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Abstract. We identify the complexity of (finite model) reasoning in
the DL SROIQ to be N2ExpTime-complete. We also prove that (finite
model) reasoning in the DL SR—a fragment of SROIQ without nomi-
nals, number restrictions, and inverse roles—is 2ExpTime-hard.

1 From SHIQ to SROIQ

In this paper we study the complexity of reasoning in the DL SROIQ—the logic
chosen as a candidate for OWL 2.1 SROIQ has been introduced in [1] as an
extension of SRIQ, which itself was introduced previously in [2] as an extension
of RIQ [3]. These papers present tableau-based procedures for the respective
DLs and prove their soundness, completeness and termination.

In contrast to sub-languages of SHOIQ whose computational complexities
are currently well understood [4], almost nothing was known, up until now, about
the complexity of SROIQ, SRIQ and RIQ except for the hardness results
inherited from their sub-lanbuages: SROIQ is NExpTime-hard as an extension
of SHOIQ, SRIQ and RIQ are ExpTime-hard as extensions of SHIQ. The
difficulty was caused by complex role inclusion axioms R1 ◦ · · · ◦Rn v R, which
cause exponential blowup in the tableau procedure. In this paper we demonstrate
that this blowup was essentially unavoidable by proving that reasoning in SRIQ
and SROIQ is exponentially harder than in SHIQ and SHOIQ.

We assume that the reader is familiar with the DL SHOIQ [5]. A SHOIQ
signature is a tuple Σ = (CΣ , RΣ , IΣ) consisting of the sets of atomic concepts
CΣ , atomic roles RΣ and individuals IΣ . A SHOIQ interpretation is a pair
I = (∆I , ·I) where ∆I is a non-empty set called the domain of I, and ·I is
the interpretation function, which assigns to every A ∈ CΣ a subset AI ⊆ ∆I ,
to every r ∈ RΣ a relation rI ⊆ ∆I × ∆I , and to every a ∈ IΣ , an element
aI ∈ ∆I . The interpretation I is finite iff ∆I is finite.

A role is either some r ∈ RΣ or an inverse role r−. For each r ∈ RΣ , we
set Inv(r) = r− and Inv(r−) = r. A SHOIQ RBox is a finite set R of role
inclusion axioms (RIA) R1 v R, transitivity axioms Tra(R) and functionality
axioms Fun(R) where R1 and R are roles. Let v∗R be the reflexive transitive
closure of the relation vR on roles defined by R1 vR R iff R1 v R ∈ R or
? Unless 2ExpTime = NExpTime, in which case just SROIQ is harder than SHOIQ
1 A.k.a. OWL 1.1: http://www.webont.org/owl/1.1



Inv(R1) v Inv(R) ∈ R. A role S is called simple (w.r.t. R) if there is no role R
such that R v∗R S and either Tra(R) ∈ R or Tra(Inv(R)) ∈ R.

Given an RBox R, the set of SHOIQ concepts is the smallest set containing
>, ⊥, A, {a}, ¬C, C uD, C tD, ∃R.C, ∀R.C, >nS.C, and 6nS.C, where A
is an atomic concept, a an individual, C and D concepts, R a role, S a simple
role w.r.t. R, and n a non-negative integer. A SHOIQ TBox is a finite set T of
generalized concept inclusion axioms (GCIs) C v D where C andD are concepts.
We write C ≡ D as an abbreviation for C v D and D v C. A SHOIQ ABox is a
finite set consisting of concept assertions C(a) and role assertions R(a, b) where
a and b are individuals from IΣ . A SHOIQ ontology is a triple O = (R, T ,A),
where R is a SHOIQ RBox, T a SHOIQ TBox, and A a SHOIQ ABox.

