
U2R2 – The Ulm University Relational Reasoner:
System Description

Timo Weithöner

Inst. of AI, Ulm University, 89069 Ulm, Germany
timo.weithoener@uni-ulm.de

Abstract. This is a system description of the Ulm University Rela-
tional Reasoner (U2R2). The system merges rule based DL reasoning with
technologies from relational database management systems. U2R2 imple-
ments a total forward chaining and materialization approach, which cal-
culates and persistently stores all possible inferences whenever a knowl-
edge base is loaded or altered. As a result U2R2 offers excellent query
response times for TBox as well as ABox queries. The system is not
limited by main memory restrictions as it leverages secondary storage,
which allows to process huge knowledge bases even on standard desk-
top computers. Additional features include incremental reasoning, re-
traction, and availability of savepoints, which allow to restore previous
system states.

1 Motivation

Today a growing number of applications such as reasoning over social networks
or GUI-based ABox exploration [1] require excellent query response times even
when faced with huge ontologies. This is especially true for the latter example
where multiple ontology queries might be triggered by a single mouse click during
browsing. Here the query response times often need to be below 10ms to enable
users to work fluently. Also main memory restrictions are likely to interfere with
the reasoning process when dealing with huge ontologies. Such a setting requires
a reasoner which leverages secondary storage and which is optimized for fast
query answering.

In addition interactive ontology applications will be characterized by small
but frequent ontology changes. Incremental reasoning and delete operations (re-
traction) should thus be supported.

This paper describes U2R2 an ontology reasoner which uses database tech-
nologies to address the above challenges. Section 2 provides an insight into
U2R2’s architecture while Section 3 offers initial evaluation results. Section 4
highlights some related work and Section 5 concludes this paper.

2 The U2R2 System

The development of U2R2 was motivated by the application requirements de-
scribed above. The system merges DL reasoning techniques with technologies

known from the field of deductive and relational database management systems
(DedDBMS and RDBMS). U2R2 is implemented in Java and uses the Web On-
tology Language (OWL)for ontology uploads.

Reasoning Strategy. U2R2 implements a rule based reasoning approach with
total forward chaining and materialization. This means that whenever axioms
are added to the ontology each axiom is translated into a set of base facts (i.e.
tuples in specific relations). Then the integrated rule engine applies rules on these
facts until a fix point is reached and no more new facts can be inferred. During
this process all generated facts are persistently stored for future reasoning and
query answering.

The rule set used by U2R2 is based on the “meta mapping” described in [2].
Meta mapping rules are a slight improvement of the standard rule set suggested
for DLP [3]. Within the standard approach every ontology axiom becomes a
rule while class or property assertions result in base facts. This means that the
rule set is different for every ontology. Also there is no straightforward way of
answering class subsumption queries [2]. In contrast the rule set used in U2R2
(meta mapping) is identical for all ontologies. All ontology axioms and assertions
are translated into base facts of the respective predicates (see Table 1 for an
example). U2R2 currently support the SHIF language fragment.

Table 1. Conversion of a Range Restriction into DLP and Meta Mapping

Abstr. DL DLP Meta Mapping

> v ∀P.C C(F) :- R(I, F). range("R", "C").

type(F, C) :-

propInst(P, I, F), range(P, C).

To evaluate the rules they are converted into a relational algebra program,
where each predicate symbol (e.g. type) is represented by a relation. Each fact
can be understood as an entry in such a base relation. Rules correspond to
insertions into the head relation. The set of tuples to be inserted is computed
from the rule body. Here joins are created from conjunctions over predicates
with equal variable names and instantiated terms are converted into selections.
Recursion is evaluated using delta iteration. Finally, the transition from rule
body to head becomes a projection.

U2R2’s rule set is fully customizable. It can be tailored to the needs of specific
applications. This means that predefined rules may be deleted or additional rules
and relations can be added to the system.

