
A Planning Graph Heuristic for

Forward-Chaining Adversarial Planning

Pascal Bercher and Robert Mattmüller∗

Institut für Informatik,

Albert-Ludwigs-Universiät Freiburg

July 18, 2008

Technical Report 238

Abstract

In contrast to classical planning, in adversarial planning, the planning
agent has to face an adversary trying to prevent him from reaching his
goals. In this report, we investigate a forward-chaining approach to ad-
versarial planning based on the AO* algorithm. The exploration of the
underlying AND/OR graph is guided by a heuristic evaluation function,
inspired by the relaxed planning graph heuristic used in the FF planner.
Unlike FF, our heuristic uses an adversarial planning graph with distinct
proposition and action layers for the protagonist and antagonist. First re-
sults suggest that in certain planning domains, our approach yields results
competitive with the state of the art.

1 Introduction

In many planning problems, the environment in which the agent acts is not
static. The exogenous dynamics can be caused by “nature” or by one or more
other agents sharing the same environment. Other agents can behave neu-
trally (simply following their own independent agenda or otherwise acting un-
predictably), adversarially, or cooperatively with respect to the protagonist’s
goals. Here, we focus on adversarial problems. We assume complete observ-
ability, i.e., a plan will be a mapping from physical states to applicable actions.
A usual approach to conditional (adversarial) planning is planning as Model
Checking [CPRT03], whereas planning as heuristic search [BG01] tends to yield
best results for static, deterministic problems. Both approaches are also used in
General Game Playing [GLP05]. Related work includes the dynamic program-
ming approach by Hansen and Zilberstein [HZ98], multi-agent graphplan-based
planning [BJ03], and, for partially observable problems, heuristic search in the
belief space as implemented in the POND planner by Bryce et al. [BKS06].

This report is structured as follows. In the Section 2, we introduce the
basic definitions. Section 3 shows the variant of the AO* algorithm we used to

∗{bercherp,mattmuel}@informatik.uni-freiburg.de

1

solve adversarial planning problems. Section 4 introduces the adversarial FF
heuristic, and in Section 5, we provide some experimental results.

2 Definitions

In this section, we provide the basic definitions we need for the rest of this paper.

Definition 1 (Reachability Game). A game structure G = 〈S, O, Γ1, Γ2, δ, p〉
consists of the following components:

• Two players 1 and 2, also called protagonist and antagonist, respectively.

• A finite set S of states.

• A finite set O of operators.

• Two functions Γi : S → 2O, i ∈ {1, 2}, assigning to each state s ∈ S the
set of operators available to player i in s. We require that for all s ∈ S,
Γi(s) = ∅ for exactly one i ∈ {1, 2}. Γ(s) denotes the union Γ1(s)∪Γ2(s).

• A partial transition function δ : S × O → S which assigns to each state
s ∈ S and each operator γ ∈ Γ(s) the state s′ resulting from the application
of γ in s.

• A player function p : S → {1, 2} which assigns to each state s the player
who is to move, i.e., p(s) = i iff Γi(s) 6= ∅ for i ∈ {1, 2} and s ∈ S. We
require that both players move in turn, i.e., p(s) 6= p(s′) for all s, s′ ∈ S
with s′ = δ(s, γ) for some γ ∈ Γ(s).

A reachability game G is a triple 〈G, R, s0〉 consisting of a game structure G, an
initial state s0 ∈ S and a non-empty set of goal states R ⊆ S.

The protagonist tries to reach a goal state in a finite number of steps, whereas
the antagonist tries to prevent him from doing so. A winning strategy for the
protagonist is a function mapping states in which he is to move to applicable
operators, such that, against each possible strategy of the antagonist, a goal
state is reached in a finite number of steps.

A history σ is a sequence of states s0, . . . , sn where s0 is the initial state
of G and for all 0 ≤ j < n with n ∈ N ∪ {∞}, there is a γ ∈ Γ(sj) such that
sj+1 = δ(sj , γ). Let H+

i be the set of all finite histories in which player i has to
move, i.e., H+

i := { σ = (s0, . . . , sn) | σ is a finite history and p(sn) = i }. A
strategy πi for player i ∈ {1, 2} is a (partial) mapping H+

i → O which assigns
to history σ = (s0, . . . , sn) ∈ H+

i a possible move γ ∈ Γi(sn). A memoryless
strategy for player i ∈ {1, 2} is a strategy πi, such that for histories σs, τs ∈ H+

i ,
πi(σs) = πi(τs), i.e., the move prescribed by a memoryless strategy is only
dependent on the current state and not on the history leading there. Thus, we
will simply write πi(s) instead of πi(σs) for history σs ∈ H+

i .
Since in each state s ∈ S, the player i who is to move has a non-empty

set of moves Γi, it follows that each history that is induced by a pair of two
strategies of the protagonist and antagonist is infinite. We call the history
induced by two memoryless strategies π1 and π2 the outcome O(π1, π2) =
s0, s1, s2, . . . , defined as the unique history where s0 is the initial state and