The interpretation I is extended to complex role, complex concepts, axioms,
and assertions in the usual way [5]. I is a model of a SHOIQ ontology O, if every
axiom and assertion in O is satisfied in I. A concept C is (finitely) satisfiable
w.r.t. O if CI 6= ∅ for some (finite) model I of O. It is well-known [6, 4] that the
problem of concept satisfiability for SHOIQ is NExpTime-complete.
SROIQ [1] extends SHOIQ in several ways. (1) It provides for the universal

role U , which is interpreted as the total relation: UI = ∆I ×∆I . (2) It allows
for negative role assertions ¬R(a, b). (3) It introduces a concept constructor
∃S.Self interpreted as {x ∈ ∆I | 〈x, x〉 ∈ SI} where S is a simple role. (4) It
allows for new role axioms Sym(R), Ref(R), Asy(S), Irr(S), Disj(S1, S2) where
S(i) are simple roles, which restrict RI to be symmetric or reflexive, SI to be
asymmetric or irreflexive, or SI1 and SI2 to be disjoint. (5) Finally, it allows for
complex role inclusion axioms of the form R1 ◦ · · · ◦Rn v R, which require that
RI1 ◦ · · · ◦ RIn ⊆ RI where ◦ is the usual composition of binary relations. The
notion of simple roles is adjusted to make sure that no simple role can be implied
by a role composition. SRIQ [2] is the fragment of SROIQ without nominals.

The constructors (1)–(4) do not introduce too many difficulties in SROIQ—
the existing tableau procedure for SHOIQ [5] can be relatively easily adapted
to support the new constructors. Dealing with complex role inclusion axioms
in DLs turned out to be more difficult. First, with an exception of the DL
EL++ [7], the unrestricted usage of complex RIAs easily leads to undecidability
of modal and description logics [8, 3]. Therefore special syntactic restrictions
have been introduced in SROIQ to regain decidability. A regular order on roles
is an irreflexive transitive binary relation ≺ on roles such that R1 ≺ R2 iff
Inv(R1) ≺ R2. A RIA R1 ◦ · · · ◦ Rn v R is said to be ≺-regular, if it does not
contain the universal role U and either: (i) n = 2 and R1 = R2 = R, or (ii) n = 1
and R1 = Inv(R), or (iii) Ri ≺ R for 1 ≤ i ≤ n, or (iv) R1 = R and Ri ≺ R for
1 < i ≤ n, or (v) Rn = R and Ri ≺ R for 1 ≤ i < n.

Example 1. Consider the complex RIA (1). This RIA is not ≺-regular regardless
of the choice for the ordering ≺. Indeed, (1) does not satisfy (i)–(ii) since n = 3,
and does not satisfy (iii)–(iv) since v = R2 ⊀ R = v.

r ◦ v ◦ r v v (1)
vi ◦ vi v vi+1, 0 ≤ i < n (2)



As an example of ≺-regular complex RIAs, consider axioms (2) over the atomic
roles v0, . . . , vn. It is easy to see that these axioms satisfy condition (iii) of
≺-regularity for every ordering ≺ such that vi ≺ vj , for every 0 ≤ i < j ≤ n.

Although Example 1 does not demonstrate the usage of the conditions (i),
(ii), (iv) and (v) for ≺-regularity of RIAs, as will be shown soon, axioms that
satisfy just the condition (iii) already make reasoning in SROIQ hard.

The syntactic restrictions on the set of RIAs of an RBox R ensure that R
is regular in the following sense. Given a role R, let LR(R) be the language
consisting of the words over roles defined by:

LR(R) := {R1R2 . . . Rn | R |= (R1 ◦ · · · ◦Rn v R)}

It has been shown in [3] that if the RIAs of R are ≺-regular for some ordering ≺,
then for every role R, the language LR(R) is regular. The tableau procedure for
SROIQ presented in [1], utilizes the non-deterministic finite automata (NFA)
corresponding to LR(R) to ensure that only finitely many states are produced by
tableau expansion rules. Unfortunately, the NFA for LR(R) can be exponentially
large in the size of R, which results in exponential blowup in the number of
states produced in the worst case by the procedure for SROIQ compared to the
procedure for SHOIQ. It was conjectured in [1] that without further restrictions
on RIAs such blowup is unavoidable. In Example 2, we demonstrate that minimal
automata for regular RBoxes can be exponentially large.