U2R2’s DBMS Heritage. All ontology data, namely axioms and assertions,
loaded into U2R2 are stored in relations. Unlike a relational database all rela-
tions share the same fixed schema. U2R2 relations accommodates tuples with

up to three attributes. A number of relational algebra operations have been im-
plemented on these relations. These operations are: Selection, projection, union,
join and set difference. In contrast to RDBMS U2R2 silently enforces uniqueness
of tuples in relations. The system ignores duplicates without aborting transac-
tions in case a unique constraint would be violated.

OWL identify concepts, properties and individuals using URIs. Consequently
all attributes of all relations represent URIs. To speed up operations on relations
and to keep relations compact, numeric identifiers for URIs are kept in the
relations. A separate map which links these ids to the real URI (and vice versa)
is maintained by the system.

All data contained in relations and the aforementioned map is stored in pages.
Pages are equally sized chunks of memory which usually reside in secondary
storage. Only if the data contained in a certain page is required for processing
the page is loaded into main memory. Thereby U2R2 only keeps a limited number
of pages in main memory. In case this limit is exceeded other pages are swapped
to disk. As a result no matter how many tuples are stored in the system the
total main memory consumption is limited.

As in commercial RDBMS the system allows to define and restore savepoints.
This offers a very efficient way to roll back to a consistent ontology in case
changes led to inconsistencies. Management of pages, logging, index structures
and join optimization are also using techniques comparably found in RDBMS.

Query Processing. U2R2’s reasoning strategy of total forward chaining and
materialization means that all reasoning is done immediately after loading or
altering an ontology. Thereby all inferred knowledge is stored persistently. As a
consequence basic queries like class hierarchy queries or class instance retrieval
can be mapped to simple selections. Since selects are supported by indexes these
queries are processed extremely fast. A comprehensive set of such queries is
offered via a Java API.

Conjunctive queries are also supported by U2R2. The availability of joins,
selections and projections on relations containing the materialized reasoning re-
sults enables to code such queries using U2R2’s Java API. However as of to-
day U2R2 is not capable of interpreting a conjunctive query language such as
SPARQL1.

3 System Evaluation

The U2R2-System is fully implemented and was successfully connected to the
OntoTrack ABox explorer [1] and provides reasoning services in an application
which is exploring a movie ontology consisting of data about 20.204 movies and
149.397 related persons (actors, directors, ...).

Initital spot tests were conducted with the Lehigh University Benchmark
(LUBM) [4]. We compared U2R2 with OWLIM and KAON2 and also included

1 http://www.w3.org/TR/rdf-sparql-query/

two tableaux style systems namely RacerPro and Pellet. Tests were conducted
on a standard Desktop machine (3 GHz, 1 GB RAM, Windows XP, Java VM
limited to 750 MB of heap).

Unsurprisingly U2R2 is capable of loading 10 Universities with 15 Depart-
ments each (for comparison, Pellet only managed 7 universities). But U2R2 is
by far the slowest system when loading an ontology (about 20 times slower than
the fastest system, OWLIM). However U2R2 outperforms all other systems when
processing queries. This can be seen when looking at LUBM Query 9, which is
one of the most challenging queries in the benchmark (Pellet was unable to an-
swer the query for more than 3 and RacerPro for more than 5 universities). Here
U2R2 shows minimal query times and is even faster then OWLIM (see Figure 1).

 0

 250

 500

 750

 1000

 1250

 1500

 1750

 2000

 2250

 2500

 0 200 400 600 800 1000 1200

T
im

e
[m

s]

Ontology Size [k Triples]

KAON2
OWLIM

Pellet
Racer (nRQL 1)

