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Abstract. The adaption of Semantic Web techniques in real-world applications
showed that it becomes a more and more demanding issue to understand not only
the conceptual knowledge of an ontology but also the highly dynamic knowl-
edge consisting of individuals and relationships between them. In this paper, we
present an visualization paradigm and a prototypical implementation which al-
lows to interactively browse large sets of individuals and to discover relation-
ships between them in an easy and animated manner. The approach is optimized
for efficient navigation as well as manipulation of ontologies containing a large
number of individuals.

1 Motivation

An OWL ontology typically consists of two parts [3]. The terminological part intro-
duces concepts and properties and gives structure to them in terms of axioms using the
available language constructs (also called TBox in Description Logics). The assertional
part contains individuals and relationships between individuals (also called ABox).!

As an example, consider a social-network ontology whose TBox defines terms
like Person and Company as well as properties like has—-friend, supervisorOf,
has-child, and worksWith. The corresponding ABox covers all individuals of the
domain such as Peter, Mary, Sue and property instantiations, e.g. Peter has-
friend Sue. A large social-network obviously is characterized by a large number of
individuals and property instantiations rather than by many terms within the termino-
logical schema. In fact, within a typical real-world application, the TBox is assumed
to be much smaller in comparison to the amount of assertions in the ABox. Therefore,
scalability with respect to queries dealing with very large volumes of instance data are
one of the actual research challenges [10] in order to meet real-world requirements.

Actually, recent system optimizations have shown significant increases in speed in
answering conjunctive queries with respect to ABoxes containing several hundred thou-
sands of individuals [16,17]. Even if these test results rely on synthetically generated
data by a relatively simple benchmark generator such as the Lehigh University Bench-
mark (LUBM) [8], they clearly demonstrate promising progress in the development of
scalable reasoning systems.

! Note that there is no clear distinction between both parts, e.g. due to the presence of nominals
in case of OWL DL.



On the other hand, little has yet been done to support ontology users or developers to
visually edit or explore large volumes of interrelated individuals. There is currently no
representation approach or even a tool to gradually inspect an individual with respect
to its direct and indirect fillers regarding a transitive property. For instance, within a
company social-network one could be interested in stepping through the supervisorOf
relationship until a point where he wants to investigating all the co-workers of a specific
person. Or within the Gene Ontology (GO) [5], which contains millions of individuals,
users are presumably interested in investigating which specific DNA binding product
interacts with which kind of receptors for example.

We argue that an interactive graphical visualization of individuals and relationships
would help users to depict and analyze the larger structure of the ABox. In our opin-
ion, such an approach has to be able to visualize huge sets of data by making use of
elaborated abstraction and rendering techniques.

Note that our main aim is not to develop a graphical query language for retrieving
data, which could also be addressed by using a language such as SPARQL [20]. Our aim
is rather to provide a tool which allows to easily browse through large data repositories
in order to be able to capture interesting details as well as to understand how the data is
organized in general.

Our approach utilizes a user-driven visualization strategy, making use of animated
expansion steps, clustering techniques, and different levels of detail views. It allows for
operations on a single individual or on sets of individuals and takes property features
such as transitivity, symmetry, etc. into account. Our prototypical system implementa-
tion also allows for basic editing and is connected with an OWL reasoning system.

1.1 Visualizing Entailed Assertions

Note that virtually all of the above requires reasoning. Since OWL allows for property
hierarchies as well as symmetrical, transitive, or functional properties, a reliable reason-
ing system such as RacerPro [9], Pellet [22], or FaCT++ [23] is needed to make implicit
property instantiations explicity available for visualization. Without reasoning feedback
an ABox visualizer would degrade to a syntax imaging tool, probably hiding the most
important assertions. For instance, in case of has—child being a sub-property of a
transitive property has—-descendant, there implicitly exists a has-descendant
link between an individual and all its children. Another example deals with the fact
that in OWL individuals are not disjoint by default. As a consequence two fillers of a
functional property (a property with at most one filler per source) will be merged to
one individual by the inference engine. Thus, an ABox visualization should also render
them as one object bearing two identifiers.