Example 2 (Example 1 continued). Let R be an RBox consisting of the single
axiom (1). It is easy to see that LR(s) = {rivri | i ≥ 0}, where ri denotes the
word consisting of i letters r. The language LR(v) is non-regular, which can be
shown, e.g., by using the pumping lemma for regular languages (see, e.g., [9]).

On the other hand, the RBox R consisting of the axioms (2) gives regular
languages. It is easy to show by induction on i that LR(vi) consist of finitely
many words, and hence, are regular. Moreover, by induction on i it is easy to show
that vj0 ∈ LR(vi) iff j = 2i. Let BR(vi) be an NFA for LR(vi) and q0, . . . , q2i

a run in BR(vi) accepting v2i

0 . Then all states in this run are different, since
otherwise there is a cycle, which would mean that BR(vi) accepts infinitely
many words. Hence BR(vi) has at least 2i + 1 states.

2 The Lower Complexity Bounds

In this section, we prove that reasoning in SROIF—a fragment of SROIQ that
includes functional roles instead of number restrictions—is N2ExpTime-hard. The
proof is by reduction from the doubly-exponential Domino tiling problem. We
also demonstrate that reasoning in SR—a fragment of SRIQ that does not
use counting and inverse roles—is 2ExpTime-hard by reduction from the word
problem for an exponential-space alternating Turing machine.

The main idea of our reductions is to enforce double-exponentially long chains
using SR axioms. Single-exponentially long chains can be enforced using a well-
known “integer counting” technique [6]. A counter cI(x) is an integer between



0 and 2n − 1 that is assigned to an element x of the interpretation I using n
atomic concepts B1, . . . , Bn as follows: the i-th bit of cI(x) is equal to 1 if and
only if x ∈ BIi . It is easy to see that axioms (3)–(7) induce an exponentially long
r-chain by initializing the counter and incrementing it over the role r.

Z ≡ ¬B1 u · · · u ¬Bn (3)
E ≡ B1 u · · · uBn (4)
¬E ≡ ∃r.> (5)
> ≡ (B1 u ∀r.¬B1) t (¬B1 u ∀r.B1) (6)

Bi−1 u ∀r.¬Bi−1 ≡ (Bi u ∀r.¬Bi) t (¬Bi u ∀r.Bi), 1 < i ≤ n (7)

Axiom (3) is responsible for initializing the counter to zero using the atomic
concept Z. Axiom (4) can be used to detect whether the counter has reached
the final value 2n − 1, by checking whether E holds. Thus, using axiom (5),
we can express that an element has an r-successor if and only if its counter
has not reached the final value. Axioms (6) and (7) express how the counter
is incremented over r: axiom (6) expresses that the lowest bit of the counter is
always flipped; axioms (7) express that any other bit of the counter is flipped if
and only if the lower bit is changed from 1 to 0.

Lemma 1. Let O be an ontology containing axioms (3)–(7). Then for every
model I = (∆I , ·I) of O and x ∈ ZI there exist xi ∈ ∆I with 0 ≤ i < 2n such
that x = x0 and 〈xi−1, xi〉 ∈ rI for every i with 1 ≤ i < 2n, and cI(xi) = i.

Now we use similar ideas to enforce double-exponentially long chains in the
model. This time, however, we cannot use just atomic concepts to encode the
bits of the counter since there are exponentially many bits. Therefore, we assign
a counter not to elements but to exponentially long r-chains induced by axioms
(3)–(7) using one atomic concept X: the i-th bit of the counter corresponds to
the value of X at the i-th element of the chain. In Figure 1(a) we have depicted
a doubly-exponential chain formed for the sake of presentation as a “zig-zag”
that we are going to induce using SR axioms. The chain consists of 22n

r-chains,
each having exactly 2n elements, that are joined together using a role v—the
last element of every r-chain, except for the final chain, is v-connected to the
first element of the next r-chain. The tricky part is to ensure that the counters
corresponding to r-chains are properly incremented. This is achieved by using the
regular role inclusion axioms from (2), which allow us to propagate information
using a role vn across chains of exactly 2n roles. The structure in Figure 1(a) is
enforced using axioms (8)–(15) in addition to axioms (2)–(7).