2

sj+1 = δ(sj , πp(sj)(sj)) for all j ∈ N ∪ {0}. The set of states {s0, s1, s2, . . . }
in this history is denoted by states(O(π1, π2)). The strategy π1 wins against
strategy π2 iff states(O(π1, π2)) ∩R 6= ∅. The protagonist wins the reachability
game G if and only if he has a strategy π1, which wins against all strategies
π2 of the antagonist. To such a strategy we will refer as a winning strategy.
It is sufficient to restrict our attention to memoryless strategies, since in every
reachability game one of the players wins memorylessly [GTW02, follows from
Theorem 2.14].

In order to find such winning strategies, we will perform an AO* search
[Nil98] on the AND/OR graph induced by the reachability game.

Definition 2 (AND/OR Graph). An AND/OR graph is a triple 〈VAND, VOR, E〉,
consisting of:

• A finite set of AND vertices VAND.

• A finite set of OR vertices VOR.

• A set E ⊆ (VAND × VOR) ∪ (VOR × VAND) of edges.

VAND and VOR have to be disjoint, i.e., VAND ∩ VOR = ∅.

The AND/OR graph induced by the reachability game, called the game
graph, is defined as follows:

VOR = { s ∈ S | p(s) = 1 }

VAND = { s ∈ S | p(s) = 2 }

E = { (s, s′) | s ∈ VOR, s′ ∈ VAND and there is a γ ∈ Γ1(s) with δ(s, γ) = s′}

∪ { (s, s′) | s ∈ VAND, s′ ∈ VOR and there is a γ ∈ Γ2(s) with δ(s, γ) = s′}

Although the game graph is finite, it is in general too large to be represented ex-
plicitly, so we also consider partial game graphs, which are connected subgraphs
of a game graph containing the initial state, such that where all vertices are
either unexpanded, i.e., there are no outgoing edges to child vertices, or fully
expanded, i.e., all successor states are represented.

3 AO* Algorithm

The AO* algorithm [Nil98] is an informed search algorithm that searches for
solutions in AND/OR graphs. We first give an informal account of the algorithm
before presenting pseudocode describing it in more detail.

The AO* algorithm iteratively generates a game graph starting with the
partial game graph only consisting of the initial state. Then, the algorithm
alternates between expansion and update steps as follows. In an expansion
step, the algorithm first determines a most promising subgraph of the current
partial game graph by starting at the initial state s0 and tracing down all marked
edges going out of OR vertices and all edges going out of AND vertices. The
algorithm maintains the invariant that for all expanded OR vertices, always
exactly one outgoing edge is marked. Once the most promising subgraph has
been determined, one of its unexpanded leaf vertices is expanded, where the

3

choice of the vertex can be made dependent on an evaluation function applied
to the leaf vertices.

Expanding a vertex s means adding all its successors s′i and edges (s, s′i) to
the partial game graph unless already present. Newly added AND vertices are
expanded immediately, whereas for newly added OR vertices only an evaluation
function is computed and the algorithm enters the update phase.

During an update phase, the cost estimates of interior vertices are updated
given new cost estimates of their children. The cost estimate c(s) of a leaf vertex
is the result of the evaluation function applied to s, whereas the cost estimate
of an interior vertex is an aggregation of the cost estimates of its children:

c(s) = 1 + max
s′∈children(s)

c(s′) if s is an AND vertex, and

c(s) = 1 + min
s′∈children(s)

c(s′) if s is an OR vertex.

The constant 1 added at AND and OR vertices represents the unit cost of an
operator application. For all expanded OR vertices, during the update phase
an outgoing edge to a vertex minimizing the cost estimate is marked.

