to the Java 2
Platform, Enterprise Edition. http://java.sun.com/
j2ee/white/j2ee guide.pdf .
Sun Microsystems. 2003.Enterprise JavaBeans 2.1 Doc-
umentation. http://java.sun.com/products/ejb/
docs.html .
Tate, A., and Dalton, J. 2003. O-plan: a common lisp
planning web servide. InProceedings of the International
Lisp Conference, 12–25.
Tate, A.; Drabble, B.; and Kirby, R. 1994. O-Plan2:
An architecture for command, planning and control. In
Zweben, M., and Fox, M., eds.,Intelligent Scheduling.
Morgan Kaufmann. 213–240.
Tate, A. 2000. Intelligible ai planning. InResearch and De-
velopment in Intelligent Systems XVII, Proceedings of the
ES2000, The 20th British Computer Society Special Group
on Expert Systems International Conference on Knowledge
Based Systems and Applied Artificial Intelligence, 3–16.
Springer.
Tsoumakas, G.; Meditskos, G.; Vrakas, D.; Bassiliades,
N.; and Vlahavas, I. 2005. Web services for adaptive plan-
ning. In Castillo, L.; Borrajo, D.; Salido, M. A.; and Oddi,

A., eds.,Planning, Scheduling, and Constraint Satisfac-
tion: From Theory to Practice, volume 117 ofFrontiers in
Artificial Intelligence and Applications. IOS Press. 159–
168.
Wilkins, D., and Myers, K. 1998. A multiagent planning
architecture. In Simmons, R.; Veloso, M.; and Smith, S.,
eds.,Proceedings of the 4th International Conference on
Artificial Intelligence Planning Systems (AIPS-98), 154–
163. AAAI.