O v Z u Zv u Ev (8)
> v ∀v.(Z u Ev) (9)
Zv v ¬X u ∀r.Zv (10)

Ev uX v ∀r.Ev (11)
¬(Ev uX) v ∀r.¬Ev (12)
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Fig. 1. (a) Using SR axioms to encode double-exponentially long chains; (b) Using
SROIF axioms to encode double-exponentially large grids

E u ¬(Ev uX) v ∃v.> (13)
r v v0, v v v0 (14)

∀r.(X u ∀vn.¬X) ≡ (X u ∀vn.¬X) t (¬X u ∀vn.X) (15)

The atomic concept O corresponds to the origin of our structure. Axioms (8) and
(9) express that O and every v-successor start a new 2n-long r-chain because of
the atomic concept Z and axioms (3)–(7). In addition, the r-chain starting from
O should be initialized to “zero” using Zv and axiom (10). In order to identify
the final chain, we use the atomic concept Ev which should hold on an element
of an r-chain iff X holds on all preceding elements of this r-chain. Axioms (8)
and (9) say that Ev holds at the first element of every r-chain. Axioms (11) and
(12) propagate the value of Ev over the elements of the r-chain. Now, axiom
(13) says that the last element of every non-final r-chain has a v-successor.

Axioms (14) and (15) together with axioms (2) are responsible for increment-
ing the counter between r-chains. Recall that axioms from (2) imply (v0)i v vn
if and only if i = 2n, where (v0)i denotes the composition of the role v0 i times.
Now, using axioms (14) we make sure that exactly the corresponding elements
of the consequent r-chains are connected by the role vn. Finally, axiom (15)
expresses the transformation of bits in a similar way as axioms (6) and (7): the
value of X for the last element of every r-chain is always flipped over vn since
there is no r-successor due to axiom (5); the value of X for every other element
is flipped if and only if for all its r-successors X is changed to ¬X over vn.



Lemma 2. For every model I = (∆I , ·I) of every ontology O containing axioms
(2)–(15), and every x ∈ OI there exist x(i,j) ∈ ∆I with 0 ≤ i < 2n and 0 ≤
j < 22n

such that (i) x = x(0,0), (ii) 〈x(i−1,j), x(i,j)〉 ∈ rI when i ≥ 1, and
(iii) 〈x(2n−1,j−1), x(0,j)〉 ∈ vI when j ≥ 1.

Now we demonstrate that using SROIF axioms one can express the grid-
like structure in Figure 1(b). Our construction is like for ALCOIQ in [6], which
uses a pair of counters to encode the coordinates of the grid and a nominal with
inverse functionality to join the elements with the same coordinates. The only
difference is that we use the counters up to 22n

instead of just up to 2n.
The grid-like structure in Figure 1(b) consists of 22n× 22n

2n-long r-chains
which are joined vertically using the role v and horizontally using the role h
in the same way as in Figure 1(a). Every r-chain stores information about two
counters. The first counter uses the concept name X and corresponds to the
vertical coordinate of the r-chain; the second counter uses Y and corresponds to
the horizontal coordinate of the r-chain. The axioms (2)–(15) are now used to
express that the vertical counter for r-chains is initialized in O and is incremented
over v. A copy of these axioms (16)–(24) expresses the analogous property for
the horizontal counter.

O v Z u Zh u Eh (16)
> v ∀v.(Z u Eh) (17)
Zh v ¬Y u ∀r.Zh (18)

Eh u Y v ∀r.Eh (19)
¬(Eh u Y ) v ∀r.¬Eh (20)

E u ¬(Eh u Y ) v ∃v.> (21)
r v h0, h v h0 (22)
hi ◦ hi v hi+1, 0 ≤ i < n (23)

∀r.(Y u ∀hn.¬Y ) ≡ (Y u ∀hn.¬Y ) t (¬Y u ∀hn.Y ) (24)

The grid structure in Figure 1(b) is now enforced by adding axioms (25)–(28).