When the cost estimate of a vertex s is updated, this can recursively trigger
updates of the cost estimates of the parent vertices of s. Therefore, after each
expansion, the new cost estimates are propagated backwards until no more up-
dates are necessary or the update procedure would run into a cycle. Information
about whether one of the players possesses a winning strategy in the subgame
starting at a given vertex is propagated through the partial game graph along
with the cost estimates.

We call a vertex s proven if the protagonist has a winning strategy in the
subgame starting in s and the relevant part of the winning strategy is completely
represented by the current partial game graph. This is the case iff s ∈ R or if s
is an OR vertex (AND vertex) and at least one of its successors is proven (all
its successors are proven).

Once the initial state s0 is proven, the algorithm returns a solution graph,
i.e., a subgraph of the current partial game graph containing (a) the initial
state, (b) for each contained non-goal AND vertex all outgoing arcs and their
target vertices, (c) for each contained non-goal OR vertex exactly one outgoing
arc and its target vertex which has to represent the action prescribed by the
winning strategy, and no further vertices or arcs, such that all leaf vertices are
goal states. The solution graph has to be acyclic.

Our implementation of the AO* algorithm differs slightly from the version
described in the textbook by Nilsson [Nil98]. Standard AO* does not cope with
cycles. While there are no cycles in the solution graphs, there might be some
(depending on the problem domain) in the game graph. Those cycles could have
the effect that cost estimates are updated infinitely often. Therefore, we need
to keep track of which vertices have already been updated during an update run
(cf. line 5 of the pseudocode). The set U contains all vertices that still have to
be updated, and C ⊇ U contains all vertices that have already been scheduled
for updates before. Vertices are only scheduled for an update unless they are
contained in C.

In the description of the AO* algorithm, we did not address the issue of how
to initialize the cost estimates of leaf vertices. We will make up for this omission
in the following section.

4

Input : Reachability Game G = 〈〈S, O, Γ1, Γ2, δ, p〉, R, s0〉 with
game graph GA/O = 〈VAND, VOR, E〉 (given implicitly)

Output: partial game graph G′A/O
= 〈V ′

AND
, V ′

OR
, E′〉 and (if existent) a

solution graph G∗A/O := 〈V ∗

AND
, V ∗

OR
, E∗〉 ⊆ G′A/O

Create the initial explicit graph G′A/O = 〈∅, {s0}, ∅〉, only consisting of1

the initial vertex s0. Calculate the heuristic estimate h(s0) and the initial
cost estimate c(s0) := h(s0). Mark s0 as proven, if s0 ∈ R.

while s0 not proven and explicit graph not completely expanded do2

Traverse the partial game graph, using only marked edges until no3

more leaves can be reached. Select from those leaves a vertex v with
minimal cost estimate.

Expand this vertex v by adding all its successors to the set of AND4

vertices and by adding the corresponding edges. Expand each newly
generated AND vertex in the analogous way, unless it is already
proven. Compute the heuristic of the new OR vertices, followed by
updating the cost estimates and the proof status of all new AND
vertices.

Let U = C = {v}5

while U 6= ∅ do6

Pick and remove a vertex u from U . Update the cost estimate and7

the proof status of u. Remove marks of all outgoing edges of u.
Then mark an edge leading to a best successor, giving proven
vertices precedence over unproven ones.

if proof status of u changed then8

add all unproven parents of u to U and to C.9

else if cost estimate of u changed then10

add all unproven parents of u which are not contained in C to11

U and to C.
end12

end13

end14

Algorithm 1: AO* Algorithm

5

4 Adversarial FF Heuristic

Since we decided to employ a variant of the heuristic used in the FF planning
system [HN01], we need to make some assumptions about how the states and
operators are encoded. We assume a STRIPS [FN71] encoding with operators
divided in two sets controlled by the protagonist and antagonist, respectively.
More precisely, there is a set of propositions P over which the set of states
S = 2P is defined. The state s0 ⊆ P is the initial state and R ⊆ S is the
set of goal states. We assume that whenever r ∈ R and r′ ⊇ r, also r′ ∈ R.
Additionally, we assume that in each state the player to move is known. An
operator o has the form 〈pre, add, del〉, where pre ⊆ P is the precondition and
add, del ⊆ P are the add and delete lists of o. Each player i ∈ {1, 2} controls
a finite set of operators Oi. O1 and O2 need not be disjoint. An operator
o ∈ Oi, i ∈ {1, 2}, is applicable in a state s ⊆ P iff the player to move is i and
pre ⊆ s. If applied, o leads to the successor state s′ = (s \ del) ∪ add, in which
player ī = 3 − i is to move. A state s is a goal state iff s ∈ R.