Therefore, the underlying presentation principle of our ABox visualizer is to always
render the semantically implied relationships between individuals in order to make ef-
fectively visible what is entailed in the ontology. We argue that any serious ontology
authoring or browsing tool should allow users to explore implicitly modeled as well as
explicity given information, while being able to distinguish between both. In this sense
this component is a direct extension of our OWL TBox authoring tool ONTOTRACK
[15].



1.2 Related Work

As mentioned before, there is poor tool support in browsing and editing ABox data.
There are some OWL editors which allow for inspection of single individuals with help
of selection lists and standard form elements such as Protégé [13] or SWOOP [11].
However, they only provide one level of detail and have no interface for exploring
the fillers of more than one property in parallel. Moreover, list-style and table-based
approaches are not adequate techniques to analyze large amounts of data and are less
practical in showing a chain of property fillers in a clear and concise manner (e. g. to
follow the transitivity of properties). In addition, an OWL ABox inherently builds a
graph structure (which has nothing to do with the underlying RDF data model).

Tools such as GrOWL [14] try to offer such a graph based interface which uses
graphical icons to depict different types of nodes (class, property, or individual) as well
as language constructs (negation, union, etc.). GrOWL provides a spring layout which
dynamically adds nodes to the graph on user demand. However, this functionality is not
sufficiently fine-graded enough for the task of gradually inspecting property fillers. In
addition, the resulting graph is somewhat verbose and may distract the user due to fre-
quent layout changes or node agglutination. Figure 1 shows a fraction of an ABox part
of a social-network ontology rendered with GrOWL. The graph shows 26 individuals
which are interrelated via two different properties.
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Fig. 1. GrOWL showing a fraction of a sample social-network ontology.



On the triple-based representation level of RDF, individuals are just as any other
resources. Furthermore, since OWL is layered on top of RDF Schema, there is a lack of
expressivity in RDF needed to capture the semantics of an OWL ABox appropriately.
As said before, the graph representation of the RDF data model is conceptually different
from the graph structure of an ABox even without considering entailed statements.
There even is a one to many mapping from OWL into the RDF data model. Therefore,
none of the RDF visualizing tools are suitable to render sets of OWL individuals just
due to the missing conceptual framework. Nevertheless, RDF Gravity [7] effectively
supports a user in filtering a RDF graph by means of selecting resources or specifying
RDQL queries but is not ideal with respect to layouting. Figure 2 again depicts our
social-network ontology as rendered with RDF Gravity. Recall that any RDF renderer
is not able to provide information about semantically entailed knowledge according to
the OWL semantics.
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Fig. 2. RDF Gravity showing the same fraction as in Figure 1.

Other approaches like the self organized map (SOM) based view of [24] are able to
visualize the quantitative differences with respect to classification of individuals with
the downside of loosing access to specific individuals.

In the following we will present our new approach which allows one to interactively
visualize and browse even large volumes of individuals.

2 Interactive Visualization of Individuals

2.1 Exploring Features

In contrast to other instance visualization techniques our approach does not aim at pro-
viding a diagrammatic understanding of class membership (instance classification) but
of the relationships between individuals, i. e. of how individuals are related. It should be
noticed that for visualizing class membership there already are adequate visualization



approaches (e. g. [6]) and our approach is complementary to these approaches, instead
of replacing them.?

One lesson learnt from the visual analysis of large data sets in general, is that it
is not advisable to visualize all dependencies, details etc. at any time [12]. Hence, our
approach tries to provide detail information on user demand while offering an overview
at the same time. Here we follow the single-view visualization paradigm offering se-
lective detailed views which has turned out to be adequate for concept hierarchies as
demonstrated by our ontology authoring framework ONTOTRACK.

The basic idea behind our visualization is a user-directed exploration of relation-
ships between individuals. Starting with a user selected root instance, one can interac-
tively exploit the property fillers (resp. datatype values in the case of datatype prop-
erties) of each property in a step-wise fashion. For instance, the tool offers a mouse
over preview, showing the number of fillers within miniaturized extensions for each of
the properties (which actually have fillers) on middle mouse click. For instance, Fig-
ure 3 shows that the actual root is related via three properties to 2, 3, resp. 53 other
individuals. The user can choose one of the properties for further expansion.
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Fig. 3. Preview context menu for expanding property fillers.