> v (X u ∀hn.X) t (¬X u ∀hn.¬X) (25)
> v (Y u ∀vn.Y ) t (¬Y u ∀vn.¬Y ) (26)

Ev uX u Eh u Y v {a} (27)

Fun(r−), Fun(h−), Fun(v−) (28)

Axioms (25) and (26) express that the values of the vertical / horizontal counters
are copied across h / respectively v. Axiom (27) expresses that the last element
of the r-chain with the final coordinates is unique. Together with axiom (28)
expressing that the roles r, h and v are inverse functional, this ensures that no
two different r-chains have the same coordinates. Note that the roles r, h and v
are simple since they do not occur at the right hand side of RIAs (2), (14), (22),
and (23). The following analogue of Lemmas 1 and 2 claims that the models of
our axioms that satisfy O correspond to the grid in Figure 1(b).



Lemma 3. For every model I = (∆I , ·I) of every ontology O containing ax-
ioms (2)–(28), and every x ∈ OI there exist x(i,j,k) ∈ ∆I with 0 ≤ i < 2n,
0 ≤ j, k < 22n

such that (i) x = x(0,0,0), (ii) 〈x(i−1,j,k), x(i,j,k)〉 ∈ rI when i ≥ 1,
(iii) 〈x(2n−1,j−1,k), x(0,j,k)〉 ∈ vI when j ≥ 1, and (iv) 〈x(2n−1,j,k−1), x(0,j,k)〉 ∈ hI
when k ≥ 1.

Our complexity result for SROIF is obtained by a reduction from the
bounded domino tiling problem. A domino system is a triple D = (T,H, V ),
where T = {1, . . . , k} is a finite set of tiles and H,V ⊆ T × T are horizon-
tal and vertical matching relations. A tiling of m × m for a domino system
D with initial condition c0 = 〈t01, . . . , t0n〉, t0i ∈ T , 1 ≤ i ≤ n, is a mapping
t : {1, . . . ,m} × {1, . . . ,m} → T such that 〈t(i − 1, j), t(i, j)〉 ∈ H, 1 < i ≤ m,
1 ≤ j ≤ m, 〈t(i, j − 1), t(i, j)〉 ∈ V , 1 < i ≤ m, 1 ≤ j ≤ m, and t(i, 1) = t0i ,
1 ≤ i ≤ n. It is well known [10] that there exists a domino system D0 that is
N2ExpTime-complete for the following decision problem: given an initial condi-
tion c0 of the size n, check if D0 admits the tiling of 22n× 22n

for c0. Axioms
(29)–(34) in addition to axioms (2)–(28) provide a reduction from this problem
to the problem of concept satisfiability in SROIF .

> v D1 t · · · tDk (29)
Di uDj v ⊥, 1 ≤ i < j ≤ k (30)

Di v ∀r.Di, 1 ≤ i ≤ k (31)
Di u ∃h.Dj v ⊥, 〈i, j〉 6∈ H (32)
Di u ∃v.Dj v ⊥, 〈i, j〉 6∈ V (33)

O v Dt01
u ∀hn.(Dt02

u ∀hn.(Dt03
u · · · (∀hn.Dt0n

) · · · )) (34)

The atomic concepts D1, . . . , Dk correspond to the tiles of the domino system
D0. Axioms (29) and (30) express that every element in the model is assigned
with a unique tile Di. Axiom (31) expresses that the elements of the same r-chain
are assigned with the same tile. Axioms (32) and (33) express the horizontal and
vertical matching properties. Finally, axiom (34) expresses the initial condition.
It is easy to see that this reduction is polynomial in n (D0 is fixed).