The adversarial FF heuristic is based on the heuristic used in the FF plan-
ning system [HN01], to which we will refer as the standard FF heuristic. Both
use a relaxation of the operators to solve a relaxed form of the planning prob-
lem. This is done by ignoring the delete lists of all operators. While in classical
planning there is only one agent and thus only one set of (relaxed) operators, the
adversarial FF heuristic uses two relaxed sets of operators, one for each player.
These sets of relaxed operators is O+

i := { 〈pre, add, ∅〉 | 〈pre, add, del〉 ∈ Oi }.
We abbreviate o+ = 〈pre, add, ∅〉 as (pre → add).

The computation of the adversarial FF heuristic consists of the construction
of a relaxed planning graph (with alternating fact and proposition layers for
the protagonist and the antagonist), the extraction of a relaxed plan (with
relaxed operators partitioned into those selected for execution by the protagonist
and those selected for execution by the antagonist), and a final post-processing
step in which rules controlled by both players, but selected for execution by a
particular one of them may be re-distributed among the players. Based on the
re-arranged sets of relaxed operators, the heuristic value is computed, taking
into account that both players move in turn.

4.1 Computation of the Adversarial FF Heuristic

Note that the pseudocode implementation assumes that a solution always exists.
In the following, we will describe the pseudocode line by line.

Line 1 is the base case and returns zero if the initial state s0 is a goal state.
Lines 2 through 9 correspond to the forward step of the standard FF heuris-

tic. Starting in the first proposition layer, all operators that are applicable in
that layer are executed, leading to a new layer which contains all propositions
of the previous layer plus all propositions that are produced by the applicable
operators. This procedure continues until no additional operators are applicable
or until a goal state is found. In line 8, this forward step differs from the forward
step of the standard FF heuristic, since we always select operators controlled
by exactly one of two players.

Lines 10 through 27 correspond to the backward step of the standard FF
heuristic. We are interested in finding a subset of all operators found during the
forward step that is sufficient to reach the goal state r. To that end, we start

6

Input : For each player i ∈ {1, 2} a set of operators O+
i , each operator

o+ having the form (pre → add), an initial state s0, and a
non-empty set of goal states R.

Output: An estimate of the cost to reach R.

/* Forward step: Generate a goal state r. */

if s0 ∈ R then return 01

i = −12

S[−1] := s03

O[−1] := ∅4

while r * S[i] for all r ∈ R do5

/* Go to next layer. */

i + +6

/* Calculate all propositions in layer i. */

S[i] := S[i − 1] ∪ { p ∈ add | (pre → add) ∈ O[i − 1] }7

/* Calculate all operators that are applicable in S[i]. */

O[i] := { (pre → add) ∈ O+
i%2+1 | pre ⊆ S[i] }8

end9

/* Backward step: Find operator sequence to generate r. */

SO1 = ∅ /* selected operators of player 1 */10

SO2 = ∅ /* selected operators of player 2 */11

m := i /* the last processed layer */12

G[m] := r /* with r ⊆ S[m], the found goal state */13

for j = m − 1 to 0 do14

G[j] := ∅15

SO[j] := ∅16

/* Select for each proposition that we would like to have in the

next layer an operator to produce it (if necessary). */

foreach g ∈ G[j + 1] do17

if g ∈ S[j] then18

G[j] := G[j] ∪ {g}19

else20

pick o+ = (pre → add) ∈ O[j], such that g ∈ add21

SO[j] := SO[j] ∪ { o+ }22

G[j] := G[j] ∪ pre23

end24

end25

/* Sort operators selected for execution by player. */

SOj%2+1 := SOj%2+1 ∪ SO[j]26

end27

Algorithm 2: Computation of the Adversarial FF heuristic (part 1)

7

/* Re-distribution step: If possible, shift operators from SO1 to

SO2 (or vice versa) to ensure that the difference between |SO1|

and |SO2| is as small as possible. */

/* Let max be the player contributing more operators to a plan. */

if |SO1| > |SO2| then max := 1 else max := 228

/* Calculate h on the basis of n ∈ N, the number of operators that

have to be played by the max player, since the other player does

not control these operators. */

n := |SOmax| − |SOmax ∩ O+
max|, where max := 3 − max29

h := max{2n, |SO1| + |SO2|}30

Algorithm 2: Computation of the Adversarial FF heuristic (part 2)

with the goal state r just found and check for each proposition g in r, whether
or not it already exists one layer earlier (line 18). If not, g has been generated
in the current layer. Thus, we have to select an operator that produces g (lines
22 and 23). This selection can be based on various strategies. We achieved
best results with the strategy that always selects an operator with smallest
precondition. So far, the backward step of he adversarial FF heuristic does not
differ from the standard FF heuristic. The only difference is line 26, where we
collect all operators that are selected for the same player.