After expansion all fillers with respect to the selected property are grouped in a so-
called property filler cluster which will be drawn as a club originating from the root
individual. By default, the individuals within this club are rendered as circles whose
labels are accessible via mouse over tooltips. At any time the user can guide his explo-
ration by choosing a follow up root for further expansion or may branch by selecting
other properties. Different colors are used to distinguish different properties as well as
different types of fillers (individuals vs. data values).

An example snapshot can be seen in the screen capture of our sample social-network
ontology in Figure 4. It is easy to perceive that the root individual Harald is related via
the property has—friend to three different individuals, via the property has—child
to two individuals and via the transitive property has-descendants to many other
individuals. Any changes in the layout such as (de-)expanding clusters are animated
to easily grasp the differences between two exploration states. Beyond that the whole
layout can continuously be zoomed or paned simply by mouse-down movements.

2 We use the term “individual” to denote a concrete ABox object and “instance of”” to express a
membership of a specific class extension.
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Fig. 4. Partial expanded property fillers.

Compare this graphical representation with those given by GrOWL and RDF Grav-
ity in Figure 1 and 2. The lower two expansion trails for has-friend and has-
child (green and purple colored) show the same 26 individuals which can be reached
via these two properties from the individual Harald. In comparison to the former our
approach is less verbose, because it clusters the fillers of each property, and allows
selective detail information.

In addition to expanding a single individual it is also possible to expand the fillers
of a whole cluster with respect to a property. This can be done by choosing the club
itself (border or background) rather than a specific individual as expansion source. The
emerging filler cluster then contains the union of all fillers of the predecessor cluster.
In case of already expanded clubs (with respect to that specific property), all their indi-
viduals move into the new cluster in an animated manner which may server as a simple
visual explanation of the underlying action semantics.

One and the same individual can be related to another individual via different prop-
erties or may appear multiple times within the expansion path of a specific property
(i. e. due to cycles). As a consequence, an individual can appear in multiple clusters and
at different expansion levels. We decided to allow for a cloned graphical representation
in each expanded cluster for one and the same individual. Otherwise a path-directed
expansion would no longer be possible due to the occurrence of an individual in distant
clusters. However, if a user hovers with the mouse pointer over a cloned individual, all
its visible representations are highlighted simultaneously.

According to the semantics of a transitive property an individual is related to all
directly or indirectly related fillers reachable via this property. Therefore, when ex-
panding the fillers of a transitive property with respect to an individual (or cluster of
individuals) the transitive closure of related fillers are shown. One can, however, dis-
tinguish between directly and indirectly related fillers by expanding the next level. The



first expansion will then only contains the direct property fillers whereas all other fillers
are transferred into the subsequent property cluster. As with all other graphical changes
this is done in an animated fashion in order to allow users to easily grasp the ratio of
direct/indirect fillers. For instance, the upper part of Figure 5 shows the first expansion
level of the transitive property has—descendants, which contains all individuals
reachable from the root individual. After expanding the next level (lower part of Figure
5) it becomes apparent that the individuals Hans, Birgit, and Jenny are the only
directly related fillers. Note that in case of a transitive property we currently only allow
to either expand fillers which are direct property fillers or whole clusters. Otherwise one
could expand an individual which may actually be part of a distant cluster.?
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Fig. 5. Follow up expansion of a transitive property.

As mentioned before, the visualization utilizes the navigation and visualization prin-
ciples of ONTOTRACK and therefore provides further information in its detail view
mode. This mode is activated or de-activated for each instance separately using the
mouse-wheel up- respectively downwards while hovering over the individual with the
mouse pointer. As an example, in Figure 4 the individuals Mary and Sue show their
full names as a result of being in the detail view mode. As mentioned before, a user
can quickly access the name of an individual via the so-called tooltip pop-ups which
automatically appear on mouse over action (see for example Mo11y in Figure 4). Fu-

3 One could think of some feasible strategy which may provide a sensible result for such an
action, too.



ture work will investigate the possibility to allow for more in-depth information within
different levels of detail views (e. g. told information, class membership, etc.).