U2R2

Fig. 1. Comparing query execution times for LUBM query 9

4 Related Work

Unlike Racer LAS [5] or the Instance Store [6] U2R2 is not a reasoner which
is accompanied by a relational database. Instead U2R2 is a reasoning engine
built inside a highly specialized relational database core. This also differentiates
U2R2 from KAON2 [7], a disjunctive Datalog engine, which claims to be a Ded-
DBMS but doesn’t leverage secondary storage in the reasoning process (which is
the same with “historic” deductive databases like LOLA [8] or CORAL [9]). The
HAWK system (formerly DLDB)2 implements an ontology repository which may
utilize a RDMBS for storage but has to connect to a remote reasoner for infer-
ence services. Another related system is QuOnto [10]. Here a relational database
is used for the processing of conjunctive queries. However QuOnto only supports
ABox queries and does not materialize reasoning or query results. The Ora-
cle Spatial Resource Descriptor Framework [11] is an RDF storage which also
features rule based RDFS inference. RDFS is significantly less expressive than
the language fragment supported by U2R2. The most similar system to U2R2 is
OWLIM [12], which follows a comparable reasoning strategy but is limited to
reasoning in main memory.
2 http://swat.cse.lehigh.edu/downloads/hawk.html

5 Conclusion and Outlook

This paper presented the U2R2 reasoner. To the best of our knowledge U2R2 is
the only available system which combines DL reasoning in the SHIF language
fragment, incremental reasoning and materialization of reasoning results with
database features such as persistence, leverage of secondary storage and the
availability of savepoints.

We plan to further improve reasoning performance by parallelization of rule
processing. Also additional interfaces (like support for SPARQL) are planned to
increase usability of the system.

References

1. Noppens, O., Liebig, T.: Understanding large volumes of interconnected individuals
by visual exploration. In Franconi, E., Kifer, M., May, W., eds.: ESWC. Volume
4519 of Lecture Notes in Computer Science., Springer (2007) 799–808

2. Weithöner, T., Liebig, T., Specht, G.: Storing and Querying Ontologies in Logic
Databases. In: Proceedings of the Workshop “Semantic Web and Databases” at
the VLDB 2003, Berlin, Germany (2003) Online Proceedings.

3. Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description Logic Programms:
Combining Logic Programms with Description Logic. In: Proceedings of the 12th

International World Wide Web Conference, Budapest, Hungary (2003)
4. Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL knowledge base

systems. Journal of Web Semantics 3 (2005) 158–182
5. Chen, C., Haarslev, V., Wang, J.: LAS: Extending Racer by a Large ABox Store.

In Horrocks, I., Sattler, U., Wolter, F., eds.: Description Logics. Volume 147 of
CEUR Workshop Proceedings., CEUR-WS.org (2005)

6. Bechhofer, S., Horrocks, I., Turi, D.: The OWL Instance Store: System Description.
In Nieuwenhuis, R., ed.: CADE. Volume 3632 of LNCS., Springer (2005) 177–181

7. Motik, B., Studer, R.: KAON2 – A Scalable Reasoning Tool for the Semantic
Web. In: Proceedings of the 2nd European Semantic Web Conference (ESWC’05),
Heraklion, Greece (2005)

8. Freitag, B., Schütz, H., Specht, G.: LOLA - A Logic Language for Deductive
Databases and its Implementation. In: Procc. 2nd International Symposium on
Database Systems for Advanced Applications (DASFAA ’91), Tokyo, Japan (1991)
216–225

9. Ramakrishnan, R., Srivastava, D., Sudarshan, S., Seshadri, P.: The CORAL De-
ductive System. VLDB Journal: Very Large Data Bases 3 (1994) 161–210

10. Acciarri, A., Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Palmieri,
M., Rosati, R.: QuOnto: Querying Ontologies. In Veloso, M.M., Kambhampati,
S., eds.: AAAI, AAAI Press / The MIT Press (2005) 1670–1671

11. Murray, C.: Oracle Spatial, Resource Description Framework (RDF), 10g Release
2 (10.2). Technical report, Oracle (2005)

12. Kiryakov, A., Ognyanov, D., Manov, D.: OWLIM — A Pragmatic Semantic Repos-
itory for OWL. In: Proc. of the Int. Workshop on Scalable Semantic Web Knowl-
edge Base Systems (SSWS’05). Volume 3807 of LNCS., New York City, USA,
Springer (2005) 182–192