Lines 28 through 30 do not have a counterpart in the standard FF heuristic
and handle the fact that there are two players moving in turn. They re-distribute
the relaxed operators among the players if this is possible. Since the two players
take alternating turns, the number of turns until the goal can be reached is
at least twice the number of operators that the player who contributes more
operators to a plan (called max player) controls. Assume that the second player
contributes ten operators to a plan and the first player none. This would lead to
a relaxed plan of length twenty, including ten artificial no-ops by the first player.
Assume that the ten chosen operators could also be executed by the first player.
Then we might as well re-distribute them among the players, giving five to each
player, for an overall relaxed plan length of ten. Since player 2 is the adversary
of player 1, he will usually try to avoid executing operators that contribute
to a plan. Thus our heuristic calculation is optimistic and assumes that the
adversary would cooperate.

To compute a heuristic value, in line 28 we define max, the player who
contributes more operators to the plan. Next (line 29), we calculate n, which
is the number of operators that can only be played by the max player, since he
is the only one who controls these operators. Since both players move in turn,
the number of turns that are needed to execute the relaxed plan is 2n, as long
as 2n is not less than the number of operators |SO1|+ |SO2| that belong to the
plan.

One can obtain a more pessimistic (and possibly more realistic) heuristic
value by assuming that the antagonist plays only those operators, that only he
controls. All remaining operators are played by the protagonist. This alterna-
tive re-distribution step can be formulated as shown in Algorithm 2 (part 2,
alternative).

The main difference between the optimistic re-distribution step and the pes-

8

/* Pessimistic re-distribution step: Let the protagonist play all

operators that he controls and the antagonist the remaining. */

/* Calculate how many operators n1 ∈ N could be played by pl. 1.

*/

n1 := |SO1 ∪ (SO2 ∩ O+
1)|28

/* Calculate how many operators n2 ∈ N can only be played by pl.

2. */

n2 := |SO1| + |SO2| − n129

/* Return the heuristic value. */

return 2 max{n1, n2}30

Algorithm 2: Computation of the Adversarial FF heuristic (part 2,
alternative)

simistic re-distribution step is that in the latter the protagonist plays all selected
operators he can possibly play (and the antagonist only the remaining ones),
whereas in the former the antagonist helps as much as he can.

It is worth noting that the heuristic values of the (optimistic) adversarial FF
heuristic do not differ from the heuristic values of the standard FF heuristic if
both players control the same set of operators. Using the pessimistic adversarial
FF heuristic, one would obtain heuristic values that are exactly twice as large
as the values obtained by the standard FF heuristic.

4.2 Example

Assume that the sets of relaxed operators of the protagonist and antagonist are

O+
1 := { (1 → 2) , . . . , (1 → 8) , (9 → 10, 11) } and

O+
2 := { (1 → 2) , (1 → 3) , (8 → 9) }, respectively,

the current state s we want to evaluate is s0 := {1}, and the goal states are
given by the goal propositions 1, . . . , 10.

During the forward step, we obtain the following operator and rule sets:

S[0] = { 1 }, O[0] = { (1 → 2) , . . . , (1 → 8) },

S[1] = { 1 , . . . , 8 }, O[1] = { (1 → 2) , (1 → 3) , (8 → 9) },

S[2] = { 1 , . . . , 9 }, O[2] = { (1 → 2) , . . . , (1 → 8) , (9 → 10, 11) },

S[3] = { 1 , . . . , 11 }.

The plan extraction in the backward step gives the following sets of rules
and unsatisfied preconditions:

G[3] = { 1 , . . . , 10 }, SO[2] = { (9 → 10, 11) },

G[2] = { 1 , . . . , 9 }, SO[1] = { (8 → 9) },

G[1] = { 1 , . . . , 8 }, SO[0] = { (1 → 2) , . . . , (1 → 8) },

G[0] = { 1 }.