Theorem 1. Let c0 be an initial condition of size n for the domino system D0

and O an ontology consisting of the axioms (2)–(34). Then D0 admits the tiling
of 22n× 22n

for c0 if and only if O is (finitely) satisfiable in O.

Proof (sketch). It is easy to show that if D0 admits the tiling of 22n× 22n

for c0

then the structure in Figure 1(b) (which finitely satisfies O) can be expanded to
a model of O by interpreting Di accordingly. On the other hand, it is easy to
show using Lemma 3 that any model of O that satisfies O witnesses a tiling of
22n× 22n

for c0. ut

Corollary 1. The problem of (finite) concept satisfiability in the DL SROIF
is N2ExpTime-hard (and so are all the standard reasoning problems).



In the remainder of this section, we prove that (finite model) reasoning in
SR is 2ExpTime-hard. The proof is by reduction from the word problem of an
exponential-space alternating Turing machine. The main idea of our reduction
is to use the zig-zag-like structures in Figure 1(a) to simulate a computation of
an alternating Turing machine.

An alternating Turning machine (ATM) is a tuple M = (Γ,Σ,Q, q0, δ1, δ2)
where Γ is a finite working alphabet containing a blank symbol �; Σ ⊆ Γ \ {�}
is the input alphabet ; Q = Q∃ ] Q∀ ] {qa} ] {qr} is a finite set of states parti-
tioned into existential states Q∃, universal states Q∀, an accepting state qa and
a rejecting state qr; q0 ∈ Q∃ is the starting state, and δ1, δ2 : (Q∃ ∪Q∀)× Γ →
Q×Γ×{L,R} are transition functions. A configuration of M is a word c = w1qw2

where w1, w2 ∈ Γ ∗ and q ∈ Q. An initial configuration is c0 = q0w
0 where

w0 ∈ Σ∗. The size |c| of a configuration c is the number of symbols in c.
The successor configurations δ1(c) and δ2(c) of a configuration c = w1qw2 with
q 6= qa, qr over the transition functions δ1 and δ2 are defined like for determinis-
tic Turing machines (see, e.g., [9]). The sets Ca(M) of accepting configurations
and Cr(M) of rejecting configurations of M are the smallest sets such that (i)
c = w1qw2 ∈ Ca(M) if either q = qa, or q ∈ Q∀ and δ1(c), δ2(c) ∈ Ca(M), or
q ∈ Q∃ and δ1(c) ∈ Ca(M) or δ2(c) ∈ Ca(M), and (ii) c = w1qw2 ∈ Cr(M) if ei-
ther q = qr, or q ∈ Q∃ and δ1(c), δ2(c) ∈ Cr(M), or q ∈ Q∀ and δ1(c) ∈ Cr(M) or
δ2(c) ∈ Cr(M). The set of configurations reachable from an initial configuration
c0 in M is the smallest set M(c0) such that c0 ∈M(c0) and δ1(c), δ2(c) ∈M(c0)
for every c ∈ M(c0). M is g(n) space bounded if for every initial configuration
c0 we have: (i) c0 ∈ Ca(M) ∪ Cr(M), and (ii) |c| ≤ g(|c0|) for every c ∈M(c0).
A classical result AExpSpace = 2ExpTime [11] implies that there exists a 2n

space bounded ATM M0 for which the following decision problem is 2ExpTime-
complete: given an initial configuration c0 decide whether c0 ∈ Ca(M0).

Let c0 be an initial configuration of M0 and n = |c0| (w.l.o.g., assume that
n > 2). In order to decide whether c0 ∈ Ca(M0), we try to build all the required
accepting successor configurations of c0 from M0(c0). We encode the configura-
tions of M0(c0) on 2n-long r-chains. An r-chain corresponding to c is connected
to r-chains corresponding to δ1(c) and δ2(c) via the roles v and h in a similar
way as in Figure 1(a). It is a well-known property of the transition functions
of Turing machines that the symbols c1i and c2i at the position i of δ1(c) and
δ2(c) are uniquely determined by the symbols ci−1, ci, ci+1, and ci+2 of c at
the positions i − 1, i, i + 1, and i + 2.2 We assume that this correspondence is
given by the (partial) functions γ1 and γ2 such that γ1(ci−1, ci, ci+1, ci+2) = c1i
and γ2(ci−1, ci, ci+1, ci+2) = c2i . The computation of M0 from c0 can be encoded
using axioms (35)–(47) in addition to axioms (2)–(24).