It is known that distortion techniques can support the visual data exploration process
by preserving an overview of the data during exploration operations [12]. In this sense,
whenever a cluster would occupy to much screen space, i. e. when the size will exceed
a certain value, it will automatically switch to a more compact visualization using a
thumbnail representation.

2.2 Searching and Editing Features

Our ABox visualizer also supports ONTOTRACK’s search features which are based on
dynamic queries [21] which also can be found in tools like SpaceTree [19]. Currently
only a string-based search is implemented. When one starts typing an individual or
property name all matching entities are highlighted. Each additional character or dele-
tion in the search string directly results in an updated highlighting of the matching
individuals. In a future version we will extend the search facility with an option to ex-
pand all matching elements in a way which allows to grasp their relationships to the
actual root.

In addition to browsing, the ABox visualizer also supports rudimentary editing fea-
tures such as the removal and addition of property fillers. One can add an individual to a
filler set by using the drag’n drop paradigm. For instance, a user can drag an individual
out of a cluster into another one or onto the work space. The result of the former is a
changed filler set membership, the latter will remove the instance from the original filler
set. However, removing an individual from all filler sets does not remove the individual
from the underlying ontology. For those kind of editing actions additional authoring
features still have to be developed.

3 Implementation Status and Current Work

The implementation of our ABox visualizer is still under development and the previ-
ously described features are the ones we have already implemented. A recent analysis
of available ontologies has shown that they typically consist of several hundred of in-
dividuals [25]. Obviously, scalability and performance are very important issues for
user-friendly tools. Due to our experience with large numbers of graphical objects in
our ontology authoring framework ONTOTRACK we have chosen Piccolo [4] as our
graphical framework. All these components as well as our ABox visualizer are imple-
mented in Java. Even if our current implementation is a stand-alone system the internal
ontology model as well as the graphical representation are based on core libraries and
functionality of ONTOTRACK, as illustrated in the system architecture of Figure 6.
Following from our description above, our ABox tool is linked with an OWL in-
ference engine in order to be able to visualize entailed knowledge. Querying for all
entailed knowledge at start up obviously is not a feasible solution when dealing with
large volumes of data. However, in order to avoid delays due to awaiting reasoning re-
sults our tool employs a look ahead approach. It turned out to be a practical strategy to
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query for those property fillers in advance, which are successors of the current visible
clusters.

Unfortunately, we were not able to use the standard DIG 1.1 interface [1] for rea-
soner communication because it only supports very basic ABox queries. It also does not
distinguish between direct and indirect property fillers which is needed for our visual-
ization of transitive properties. However, the upcoming new version of DIG, namely
DIG 2.0, will support more fine-graded and more expressive queries [2] suitable for our
purpose. In the meantime, our system uses the RacerPro reasoner via its native syntax
and query interface over TCP [9].

Current work deals with extending the browsing and visualization principle in a
way that allows to explore property instantiation backwards (i. e. from filler to origin)
for a bidirectional exploration. As an optional feature we plan to automatically collapse
clusters if the distance from the actual focus and the focus’ width falls below a user
definable threshold. Such an approach could rely on user behavior and time as proposed
in the context of UML [18] for example. We also plan to optimize the layout algorithm
with respect to individual or club placing and better visualization of the starting points
of property filler clusters. Furthermore we want to integrate our ABox visualizer into
our ontology authoring tool ONTOTRACK more tightly to allow a seamless navigation
and manipulation of concepts and individuals within one environment.

4 Summary and Outlook

This paper presents a novel approach for exploring large sets of individuals within ontol-
ogy languages such as OWL. The prototypical implementation allows for incremental
inspection of filler sets, selective browsing and applies several abstractive visualization
techniques not found in current tools. First experiences with instance sets containing



hundreds of individuals are encouraging. We plan to test the implementation with syn-
thetically generated data as well as available large volume ABoxes in order to make
quantitative statements about scalability in comparison with reasoning benchmarks in
the near future. Concerning the visualization and editing interface we also plan to con-
duct a user study and to add additional functionality as soon as the implementation has
reached a sufficient degree of reliability.
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