9

The sets SO1 and SO2 are therefore SO1 = { (1 → 2) , . . . , (1 → 8) , (9 →
10, 11) } and SO2 = { (8 → 9) }. Finally, the optimistic heuristic value is
computed as follows:

|SO1| = 8 > 1 = |SO2|, thus max := 1

n := |SO1| − |SO1 ∩ O+
2 |

= |SO1| − |{ (1 → 2) , . . . , (1 → 8) , (9 → 10, 11) } ∩

{ (1 → 2) , (1 → 3) , (8 → 9) }|

= |SO1| − |{ (1 → 2) , (1 → 3) }|

= 8 − 2 = 6

h := max{2n, |SO1| + |SO2|} = max{12, 9} = 12

The pessimistic heuristic value, on the other hand, would be computed as
follows:

n1 := |SO1 ∪ (SO2 ∩ O+
1)|

= |{ (1 → 2) , . . . , (1 → 8) , (9 → 10, 11) } ∪ ({ (8 → 9) } ∩ O+
1)|

= |{ (1 → 2) , . . . , (1 → 8) , (9 → 10, 11) } ∪ ∅|

= 8

n2 := |SO1| + |SO2| − n1 = 8 + 1 − 8 = 1

h := 2 max{n1, n2} = 2 max{8, 1} = 16

5 Experimental Results

We modified the simple rocket domain from [BF95] as follows: The task is
to transport a set of packages from initial to destination cities using a single
airplane with infinite capacity. A state is described by the current package po-
sitions and the fuel level of the airplane tank (full or empty) plus an additional
auxiliary variable nop needed to encode the fairness condition that the antag-
onist does not only perform no-ops. Possible actions are flying from one city
to another one if the tank is full, loading a package into the plane, unloading a
package from the plane unless the same package has just been loaded without
an intermittent flying action, fueling the plane if necessary, and performing no-
ops. Flying and loading can only be done by the protagonist, fueling only by
the antagonist, and unloading and no-ops by both, with the antagonist being
barred from two consecutive no-ops without a flight in between. The goal of the
protagonist is to transport the packages to specified target cities. The agents
take turns, starting with the protagonist.

There always exists a winning strategy for the protagonist since neither
destructive unload actions nor repeated no-ops by the antagonist are allowed,
so that the antagonist is eventually forced to contribute to the plan by fueling
or unloading.

Assume two cities Paris and London, one package to be transported from
London (packageInLondon) to Paris (packageInParis), and the plane initially
in London (airplaneInLondon) with its tank empty (¬full). The variable “nop”
is true iff the adversary has already performed a no-op since the last flight. A
winning strategy for the protagonist is depicted in Figure 1.

10

airplaneInLondon,
packageInLondon,
¬full, ¬nop

airplaneInLondon,
packageInAirplane,
¬full, ¬nop

airplaneInLondon,
packageInAirplane,
¬full, nop

airplaneInLondon,
packageInAirplane,
¬full, nop

airplaneInLondon,
packageInAirplane,
full, nop

airplaneInLondon,
packageInAirplane,
full, ¬nop

airplaneInParis,
packageInAirplane,
¬full, ¬nop

airplaneInParis,
packageInAirplane,
¬full, nop

airplaneInParis,
packageInParis,
¬full, ¬nop

airplaneInParis,
packageInAirplane,
full, ¬nop

airplaneInParis,
packageInParis,
¬full, nop

airplaneInParis,
packageInParis,
full, ¬nop

load

nop

fuel

nop fuel

fly

fly

nop

unloadfuel

unload

unload

Figure 1: Cargo transport from London to Paris. The initial state is depicted
on the upper left hand side, goal states are doubly framed. The protagonist
moves in elliptic, the antagonist in rectangular vertices.

We experimented with solvable problems from this example domain with
varying numbers of cities and packages. We compared running times, mem-
ory usage and vertex creations for uninformed breadth-first search, AO* search
with the standard FF heuristic under the assumption of full cooperation (only
one agent, controlling all operators), and AO* search with the optimistic and
pessimistic adversarial FF heuristic. In addition, we encoded the same tasks as
conditional planning problems under full observability in NuPDDL and solved
them using MBP [CPRT03]. The results are summarized in Table 1.

The results in Table 1 suggest that in domains where the the antagonist
controls operators that may contribute to a plan, AO* search with optimistic
and pessimistic adversarial FF heuristic often outperforms AO* search with
standard FF heuristic and uninformed forward search. It is competitive with
the symbolic approach used in MBP.