> v
⊔

s∈Q∪Γ
As (35)

As1 uAs2 v ⊥, s1 6= s2 (36)

2 If any of the indexes i− 1, i + 1, or i + 2 are out of range for the configuration c, we
assume that the correspondent symbols ci−1, ci+1, or ci+2 are the blank symbol �



Z uAs2 u ∃r.(As3 u ∃r.As4) v S�s2s3s4 (37)
As1 u ∃r.(As2 u ∃r.(As3 u ∃r.As4)) v ∀r.Ss1s2s3s4 (38)

As1 u ∃r.(As2 u ∃r.(As3 u E)) v ∀r.Ss1s2s3� (39)
As1 u ∃r.(As2 u E) v ∀r.Ss1s2�� (40)

Ss1s2s3s4 v ∀vn.Aγ1(s1,s2,s3,s4) u ∀hn.Aγ2(s1,s2,s3,s4) (41)
O v A uAc01 u ∀r.(Ac02 u · · · (∀r.Ac0n u ∀r.Z�) · · · ) (42)

Z� v A� u ∀r.Z� (43)
A v ∀r.A, ¬A v ∀r.¬A (44)

A uAq v ∀vn.A t ∀hn.A, q ∈ Q∃ (45)
A uAq v ∀vn.A u ∀hn.A, q ∈ Q∀ (46)
A uAqr

v ⊥ (47)

We introduce an atomic concept As for every s from the set of states Q and
the working alphabet Γ . Axioms (35) and (36) express that every element of the
model is assigned with a unique symbol s ∈ Q∪Γ . Axioms (37)–(41) express how
the successor configurations δ1(c) and δ2(c) of a configuration c are computed:
the concept names Ss1s2s3s4 initialized by axioms (37)–(40) express that the
current element of the r-chain is assigned with the symbol s2, its r-predecessor
with s1 and its next two r-successors with s3 and s4 (s1, s3, and s4 are � if there
are no such elements); (41) then expresses how the corresponding symbols in the
successor r-chains are computed using the functions γ1 and γ2. Axioms (42) and
(43) initialize c0. In axioms (42) and (44)–(47), we use the atomic concept A to
express that the configuration encoded by the r-chain is accepting. Axiom (44)
ensures that all elements of the same r-chain have the same values of A. Axioms
(45) and (46) express which successor configurations are accepting depending on
whether the current state is existential or universal. Finally, axiom (47) expresses
that a configuration with the rejecting state cannot be accepting.

Theorem 2. Let c0 be an initial configuration for the ATM M0 and O an on-
tology consisting of the axioms (2)–(24) and (35)–(47). Then c0 ∈ Ca(M0) if
and only if O is (finitely) satisfiable in O.

Corollary 2. The problem of (finite) concept satisfiability in the DL SR is
2ExpTime-hard (and so are all the standard reasoning problems).

3 The Upper Complexity Bound

In this section we prove that complexity of SROIQ is in N2ExpTime using an
exponential-time translation into the two variable fragment with counting C2.

Let O be a SROIQ ontology for which we need to test satisfiability. By
Theorem 9 from [1], w.l.o.g., we can assume that O does not contain concept
and role assertions, the universal role, or axioms of the form Irr(S), Tra(R) or
Sym(R). We also replace Asy(S) with Disj(S, Inv(S)) and Ref(R) with s v R



1 A v ∀r.B ∀x.(A(x)→ ∀y.[r(x, y)→ B(y)])

2 A v > n s.B ∀x.(A(x)→ ∃≥ny.[s(x, y) ∧B(y)])

3 A v 6 n s.B ∀x.(A(x)→ ∃≤ny.[s(x, y) ∧B(y)])
4 A ≡ ∃s.Self ∀x.(A(x)↔ s(x, x))
5 Aa ≡ {a} ∃=1y.Aa(y)
6

d
Ai v

F
Bj ∀x.(

W
¬Ai(x) ∨

W
Bj(x))

7 Disj(s1, s2) ∀xy.(s1(x, y) ∧ s2(x, y)→ ⊥)
8 s1 v s2 ∀xy.(s1(x, y)→ s2(x, y))
9 s1 v s−2 ∀xy.(s1(x, y)→ s2(y, x))

10 r1 ◦ · · · ◦ rn v v, n ≥ 1

Table 1. Translation of simplified SROIQ axioms into C2

and > v ∃s.Self, where s is a fresh (simple) role. Next, we convert O into the
simplified form which contains only axioms of the form given in the first column
of Table 1, where A(i) and B(j) are atomic concepts, r(i) atomic roles, s(i) simple
atomic roles, and v a non-simple atomic role. The transformation can be done in
polynomial time using the standard structural transformation which iteratively
introduces definitions for compound sub-concept and sub-roles (see, e.g. [12]).

After the transformation, we eliminate RIAs of the form 10 using a technique
from [13]. Axioms of the form 10 can cause unsatisfiability of O only through
axioms of the form 1, since other axioms do not contain non-simple roles. Given
an axiom A v ∀v.B of the form 1 where v is non-simple, and an NFA for LR(v)
with the (possibly exponential) set of states Q, starting state q0 ∈ Q, accepting
states F ⊆ Q, and transition relation δ ⊆ Q × RΣ × Q, we replace this axiom
with axioms (48)–(50) where Arq is a fresh atomic concept for every q ∈ Q.

A v Arq, q = q0 (48)

Arq1 v ∀s.A
r
q2 , (q1, s, q2) ∈ δ (49)

Arq v B, q ∈ F (50)

Lemma 4. Let O be an ontology consisting of axioms of the form 1–10 from
Table 1, and O′ obtained from O by replacing every axiom A v ∀v.B with
axioms (48)–(50) and removing all axioms of the form 10. Then (1) every model
of O can be expanded to a model of O′ by interpreting Arq, and (2) every model
of O′ can be expanded to a model of O by interpreting the non-simple roles.

Theorem 3. (Finite) satisfiability of SROIQ ontologies is in N2ExpTime (and
so are all the standard reasoning problems).

Proof. The input SROIQ ontology O can be translated in exponential time
preserving (finite) satisfiability into a simplified ontology containing only axioms
of the form 1–9 from Table 1, which can be translated into the two variable
fragment with counting quantifiers C2 according to the second column of Table 1.
Since (finite) satisfiability of C2 is NExpTime-complete [14], our reduction proves
that (finite) satisfiability of SROIQ is in N2ExpTime. ut



4 Conclusions

In this paper we have identified the exact computational complexity of (finite
model) reasoning in SROIQ to be N2ExpTime—that is, exponentially harder
than for SHOIQ. The complexity blowup is due to complex role inclusion ax-
ioms, and in particular due to their ability to “chain” a fixed exponential number
of roles. Indeed, the complexity blowup occurs even when no other complex con-
structors such as nominals, number restrictions and inverse roles are used: SR
and therefore SRIQ is 2ExpTime-hard, whereas SHIQ is merely in ExpTime.
Our complexity results prove that the exponential blowups in the tableau pro-
cedures for SRIQ [2] and SROIQ [1] are unavoidable.

A few open questions are left for the future work. First, we did not ob-
tain the upper complexity bound for SRIQ. We conjecture that SRIQ is
2ExpTime-complete. Second, our proofs do not work for linear RIAs of the form
R1 ◦R2 v R1 or R2 ◦R1 v R1 that have been originally used in RIQ [15]. It
would be interesting to know if such RIAs also result in a higher complexity.
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