11

BFS AO* + hFF AO* + hopt. adv. FF AO* + hpes. adv. FF MBP
ℓ/p time mem. vertices time mem. vertices time mem. vertices time mem. vertices pre search BDD
2/1 0.014 1 44 0.046 1 37 0.023 1 37 0.022 1 37 0 .064 0 .004 14822
2/2 0.048 2 152 0.064 0 96 0.088 0 96 0.077 2 84 0 .384 0 .084 290495
3/3 0.354 6 2106 0.311 4 1131 0.571 6 1106 0.226 1 285 4 .128 3 .668 166012
3/4 0.870 49 8211 0.696 38 2766 0.781 42 2499 0.538 9 1053 39 .890 82 .073 654147
3/5 5 .556 159 43785 2.599 67 12676 3.019 60 11644 0.672 12 1836 – – –
3/6 87 .691 987 237264 12.421 252 61154 11.896 238 54469 2.526 111 10333 – – –
4/6 – – – 203 .678 1572 408768 37.762 700 129362 3.973 214 14115 – – –
4/7 – – – 756 .138 3389 1006666 131.505 1725 341093 1.375 60 4262 – – –
4/8 – – – – – – – – – 29.129 921 100263 – – –
4/9 – – – – – – – – – 129.305 1729 361899 – – –
4/10 – – – – – – – – – – – – – – –

ℓ: cities, p: packages, hopt. adv. FF: optimistic adv. FF heuristic, hpes. adv. FF: pessimistic adv. FF heuristic, BDD: BDD nodes

Table 1: Experimental results for the airplane benchmark problems. We used a Java implementation, running on a machine with an Intel
Core 2 Duo processor with 2.4 GHz and a Windows Vista x64 system. The problem instances for MBP were run on a machine with two
Quad Xeon processors with 2.66 GHz and a Linux x64 kernel. The time-out, indicated by dashes, was set to fifteen minutes. Times are
given in seconds, memory usage in MB. Bold entries highlight best results and italic entries worst, respectively.

12

References

[BF95] Avrim L. Blum and Merrick L. Furst. Fast Planning Through Plan-
ning Graph Analysis. In Proc. of the Fourteenth International Joint
Conference on Artificial Intelligence (IJCAI’95), pages 1636–1642,
1995.

[BG01] Blai Bonet and Héctor Geffner. Planning as Heuristic Search. Arti-
ficial Intelligence, 129(1-2):5–33, 2001.

[BJ03] The Duy Bui and Wojciech Jamroga. Multi-Agent Planning with
Planning Graph. In Eunite 2003, pages 558–565, 2003.

[BKS06] Daniel Bryce, Subbarao Kambhampati, and David E. Smith. Plan-
ning Graph Heuristics for Belief Space Search. Journal of Artificial
Intelligence Research, 26:35–99, 2006.

[CPRT03] Alessandro Cimatti, Marco Pistore, Marco Roveri, and Paolo
Traverso. Weak, Strong, and Strong Cyclic Planning via Symbolic
Model Checking. Artificial Intelligence, 147(1–2):35–84, 2003.

[FN71] Richard E. Fikes and Nils J. Nilsson. STRIPS: A New Approach to
the Application of Theorem Proving to Problem Solving. Artificial
Intelligence, 2(3–4):189–208, 1971.

[GLP05] Michael R. Genesereth, Nathaniel Love, and Barney Pell. General
Game Playing: Overview of the AAAI Competition. AI Magazine,
26(2):62–72, 2005.

[GTW02] Erich Grädel, Wolfgang Thomas, and Thomas Wilke. Automata,
Logics, and Infinite Games. A Guide to Current Research, chapter 2,
pages 23–40. Springer-Verlag, 2002.

[HN01] Jörg Hoffmann and Bernhard Nebel. The FF Planning System: Fast
Plan Generation Through Heuristic Search. Journal of Artificial
Intelligence Research, 14:253–302, 2001.

[HZ98] Eric A. Hansen and Shlomo Zilberstein. Heuristic Search in Cyclic
AND/OR Graphs. In Proceedings of the Fifteenth National Confer-
ence on Artificial Intelligence (AAAI’98), pages 412–418, 1998.

[Nil98] Nils J. Nilsson. Principles of Artificial Intelligence, chapter 3, pages
99–129. Springer-Verlag, 1998.

13

